初中毕业、高级中等学校招生考试数学试题
历年福建省福州市中考数学试题(含答案)

2016 年福州市初中毕业会考、高级中等学校招生考试数学试题 (全卷共4页,三大题,27小题;满分150分;考试时间120分钟)友情提示:请把所有答案填写(涂)在答题卡上,请不要错位、越界答题! 毕业学校 姓名 考生号一、选择题(共12 小题,每题3分.满分36分;每小题只有一个正确选项)1.下列实数中的无理数是A .0.7B .21 C .π D .-8 2.如图是3个相同的小正方体组合而成的几何体,它的俯视图是A .B .C .D .3.如图,直线a 、b 被直线C 所截,∠1和∠2的位置关系是A .同位角B .内错角C .同旁内角D .对顶角4.下列算式中,结果等于a 6 的是A .a 4+a 2B .a 2+a 2+a 2C .a 4·a 2D .a 2·a 2·a 2 5.不等式组⎩⎨⎧>->+0301x x 的解集是 A .x >-1 B .x >3 C .-1<x <3 D .x <36.下列说法中,正确的是A .不可能事件发生的概率为0B .随机事件发生的概率为21 C .概率很小的事件不可能发生D .投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次7.A ,B 是数轴上两点,线段AB 上的点表示的数中,有互为相反数的是8.平面宜角坐标系中,已知□ABCD 的三个顶点坐标分别是A (m ,n ),B ( 2,-l ),C (-m ,-n ),则点D 的坐标是A .(-2 ,l )B .(-2,-l )C .(-1,-2 )D .(-1,2 )9.如图,以O 为圆心,半径为1 的弧交坐标轴于A ,B 两点,P 是⌒AB 上一点(不与A ,B 重合),连接OP ,设∠POB =α,则点P 的坐标是第2题A .(sin α,sin α)B .( cos α,cos α)C .(cos α,sin α)D .(sin α,cos α)10.下表是某校合唱团成员的年龄分布 年龄/岁 13 14 15 16 频数 5 15 x 10-x对于不同的x ,下列关于年龄的统计量不会发生改变的是A .平均数,中位数B .众数,中位数C .平均数,方差D .中位数,方差11.已知点A (-l ,m ),B ( l ,m ),C ( 2,m +l )在同一个函数图象上,这个函数图象可以是A B C D12.下列选项中,能使关于x 的一元二次方程ax 2-4x +c =0一定有实数根的是A .a >0B .a =0C .c >0D .c =0二、填空题(共6小题,每题4分,满分24分)13.分解因式:x 2-4= .14.若二次根式1-x 在实数范围内有意义,则x 的取值范围是 .15.已知四个点的坐标分别是(-1,1),(2,2),(32,23),(-5,-51),从中随机选一个点,在反比例函数y =x1图象上的概率是 . 16.如图所示的两段弧中,位于上方的弧半径为r 上,下方的弧半径为r 下,则r 上 r 下.(填“>“,”“=”“<”)17.若x +y =10,xy =1 ,则x 3y +xy 3= .18.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O )为60°,A ,B ,C 都在格点上,则tan ∠ABC 的值是 .三、解答题(共9 小题,满分90 分)19.(7分)计算:|-1|-38+(-2016)0 .20.(7分)化简:a -b -ba b a ++2)( 21.(8分)一个平分角的仪器如图所示,其中AB =AD ,BC =DC ,求证:∠BAC =∠DAC .x y O x yO x y O x y O22.(8分)列方程(组)解应用题:某班去看演出,甲种票每张24 元,乙种票每张18 元.如果35名学生购票恰好用去750元,甲乙两种票各买了多少张?23.(10分)福州市2011~2015年常住人口数统计如图所示.根据图中提供的信息,回答下列问题:(1)福州市常住人口数,2015年比2014年增加了 万人;(2)与上一年相比,福州市常住人口数增加最多的年份是 万人;(3)预测2016年福州市常住人口数大约为多少万人?请用所学的统计知识说明理由.24.(12分)如图,正方形ABCD 内接于⊙O ,M 为⌒AD 中点,连接BM ,CM .(1)求证:BM =CM ;(2)当⊙O 的半径为2 时,求⌒BM 的长.25.如图,在△ABC 中,AB =AC =1,BC =215 ,在AC 边上截取AD =BC ,连接BD . (1)通过计算,判断AD 2与AC ·CD 的大小关系;(2)求∠ABD 的度数.26.(13分)如图,矩形ABCD 中,AB =4,AD =3,M 是边CD 上一点,将△ADM 沿直线AM 对折,得到△ANM .(1)当AN 平分∠MAB 时,求DM 的长;(2)连接BN ,当DM =1时,求△ABN的面积;(3)当射线BN 交线段CD 于点F 时,求DF的最大值.27.(13分)已知,抛物线y=ax2+bx+c ( a≠0)经过原点,顶点为A ( h,k ) (h≠0).(1)当h=1,k=2时,求抛物线的解析式;(2)若抛物线y=tx2(t≠0)也经过A点,求a与t之间的关系式;(3)当点A在抛物线y=x2-x上,且-2≤h<1时,求a的取值范围.。
河南省中考数学试题及答案(word版)

河南省初中学业水平暨高级中等学校招生考试试卷数 学注意事项:1. 本试卷分试题卷和答题卡两部分。
试题卷共4页,三个大题,满分120分,考试时间100分钟.2. 试题卷上不要答题,请用0.5毫米黑色签字水笔直接把答案写在答题卡上,答在试题卷上的答案无效.3. 答题前,考生务必将本人姓名、准考证号填写在答题卡第一面的指定位置上.参考公式:二次函数y =ax 2+bx +c (a ≠0)图象的顶点坐标为)44,2(2ab ac a b --. 一、选择题 (每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的. 1. -2的相反数是( ) A . 2 B . 2-- C .21D . 21- 2.下列图形中,既是轴对称图形又是中心对称图形的是()3.方程(x-2)(x +3)=0的解是( )A . x =2B . x =3-C . x 1=2-,x 2=3D . x 1=2,x 2=3-4. 在一次体育测试中,小芳所在小组8人的成绩分别是:46,47,48,48,49,49,49,50.则这8人体育成绩的中位数是( )A . 47B . 48C . 48.5D . 495. 如图是正方体的一种展开图,其每个面上都标有一个数字,那么在原正方体中,与数字“2”相对的面上的数字是( )A . 1B . 4C . 5D . 66. 不等式组⎩⎨⎧>+≤122x x 的最小整数解为( )A . 1-B . 0C . 1D . 2第5题3 245 16 A BCD7. 如图,CD 是⊙O 的直径,弦AB ⊥CD 于点G ,直线EF 与 ⊙O 相切于点D ,则下列结论中不一定正确的是( ) A. AG =BG B. AB //EF C. AD //BC D. ∠ABC =∠ADC8. 在二次函数y =-x 2+2x +1的图象中,若y 随x 的增大而增大,则x 的取值范围是( ) A. x <1 B. x >1 C. x <-1 D. x >-1 二、填空题 (每小题3分,工21分) 9. 计算:._______43=--10. 将一副直角三角板ABC 和EDF 如图放置(其中∠A =60°,∠F =45°),使点E 落在AC 边上,且 ED //BC ,则∠CEF 的度数为_________. 11. 化简:._________)1(11=-+x x x 12. 已知扇形的半径为4 cm ,圆心角为120°,则此扇形的弧长是_________cm.13. 现有四张完全相同的卡片,上面分别标有数字-1,-2,3,4. 把卡片背面朝上洗匀,然后从中随机抽取两张,则这两张卡片上的数 字之积为负数的概率是_________. 14. 如图,抛物线的顶点为P (-2,2),与y 轴交于点A (0,3). 若平移该抛物线使其顶点 P 沿直线移动到点P ′(2,-2),点A 的对应 点为A ′,则抛物线上P A 段扫过的区域 (阴影部分)的面积为_________. 15. 如图,矩形ABCD 中,AB =3,BC =4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B ′处,当△CEB ′为直 角三角形时,BE 的长为_________.三、解答题 (本大题共8个小题,满分75分)16.(8分)先化简,再求值:(x +2)2+(2x +1)(2x -1)-4x (x +1),其中2-=x .E CDBA第15题B ′POA第14题xy A′P ′EO FCD B G A 第7题EFC DBA第10题17.(9分)从2013年1月7日起,中国中东部大部分地区持续出现雾霾天气. 某市记者为了了解“雾霾天气的主要成因”,随机调查了该市部分市民,并对调查结果进行整理,绘制了如下尚不完整的统计图表.组别 观点频数(人数)A 大气气压低,空气不流动 80B 地面灰尘大,空气湿度低m C 汽车尾部排放 n D 工厂造成污染120 E其他60请根据图表中提供的信息解答下列问题;(1)填空:m =________,n =_______,扇形统计图中E 组所占的百分比为_________%. (2)若该市人口约有100万人,请你估计其中持D 组“观点”的市民人数;(3)若在这次接受调查的市民中,随机抽查一人,则此人持C 组“观点”的概率是多少?18.(9分)如图,在等边三角形ABC 中,BC =6cm. 射线AG //BC ,点E 从点A 出发沿射线AG以1cm/s 的速度运动,同时点F 从点B 出发沿射线BC 以2cm/s 的速度运动,设运动时间为t (s).(1)连接EF ,当EF 经过AC 边的中点D 时,求证:△ADE ≌△CDF ;ED AECDB A 调查结果扇形统计图 20%10%(2)填空:①当t 为_________s 时,四边形ACFE 是菱形;②当t 为_________s 时,以A 、F 、C 、E 为顶点的四边形是直角梯形.19.(9分)我国南水北调中线工程的起点是丹江口水库,按照工程计划,需对原水库大坝进行混凝土培厚加高,使坝高由原来的162米增加到176.6米,以抬高蓄水位. 如图是某一段坝体加高工程的截面示意图,其中原坝体的高为BE ,背水坡坡角∠BAE =68°,新坝体的高为DE ,背水坡坡角∠DCE =60°. 求工程完工后背水坡底端水平方向增加的宽度AC (结果精确到0.1米. 参考数据:sin68°≈0.93,cos68°≈0.37,tan68°≈2.50,3≈1.73).E C D BA图68°60°20.(9分)如图,矩形OABC 的顶点A 、C 分别在x 轴和y 轴上,点B 的坐标为(2,3).双曲线)0(>=x xky 的图象经过BC 的中点D ,且与AB 交于点E ,连接DE . (1)求k 的值及点E 的坐标;(2)若点F 是OC 边上一点,且△FBC ∽△DEB ,求直线FB 的解析式.EOF C D BA第20题xy21.(10分)某文具商店销售功能相同的A、B两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.(1)求这两种品牌计算器的价格;(2)学校毕业前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器5个以上超出部分按原价的七折销售. 设购买x个A品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1、y2关于x 的函数关系式;(3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算?请说明理由.22.(10分)如图1,将两个完全相同的三角形纸片ABC 和DEC 重合放置,其中∠C =90°,∠B =∠E =30°. (1)操作发现如图2,固定△ABC ,使△DEC 绕点C 旋转,当点D 恰好落在AB 边上时,填空: ①线段DE 与AC 的位置关系是_________;②设△BDC 的面积为S 1,△AEC 的面积为S 2,则S 1与S 2的数量关系是_________________. (2)猜想论证当△DEC 绕点C 旋转到图3所示的位置时,小明猜想(1)中S 1与S 2的数量关系仍然成立,并尝试分别作出了△BDC 和△AEC 中BC 、CE 边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC =60°,点D 是其角平分线上一点,BD =CD =4,DE //AB 交BC 于点E (如图4).若在射线BA 上存在点F ,使S △DCF =S △BDE , 请直接写出....相应的BF 的长.A (D )B (E ) C图 1ACB DE图 2 M图3AB C DENECD BA图423.(11分)如图,抛物线y =-x 2+bx +c 与直线221+=x y 交于C 、D 两点,其中点C 在y 轴上,点D 的坐标为)273(,. 点P 是y 轴右侧的抛物线上一动点,过点P 作PE ⊥x 轴于点E ,交CD 于点F .(1)求抛物线的解析式;(2)若点P 的横坐标为m ,当m 为何值时,以O 、C 、P 、F 为顶点的四边形是平行四边形?请说明理由.(3)若存在点P ,使∠PCF =45°,请直接写出....相应的点P 的坐标.PEOF CDBAxyOCDBA 备用图yx参考答案。
2010年河南省中招考试数学试卷及答案

2010年河南省初中学业水平暨高级中等学校招生考试试卷数学一、选择题(每小题3分,共18分)1. 的相反数是【】(A) (B) (C) 2 (D)-22. 我省200年全年生产总值比2008年增长10.7%,达到约19367亿元. 19367亿元用科学记数法表示为【】(A)1 . 9367×10¹1元(B)1 . 9367×1012元(C)1 . 9367×1013元(D)1 . 9367×1014元3. 在某次体育测试中,九年级三班6位同学的立定跳远成绩(单位:m)分别为:1.71,1.85,1.85,1.96,2.10,2.31.则这组数据的众数和极差分别是【】(A)1 . 85和0.21 (B)2 . 11和0.46(C)1.85和0.60(D)2.31和0.604.如图,△ABC中,点DE分别是ABAC的中点,则下列结论:①BC=2DE;②△ADEc~△ABC;③. 其中正确的有【】( A ) 3个( B ) 2个(C)1个( D ) 0个( 第4 题)5. 方程x ²- 3 = 0 的根是【】(A)x=3 (B)x=3,x2=-3(C)x=√3(D)x=√3,x2=-√36.如图,将△ABC绕点C(0,-1)旋转180°得到△ABC,设点A的坐标为(a,b)则点A的坐标为【】(A)(-a,-b) (B)(-a.-b- 1)(C)(-a,-b+1) (D)(-a,-b-2)二、填空题(每小题3分,共27分)7. 计算l1+( - 2)²=( 第6 题)8. 若将三个数- √3, √7, √11表示在( 第8 题)数轴上,其中能被如图所示的墨迹覆盖的数是9. 写出一个y随x增大而增大的一次函数的解析式: .10. 将一副直角三角板如图放置,使含30°角的三角板的段直角边和含45°角的三角板的一条直角边重合,则Z1的度数为( 第1 0 题)( 第1 1 题)11.如图,AB切◎0于点A,BO交◎0于点C,点D是CmA上异于点C、A的一点,若ZABO=32°,则之ADC的度数是12. 现有点数为2,3,4,5的四张扑克牌,背面朝上洗匀,然后从中任意抽取两张,这两张牌上的数字之和为偶数的概率为13. 如图是由大小相同的小正方体组成的简单几何体的主视图和左视图那么组成这个几何体的小正方体的个数最多为主视图左视图( 第1 3 题)( 第 1 4 题) ( 第 1 5 题)14.如图矩形ABCD中,AD=1,AD=,以AD的长为半径的◎A交BC于点E,则图中阴影部分的面积为15. 如图,Rt△ABC 中,ZC=90°,ZABC=30°,AB=6 .点D在AB边上,点E是BC边上一点(不与点B、C重合),且DA=DE,则AD的取值范围是 .三、解答题(本大题共8个大题,满分75分)16 . (8分)已知.. 将它们组合成(A - B)÷C或A - B÷C的形式,请你从中任选一种进行计算,先化简,再求值其中x=3.17.(9分)如图,四边形ABCD是平行四边形,△AB’C和△ABC关于AC所在的直线对称,AD和B’C相交于点0,连接BB’.(1)请直接写出图中所有的等腰三角形(不添加字母);(2)求证:△AB’0≥△CD0 ..18. (9分)“校园手机”现象越来越受到社会的关注. “五一”期间,小记者刘凯随机调查了城区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:(1)求这次调查的家长人数,并补全图①;(2)求图②中表示家长“赞成”的圆心角的度数;(3)从这次接受调查的学生中,随机抽查一个,恰好是“无所谓”态度的学生的概率是多少?学生及家长对中学生带手机的态度统计图赞成反对无所谓20%图① 图②19 . (9分)如图,在梯形ABCD 中,AD//BC,E是BC 的中点,AD=5,BC=12,CD=4 √ 2,2C=45°,点P是BC边上一动点,设PB的长为x.(1)当x的值为时,以点P、A、D、E为顶点的四边形为直角梯形;(2)当x的值为时,以点P、A、D、E为顶点的四边形为平行四边形;;(3)点P在BC边上运动的过程中,以P、A、D、E为顶点的四边形能否构成菱形?试说明理由.20. (9分)为鼓励学生参加体育锻炼,学校计划拿出不超过1600元的资金再购买一批篮球和排球. 已知篮球和排球的单价比为3:2.单价和为80元.(1)篮球和排球的单价分别是多少元?(2)若要求购买的篮球和排球的总数量是36个,且购买的篮球数量多于25个,有哪几种购买方案?21. (9分)如图,直线y=kx+b与反比例函数的图象交于A(1,6),B(a,3)两点.(1)求k、k2的值;(2)直接写出x的值范围;(3)如图,等腰梯形OBCD 中,BC//OD,OB=CD,OD边在x轴上,过点C作CELOD于点E,CE和反比例函数的图象交于点P,当梯形OBCD的面积为12时,请判断PC和PE的大小关系,并说明理由.22.(10分)(1)操作发现如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,且点G 在举行ABCD内部.小明将BG延长交DC于点F,认为GF=DF,你同意吗?说明理由.(2)问题解决保持(1)中的条件不变,若DC=2DF,求的值;(3)类比探求保持(1)中条件不变,若DC=nDF,求的值.23. (11分)在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值.(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、0为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.2010年河南省初中学业水平暨高级中等学校招生考试数学试题参考答案及评分标准说明:1. 如果考生的解答与本参考答案提供的解法不同,可根据提供的解法的评分标准精神进行评分.2. 评阅试卷,要坚持每题诬阅到底,不能因老生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定对后面蜜分多少,但原则上不超过后罐部分应得分数之平。
2012年福州市中考数学试题及答案

二○一二年福州市初中毕业会考、高级中等学校招生考试数学试卷答案解析一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.3的相反数是A .-3B .13C .3D .-132.今年参观“5·18”海交会的总人数约为489000人,将489000用科学记数法表示为 A .48.9×104 B .4.89×105 C .4.89×104 D .0.489×106 3.如图是由4个大小相同的正方体组合而成的几何体,其主视图是4.如图,直线a ∥b ,∠1=70°,那么∠2的度数是A .50°B .60°C .70°D .80°5.下列计算正确的是A .a +a =2aB .b 3·b 3=2b 3C .a 3÷a =a 3D .(a 5)2=a 76.式子x -1在实数范围内有意义,则x 的取值范围是A .x <1B .x ≤1C .x >1D .x ≥17.某射击运动员在一次射击练习中,成绩(单位:环)记录如下:8,9,8,7,10.这组数据的平均数和中位数分别是A .8,8B .8.4,8C .8.4,8.4D .8,8.48.⊙O 1和⊙O 2的半径分别是3cm 和4cm ,如果O 1O 2=7cm ,则这两圆的位置关系是 A .内含 B .相交 C .外切 D .外离9.如图,从热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,如果此时热气球C 处的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点煌距离是 A .200米 B .2003米 C .2203米 D .100(3+1)米故选D . 10.如图,过点C (1,2)分别作x 轴、y 轴的平行线,交直线y =-x +6于A 、B 两点,若反比例函数y =kx(x >0)的图像与△ABC 有公共点,则k 的取值范围是A .2≤k ≤9B .2≤k ≤8C .2≤k ≤5D .5≤k ≤8第3题图A B CD a 第4题图12b 第9题图 A B CD30° 45°二、填空题(共5小题,每题4分,满分20分;请将正确答案填在答题卡相应位置) 11.分解因式:x 2-16=_________________.12.一个袋子中装有3个红球和2个绿球,这些球除了颜色外都相同,从袋子中随机摸出一个球,则摸到红球的概率为__________________.13.若20n 是整数,则正整数n 的最小值为________________.14.计算:x -1x +1x=______________.15.如图,已知△ABC ,AB =AC =1,∠A =36°,∠ABC 的平分线BD 交AC 于点D ,则AD 的长是______,cos A 的值是______________.(结果保留根号) A B C D第15题图三、解答题(满分90分;请将正确答案及解答过程填在答题卡相应位置.作图或添辅助线用铅笔画完,再用黑色签字笔描黑) 16.(每小题7分,共14分)(1) 计算:|-3|+(π+1)0-4. (2) 化简:a (1-a )+(a +1)2-1.17.(每小题7分,共14分)(1) 如图,点E 、F 在AC 上,AB ∥CD ,AB =CD ,AE =CF .求证:△ABF ≌△CDE . (2) 如图,方格纸中的每个小方格是边长为1个单位长度的正方形. ① 画出将Rt △ABC 向右平移5个单位长度后的Rt △A 1B 1C 1; ② 再将Rt △A 1B 1C 1绕点C 1顺时针旋转90°,画出旋转后的Rt △A 2B 2C 1,并求出旋转过程中线段A 1C 1所扫过的面积(结果保留π).18.(满分12分)省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题的交通安全教育宣传周活动.某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题.(1) m =_______%,这次共抽取__________名学生进行调查;并补全条形图; (2) 在这次抽样调查中,采用哪种上学方式的人最多?(3) 如果该校共有1500名学生,请你估计该校骑自行车上学的学生约有多少名? A B C D E F 第17(1)题图 第17(2)题图 A BC 学生上学方式扇形统计图 学生上学方式条形统计图19.(满分11分)某次知识竞赛共有20道题,每一题答对得5分,答错或不答都扣3分.(1) 小明考了68分,那么小明答对了多少道题?(2) 小亮获得二等奖(70~90分),请你算算小亮答对了几道题?20.(满分12分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D,AD 交⊙O于点E.(1) 求证:AC平分∠DAB;(2) 若∠B=60º,CD=23,求AE的长.第20题图21.(满分13分)如图①,在Rt △ABC 中,∠C =90º,AC =6,BC =8,动点P 从点A 开始沿边AC 向点C 以每秒1个单位长度的速度运动,动点Q 从点C 开始沿边CB 向点B 以每秒2个单位长度的速度运动,过点P 作PD ∥BC ,交AB 于点D ,连接PQ .点P 、Q 分别从点A 、C 同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t 秒(t ≥0).(1) 直接用含t 的代数式分别表示:QB =______,PD =______.(2) 是否存在t 的值,使四边形PDBQ 为菱形?若存在,求出t 的值;若不存在,说明理由.并探究如何改变点Q 的速度(匀速运动),使四边形PDBQ 在某一时刻为菱形,求点Q 的速度; (3) 如图②,在整个运动过程中,求出线段PQ 中点M 所经过的路径长.第21题图① B C D P Q 第21题图② B C D PQ22.(满分14分)如图①,已知抛物线y =ax 2+bx (a ≠0)经过A (3,0)、B (4,4)两点.(1) 求抛物线的解析式;(2) 将直线OB 向下平移m 个单位长度后,得到的直线与抛物线只有一个公共点D ,求m 的值及点D 的坐标; (3) 如图②,若点N 在抛物线上,且∠NBO =∠A BO ,则在(2)的条件下,求出所有满足△POD ∽△NOB 的点P 的坐标(点P 、O 、D 分别与点N 、O 、B 对应).A B D O x y 第22题图① A B D O x y 第22题图② N二○一二年福州市初中毕业会考、高级中等学校招生考试数学试卷答案解析一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.3的相反数是A .-3B .13C .3D .-13考点:相反数. 专题:存在型.分析:根据相反数的定义进行解答.解答:解:由相反数的定义可知,3的相反数是-3.故选A .点评:本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数.2.今年参观“5·18”海交会的总人数约为489000人,将489000用科学记数法表示为 A .48.9×104 B .4.89×105 C .4.89×104 D .0.489×106 考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 解答:解:489000=4.89×105.故选B .点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.如图是由4个大小相同的正方体组合而成的几何体,其主视图是考点:简单组合体的三视图.分析:从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.根据图中正方体摆放的位置判定则可.解答:解:从正面看,下面一行是横放3个正方体,上面一行中间是一个正方体.故选C .点评:本题考查了三种视图中的主视图,比较简单.4.如图,直线a ∥b ,∠1=70°,那么∠2的度数是 A .50° B .60° C .70° D .80° 考点:平行线的性质.分析:根据两角的位置关系可知两角是同位角,利用两直线平行同位角相等即可求得结果. 解答:解:∵ a ∥b ,∴ ∠1=∠2, ∵ ∠1=70°, ∴ ∠2=70°. 故选C .点评:本题考查了平行线的性质,根据两直线平行同位角相等即可得到答案,比较简单,属于基础题. 5.下列计算正确的是A .a +a =2aB .b 3·b 3=2b 3C .a 3÷a =a 3D .(a 5)2=a 7 考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方. 专题:计算题.第3题图A B CD a 第4题图 12 b可.解答:解:A 、a +a =2a ,故本选项正确;B 、b 3•b 3=b 6,故本选项错误;C 、a 3÷a =a 2,故本选项错误;D 、(a 5)2=a 10,故本选项错误. 故选A .点评:本题考查的是合并同类项、同底数幂的除法与乘法、幂的乘方与积的乘方法则,熟知以上知识是解答此题的关键.6.式子x -1在实数范围内有意义,则x 的取值范围是A .x <1B .x ≤1C .x >1D .x ≥1 考点:二次根式有意义的条件.分析:根据二次根式有意义的条件列出关于x 的不等式,求出x 的取值范围即可. 解答:解:∵ 式子x -1在实数范围内有意义,∴ x -1≥0,解得x ≥1. 故选D .点评:本题考查的是二次根式有意义的条件,即被开方数大于等于0.7.某射击运动员在一次射击练习中,成绩(单位:环)记录如下:8,9,8,7,10.这组数据的平均数和中位数分别是A .8,8B .8.4,8C .8.4,8.4D .8,8.4 考点:中位数;算术平均数.分析:根据平均数公式求解即可,即用所有数据的和除以5即可;5个数据的中位数是排序后的第三个数.解答:解:8,9,8,7,10的平均数为:15×(8+9+8+7+10)=8.4.8,9,8,7,10排序后为7,8,8,9,10,故中位数为8. 故选B .点评:本题考查了中位数及算术平均数的求法,特别是中位数,首先应该排序,然后再根据数据的个数确定中位数.8.⊙O 1和⊙O 2的半径分别是3cm 和4cm ,如果O 1O 2=7cm ,则这两圆的位置关系是 A .内含 B .相交 C .外切 D .外离 考点:圆与圆的位置关系.分析:由⊙O 1、⊙O 2的半径分别是3cm 、4cm ,若O 1O 2=7cm ,根据两圆位置关系与圆心距d ,两圆半径R ,r 的数量关系间的联系即可得出⊙O 1和⊙O 2的位置关系. 解答:解:∵ ⊙O 1、⊙O 2的半径分别是3cm 、4cm ,O 1O 2=7cm ,又∵ 3+4=7,∴⊙O 1和⊙O 2的位置关系是外切. 故选C .点评:此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d ,两圆半径R ,r 的数量关系间的联系.圆和圆的位置与两圆的圆心距、半径的数量之间的关系:① 两圆外离⇔d >R +r ;② 两圆外切⇔d =R +r ;③ 两圆相交⇔R -r <d <R +r (R ≥r );④ 两圆内切⇔d =R -r (R >r );⑤ 两圆内含⇔d <R -r (R >r ).9.如图,从热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,如果此时热气球C 处的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点煌距离是 A .200米 B .2003米 C .2203米 D .100(3+1)米考点:解直角三角形的应用-仰角俯角问题.分析:图中两个直角三角形中,都是知道已知角和对边,根据正切函数求出邻边后,相加求和即可. 解答:解:由已知,得∠A =30°,∠B =45°,CD =100,∵ CD ⊥AB 于点D .∴ 在Rt △ACD 中,∠CDA =90°,tan A =CDAD,∴ AD =CD tan A =1003=100 3第9题图A B CD30° 45°在Rt △BCD 中,∠CDB =90°,∠B =45°, ∴ DB =CD =100米,∴ AB =AD +DB =1003+100=100(3+1)米. 故选D .点评:本题考查了解直角三角形的应用,解决本题的关键是利用CD 为直角△ABC 斜边上的高,将三角形分成两个三角形,然后求解.分别在两三角形中求出AD 与BD 的长.10.如图,过点C (1,2)分别作x 轴、y 轴的平行线,交直线y =-x +6于A 、B 两点,若反比例函数y =kx (x >0)的图像与△ABC 有公共点,则k 的取值范围是A .2≤k ≤9B .2≤k ≤8C .2≤k ≤5D .5≤k ≤8 考点:反比例函数综合题.专题:综合题.分析:先求出点A 、B 的坐标,根据反比例函数系数的几何意义可知,当反比例函数图象与△ABC 相交于点C 时k 的取值最小,当与线段AB 相交时,k 能取到最大值,根据直线y =-x +6,设交点为(x ,-x +6)时k 值最大,然后列式利用二次函数的最值问题解答即可得解. 解答:解:∵ 点C (1,2),BC ∥y 轴,AC ∥x 轴,∴ 当x =1时,y =-1+6=5,当y =2时,-x +6=2,解得x =4,∴ 点A 、B 的坐标分别为A (4,2),B (1,5),根据反比例函数系数的几何意义,当反比例函数与点C 相交时,k =1×2=2最小, 设与线段AB 相交于点(x ,-x +6)时k 值最大, 则k =x (-x +6)=-x 2+6x =-(x -3)2+9, ∵ 1≤x ≤4,∴ 当x =3时,k 值最大, 此时交点坐标为(3,3),因此,k 的取值范围是2≤k ≤9. 故选A .点评:本题考查了反比例函数系数的几何意义,二次函数的最值问题,本题看似简单但不容易入手解答,判断出最大最小值的取值情况并考虑到用二次函数的最值问题解答是解题的关键. 二、填空题(共5小题,每题4分,满分20分;请将正确答案填在答题卡相应位置) 11.分解因式:x 2-16=_________________. 考点:因式分解——运用公式法.分析:运用平方差公式分解因式的式子特点:两项平方项,符号相反.直接运用平方差公式分解即可.a 2-b 2=(a +b )(a -b ).解答:解:x 2-16=(x +4)(x -4).点评:本题考查因式分解.当被分解的式子只有两项平方项;符号相反,且没有公因式时,应首要考虑用平方差公式进行分解.12.一个袋子中装有3个红球和2个绿球,这些球除了颜色外都相同,从袋子中随机摸出一个球,则摸到红球的概率为__________________. 考点:概率公式.分析:根据概率的求法,找准两点:① 全部情况的总数;② 符合条件的情况数目;二者的比值就是其发生的概率.解答:解;布袋中球的总数为:2+3=5,取到黄球的概率为:35.故答案为:35.点评:此题主要考查了概率的求法,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A出现m 种结果,那么事件A 的概率P (A )=mn.13.若20n 是整数,则正整数n 的最小值为________________.专题:存在型.分析:20n 是正整数,则20n 一定是一个完全平方数,首先把20n 分解因数,确定20n 是完全平方数时,n 的最小值即可.解答:解:∵ 20n =22×5n .∴ 整数n 的最小值为5. 故答案是:5.点评:本题考查了二次根式的定义,理解20n 是正整数的条件是解题的关键.14.计算:x -1x +1x=______________.考点:分式的加减法. 专题:计算题.分析:直接根据同分母的分数相加减进行计算即可.解答:解:原式=x -1+1x=1.故答案为:1.点评:本题考查的是分式的加减法,同分母的分式相加减,分母不变,把分子相加减. 15.如图,已知△ABC ,AB =AC =1,∠A =36°,∠ABC 的平分线BD 交AC 于点D ,则AD 的长是______,cos A 的值是______________.(结果保留根号)考点:黄金分割;相似三角形的判定与性质;锐角三角函数的定义.分析:可以证明△ABC ∽△BDC ,设AD =x ,根据相似三角形的对应边的比相等,即可列出方程,求得x的值;过点D 作DE ⊥AB 于点E ,则E 为AB 中点,由余弦定义可求出cos A 的值. 解答:解:∵ △ABC ,AB =AC =1,∠A =36°,∴ ∠ABC =∠ACB =180°-∠A2=72°.∵ BD 是∠ABC 的平分线,∴ ∠ABD =∠DBC =12∠ABC =36°. ∴ ∠A =∠DBC =36°, 又∵ ∠C =∠C , ∴ △ABC ∽△BDC , ∴ AC BC =BC CD, 设AD =x ,则BD =BC =x .则1x =x1-x ,解得:x =5+12(舍去)或5-12.故x = 5-12.如右图,过点D 作DE ⊥AB 于点E , ∵ AD =BD ,∴E 为AB 中点,即AE =12AB =12.在Rt △AED 中,cos A =AEAD =125-12=5+14.故答案是:5-12;5+14.点评:△ABC 、△BCD 均为黄金三角形,利用相似关系可以求出线段之间的数量关系;在求cos A 时,注意构造直角三角形,从而可以利用三角函数定义求解.三、解答题(满分90分;请将正确答案及解答过程填在答题卡相应位置.作图或添辅助线用铅笔画完,再用黑色签字笔描黑) AB D 第15题图A B D E(1) 计算:|-3|+(π+1)0-4.(2) 化简:a (1-a )+(a +1)2-1.考点:整式的混合运算;实数的运算;零指数幂.专题:计算题.分析:(1) 原式第一项根据绝对值的代数意义:负数的绝对值等于它的相反数进行化简,第二项利用零指数公式化简,第三项利用a 2=|a |化简,合并后即可得到结果;(2) 利用乘法分配律将原式第一项括号外边的a 乘到括号里边,第二项利用完全平方数展开,合并同类项后即可得到结果.解答:解:(1) 解:|-3|+(π+1)0-4=3+1-2=2.(2) 解:a (1-a )+(a +1)2-1=a -a 2+a 2+2a +1-1=3a .点评:此题考查了整式的混合运算,以及实数的运算,涉及的知识有:绝对值的代数意义,零指数公式,二次根式的化简,完全平方公式,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.17.(每小题7分,共14分)(1) 如图,点E 、F 在AC 上,AB ∥CD ,AB =CD ,AE =CF .求证:△ABF ≌△CDE .(2) 如图,方格纸中的每个小方格是边长为1个单位长度的正方形.① 画出将Rt △ABC 向右平移5个单位长度后的Rt △A 1B 1C 1;② 再将Rt △A 1B 1C 1绕点C 1顺时针旋转90°,画出旋转后的Rt △A 2B 2C 1,并求出旋转过程中线段A 1C 1所扫过的面积(结果保留π).考点:作图——旋转变换;全等三角形的判定;扇形面积的计算;作图——平移变换.分析:(1) 由AB ∥CD 可知∠A =∠C ,再根据AE =CF 可得出AF =CE ,由AB =CD 即可判断出△ABF ≌CDE ;(2) 根据图形平移的性质画出平移后的图形,再根据在旋转过程中,线段A 1C 1所扫过的面积等于以点C 1为圆心,以A 1C 1为半径,圆心角为90度的扇形的面积,再根据扇形的面积公式进行解答即可. 解答:证明:∵ AB ∥CD ,∴ ∠A =∠C .∵ AE =CF ,∴ AE +EF =CF +EF ,即 AF =CE . 又∵ AB =CD ,∴ △ABF ≌△CDE .(2) 解:① 如图所示; ② 如图所示;在旋转过程中,线段A 1C 1所扫过的面积等于90·π·42360=4π. 点评:本题考查的是作图-旋转变换、全等三角形的判定及扇形面积的计算,熟知图形平移及旋转不变性的性质是解答此题的关键.18.(满分12分)省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题的交通安全教育宣传周活动.某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题.A B C D E F 第17(1)题图 第17(2)题图 A BC 学生上学方式扇形统计图 学生上学方式条形统计图(1) m =_______%,这次共抽取__________名学生进行调查;并补全条形图;(2) 在这次抽样调查中,采用哪种上学方式的人最多?(3) 如果该校共有1500名学生,请你估计该校骑自行车上学的学生约有多少名?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1) 用1减去其他各种情况所占的百分比即可求m 的值,用乘公交的人数除以其所占的百分比即可求得抽查的人数; (2) 从扇形统计图或条形统计图中直接可以得到结果; (3) 用学生总数乘以骑自行车所占的百分比即可. 解答:解:(1) 1-14%-20%-40%=26%;20÷40%=50; 条形图如图所示; (2) 采用乘公交车上学的人数最多; (3) 该校骑自行车上学的人数约为: 150×20%=300(人).点评:本题考查了条形统计图、扇形统计图及用样本估计总数的知识,解题的关键是从统计图中整理出进一步解题的信息.19.(满分11分)某次知识竞赛共有20道题,每一题答对得5分,答错或不答都扣3分.(1) 小明考了68分,那么小明答对了多少道题?(2) 小亮获得二等奖(70~90分),请你算算小亮答对了几道题?考点:一元一次不等式组的应用;一元一次方程的应用.分析:(1) 设小明答对了x 道题,则有20-x 道题答错或不答,根据答对题目的得分减去答错或不答题目的扣分是68分,即可得到一个关于x 的方程,解方程即可求解;(2) 小明答对了x 道题,则有20-x 道题答错或不答,根据答对题目的得分减去答错或不答题目的扣分,就是最后的得分,得分满足大于或等于70小于或等于90,据此即可得到关于x 的不等式组,从而求得x 的范围,再根据x 是非负整数即可求解.解答:解:(1) 设小明答对了x 道题,依题意得:5x -3(20-x )=68.解得:x =16.答:小明答对了16道题. (2) 设小亮答对了y 道题, 依题意得:⎩⎨⎧5y -3(20-y )≥705y -3(20-y )≤90. 因此不等式组的解集为1614≤y ≤1834. ∵ y 是正整数,∴ y =17或18. 答:小亮答对了17道题或18道题.点评:本题考查了列方程解应用题,以及列一元一次不等式解决问题,正确列式表示出最后的得分是关键.20.(满分12分)如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过C 点的切线互相垂直,垂足为D ,AD交⊙O 于点E .(1) 求证:AC 平分∠DAB ;(2) 若∠B =60º,CD =23,求AE 的长.考点:切线的性质;圆周角定理;相似三角形的判定与性质;解直角三角形.专题:几何综合题.分析:(1) 连接OC ,由CD 为⊙O 的切线,根据切线的性质得到OC 垂直于CD ,由AD 垂直于CD ,可得出OC 平行于AD ,根据两直线平行内错角相等可得出∠1=∠2,再由OA =OC ,利用等边对等角得到∠2=∠3,等量代换可得出∠1=∠3,即AC 为角平分线;(2) 法1:由AB 为圆O 的直径,根据直径所对的圆周角为直角可得出∠ACB 为直角,在直角三角形ABC 中,由∠B 的度数求出∠3的度数为30°,可得出∠1的度数为30°,在直角三角形ACD 中,根据30°角所对的直角边等于斜边的一半,由CD 的长求出AC 的长,在直角三角形ABC 中,根据cos30°及AC 的长,利用锐角三角函数定义求出AB 的长,进而得出半径OE 的长,由∠EAO 为60°,及OE =OA ,得到三角形AEO 为等边三角形,可得出AE =OA =OE ,即可确定出AE 的长;第20题图 学生上学方式条形统计图法2:连接EC ,由AB 为圆O 的直径,根据直径所对的圆周角为直角可得出∠ACB 为直角,在直角三角形ABC 中,由∠B 的度数求出∠3的度数为30°,可得出∠1的度数为30°,在直角三角形ADC 中,由CD 及tan30°,利用锐角三角函数定义求出AD 的长,由∠DEC 为圆内接四边形ABCE 的外角,利用圆内接四边形的外角等于它的内对角,得到∠DEC =∠B ,由∠B 的度数求出∠DEC 的度数为60°,在直角三角形DEC 中,由tan60°及DC 的长,求出DE 的长,最后由AD -ED 即可求出AE 的长.解答:(1) 证明:如图1,连接OC ,∵ CD 为⊙O 的切线,∴ OC ⊥CD ,∴ ∠OCD =90°.∵ AD ⊥CD ,∴ ∠ADC =90°.∴ ∠OCD +∠ADC =180°,∴ AD ∥OC ,∴ ∠1=∠2,∵ OA =OC ,∴ ∠2=∠3,∴ ∠1=∠3,即AC 平分∠DAB .(2) 解法一:如图2,∵ AB 为⊙O 的直径, ∴ ∠ACB =90°. 又∵ ∠B =60°,∴ ∠1=∠3=30°. 在Rt △ACD 中,CD =23, ∴ AC =2CD =43.在Rt △ABC 中,AC =43,∴ AB =AC cos ∠CAB =43cos30°=8. 连接OE ,∵ ∠EAO =2∠3=60°,OA =OE ,∴ △AOE 是等边三角形,∴ AE =OA =12AB =4. 解法二:如图3,连接CE∵ AB 为⊙O 的直径,∴ ∠ACB =90°.又∵ ∠B =60°, ∴ ∠1=∠3=30°. 在Rt △ADC 中,CD =23, ∴ AD =CD tan ∠DAC =23tan30°=6. ∵ 四边形ABCE 是⊙O 的内接四边形,∴ ∠B +∠AEC =180°.又∵ ∠AEC +∠DEC =180°,∴ ∠DEC =∠B =60°.在Rt △CDE 中,CD =23,∴ DE =CD tan ∠DEC =23tan60°=2. ∴ AE =AD -DE =4.点评:此题考查了切线的性质,平行线的性质,等边三角形的判定与性质,锐角三角函数定义,圆内接四边形的性质,以及圆周角定理,利用了转化及数形结合的思想,遇到直线与圆相切,常常连接圆心图2图3与切点,利用切线的性质得到垂直,利用直角三角形的性质来解决问题.21.(满分13分)如图①,在Rt △ABC 中,∠C =90º,AC =6,BC =8,动点P 从点A 开始沿边AC 向点C 以每秒1个单位长度的速度运动,动点Q 从点C 开始沿边CB 向点B 以每秒2个单位长度的速度运动,过点P 作PD ∥BC ,交AB 于点D ,连接PQ .点P 、Q 分别从点A 、C 同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t 秒(t ≥0).(1) 直接用含t 的代数式分别表示:QB =______,PD =______.(2) 是否存在t 的值,使四边形PDBQ 为菱形?若存在,求出t 的值;若不存在,说明理由.并探究如何改变点Q 的速度(匀速运动),使四边形PDBQ 在某一时刻为菱形,求点Q 的速度;(3) 如图②,在整个运动过程中,求出线段PQ 中点M 所经过的路径长.考点:相似三角形的判定与性质;一次函数综合题;勾股定理;菱形的判定与性质.专题:代数几何综合题.分析:(1) 根据题意得:CQ =2t ,P A =t ,由Rt △ABC 中,∠C =90°,AC =6,BC =8,PD ∥BC ,即可得tan A = PD P A =BC AC =43,则可求得QB 与PD 的值; (2) 易得△APD ∽△ACB ,即可求得AD 与BD 的长,由BQ ∥DP ,可得当BQ =DP 时,四边形PDBQ 是平行四边形,即可求得此时DP 与BD 的长,由DP ≠BD ,可判定▱PDBQ 不能为菱形;然后设点Q 的速度为每秒v 个单位长度,由要使四边形PDBQ 为菱形,则PD =BD =BQ ,列方程即可求得答案;(3) 设E 是AC 的中点,连接ME .当t =4时,点Q 与点B 重合,运动停止.设此时PQ 的中点为F ,连接EF ,由△PMN ∽△PQC .利用相似三角形的对应边成比例,即可求得答案.解答:解:(1) QB =8-2t ,PD =43t . (2) 不存在.在Rt △ABC 中,∠C =90°,AC =6,BC =8, ∴ AB =10.∵ PD ∥BC ,∴ △APD ∽△ACB , ∴ AD AB =AP AC ,即:AD 10=t 6, ∴ AD =53t , ∴ BD =AB -AD =10-53t . ∵ BQ ∥DP ,∴ 当BQ =DP 时,四边形PDBQ 是平行四边形,即8-2t =43t ,解得:t =125. 当t =125时,PD =43×125=165,BD =10-53×125=6, ∴ DP ≠BD ,∴ □PDBQ 不能为菱形.设点Q 的速度为每秒v 个单位长度,则BQ =8-vt ,PD =43t ,BD =10-53t . 要使四边形PDBQ 为菱形,则PD =BD =BQ ,第21题图① B C D P Q 第21题图② B C D P Q 图1 B C D P Q当PD =BD 时,即43t =10-53t ,解得:t =103. 当PD =BQ 时,t =103时,即43×103=8-103v ,解得:v =1615. (3) 解法一:如图2,以C 为原点,以AC 所在直线为x 轴,建立平面直角坐标系.依题意,可知0≤t ≤4,当t =0时,点M 1的坐标为(3,0);当t =4时,点M 2的坐标为(1,4). 设直线M 1M 2的解析式为y =kx +b , ∴ ⎩⎨⎧3k +b =0k +b =4,解得:⎩⎨⎧k =-2b =6. ∴ 直线M 1M 2的解析式为y =-2x +6. ∵ 点Q (0,2t ),P (6-t ,0), ∴ 在运动过程中,线段PQ 中点M 3的坐标为(6-t 2,t ). 把x =6-t 2,代入y =-2x +6,得y =-2×6-t 2+6=t . ∴ 点M 3在直线M 1M 2上.过点M 2作M 2N ⊥x 轴于点N ,则M 2N =4,M 1N =2.∴ M 1M 2=25.∴ 线段PQ 中点M 所经过的路径长为25单位长度.解法二:如图3,设E 是AC 的中点,连接ME .当t =4时,点Q 与点B 重合,运动停止.设此时PQ 的中点为F ,连接EF . 过点M 作MN ⊥AC ,垂足为N ,则MN ∥BC .∴ △PMN ∽△PDC .∴ MN QC =PN PC =PM PQ ,即:MN 2t =PN 6-t =12. ∴ MN =t ,PN =3-12t , ∴ CN =PC -PN =(6-t )-(3-12t )=3-12t . ∴ EN =CE -CN =3-(3-12t )= 12t . ∴ tan ∠MEN =MN EN=2. ∵ tan ∠MEN 的值不变,∴ 点M 在直线EF 上.过F 作FH ⊥AC ,垂足为H .则EH =2,FH =4.∴ EF =25.∵ 当t =0时,点M 与点E 重合;当t =4时,点M 与点F 重合,∴ 线段PQ 中点M 所经过的路径长为25单位长度.点评:此题考查了相似三角形的判定与性质、平行四边形的判定与性质、菱形的判定与性质以及一次函数的应用.此题综合性很强,难度较大,解题的关键是注意数形结合思想的应用.22.(满分14分)如图①,已知抛物线y =ax 2+bx (a ≠0)经过A (3,0)、B (4,4)两点.(1) 求抛物线的解析式;(2) 将直线OB 向下平移m 个单位长度后,得到的直线与抛物线只有一个公共点D ,求m 的值及点D 的坐标;(3) 如图②,若点N 在抛物线上,且∠NBO =∠A BO ,则在(2)的条件下,求出所有满足△POD ∽△NOB 的点P 的坐标(点P 、O 、D 分别与点N 、O 、B 对应).考点:二次函数综合题.分析:(1) 利用待定系数法求出二次函数解析式即可;(2) 根据已知条件可求出OB 的解析式为y =x ,则向下平移m 个单位长度后的解析式为:y =x -m .由于抛物线与直线只有一个公共点,意味着联立解析式后得到的一元二次方程,其根的判别式等于0,由此可求出m 的值和D 点坐标;(3) 综合利用几何变换和相似关系求解.A B C M 1 x y P N Q M 2 M 3 D 图2 AB C P N Q D 图3 E M F H方法一:翻折变换,将△NOB 沿x 轴翻折; 方法二:旋转变换,将△NOB 绕原点顺时针旋转90°. 特别注意求出P 点坐标之后,该点关于直线y =-x 的对称点也满足题意,即满足题意的P 点有两解答:解:(1) ∵ 抛物线y =ax 2+bx (a ≠0)经过点A (3,0)、B (4,4).∴ ⎩⎨⎧9a +3b =016a +4b =4,解得:⎩⎨⎧a =1b =-3. ∴ 抛物线的解析式是y =x 2-3x .(2) 设直线OB 的解析式为y =k 1x ,由点B (4,4),得:4=4k 1,解得k 1=1.∴ 直线OB 的解析式为y =x .∴ 直线OB 向下平移m 个单位长度后的解析式为:y =x -m .∵ 点D 在抛物线y =x 2-3x 上.∴ 可设D (x ,x 2-3x ).又点D 在直线y =x -m 上,∴ x 2-3x =x -m ,即x 2-4x +m =0.∵ 抛物线与直线只有一个公共点,∴ △=16-4m =0,解得:m =4.此时x 1=x 2=2,y =x 2-3x =-2,∴ D 点坐标为(2,-2).(3) ∵ 直线OB 的解析式为y =x ,且A (3,0),∴ 点A 关于直线OB 的对称点A'的坐标是(0,3).设直线A'B 的解析式为y =k 2x +3,过点B (4,4),∴ 4k 2+3=4,解得:k 2=14. ∴ 直线A'B 的解析式是y =14x +3. ∵ ∠NBO =∠ABO ,∴ 点N 在直线A'B 上,∴ 设点N (n ,14n +3),又点N 在抛物线y =x 2-3x 上, ∴ 14n +3=n 2-3n , 解得:n 1=-34,n 2=4(不合题意,会去), ∴ 点N 的坐标为(-34,4516). 方法一:如图1,将△NOB 沿x 轴翻折,得到△N 1OB 1, 则N 1(-34,-4516),B 1(4,-4), ∴ O 、D 、B 1都在直线y =-x 上.∵ △P 1OD ∽△NOB , ∴ △P 1OD ∽△N 1OB 1, 第22题图① 第22题图②∴ OP 1ON 1=OD OB 1=12, ∴ 点P 1的坐标为(-38,-4532). 将△OP 1D 沿直线y =-x 翻折,可得另一个满足条件的点P 2(4532,38). 综上所述,点P 的坐标是(-38,-4532)或(4532,38). 方法二:如图2,将△NOB 绕原点顺时针旋转90°,得到△N 2OB则N 2(4516,34),B 2(4,-4), ∴ O 、D 、B 2都在直线y =-x 上. ∵ △P 1OD ∽△NOB , ∴ △P 1OD ∽△N 2OB 2, ∴ OP 1ON 2=OD OB 2=12, ∴ 点P 1的坐标为(4532,38). 将△OP 1D 沿直线y =-x 翻折,可得另一个满足条件的点P 2(-38,-4532). 综上所述,点P 的坐标是(-38,-4532)或(4532,38). 点评:本题是基于二次函数的代数几何综合题,综合考查了待定系数法求抛物线解析式、一次函数(直线)的平移、一元二次方程根的判别式、翻折变换、旋转变换以及相似三角形等重要知识点.本题将初中阶段重点代数、几何知识熔于一炉,难度很大,对学生能力要求极高,具有良好的区分度,是一道非常好的中考压轴题.。
5年年河南省中招考试数学试题卷及答案

2007年河南省高级中等学校招生学业考试试卷数 学注意事项:1. 本试卷共8页,三大题,满分120分,考试时间100分钟.请用钢笔或圆珠笔直接答在试卷上下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.【 】A.— 1B. 1C.-3 2. 使分式有意义的x 的取值范围为A.x≠2B.X≠-2C.X>-23. 如图,△ABC 与△AB ℃关于直线1对称, 则 Z B 的 度 数 为 【 】A.30°B. 50°C. 90°D. 100°4. 为了某小区居民的用水情况,随机抽查了10户家庭的月用水量,结果如下表:D. 3【 】C. x<2( 第 3 题 )则关于这10户家庭的约用水量,下列说法错误的是【 】A. 中位数是5吨B. 极 差 是 3 吨 C . 平均数是5 . 3吨 D . 众 数 是 5 吨一 、选择题(每小题3分,共18分)1. 计算( - 1)3 的结果是得分 评卷人5. 由一些大小相同的小正方体组成的几何体的俯视图如图所示,其中正方形中的数字表 示在该位置上的小正方体的个数,那么,这个几何体的左视图是 【 】A. B. C. D. (第5题图)6. 二次函数y=ax²+x+a² - 1 的图像可能是 【 】A. B. C. D.7. 的相反数是 .8. 计算:(-2x²) · 3x ⁴=9. 写出一个经过点(1, — 1)的函数的表达式10. 如图, PA 、PB 切◎O 于点A 、B,点C 是◎O 上 一 点,且ZACB=65°,则ZP=.(第10题图) (第11题图)11. 如图,在直角梯形ABCD 中, AB//CD,ADICD,AB=1cm,AD=2cm,CD=4cm, 则BC= ·12. 已知x 为整数,且满足- √2≤x≤ √3,则x= .13. 将图①所示的正六边形进行分割得到图②,再将图②中最小的某一个正六边形按同样的方式进行分割得到图③,再将图③中最小的某一个正六边形按同样的方式进行分割, … ,则第n 个图形中共有 个正六边形.● ·0度 二、 填空题(每小题3分,共27分)得分评卷人14.将图,四边形OABC为菱形,点B、C在以点○为圆心的EF上,若OA=3,Z1=22,则扇形OEF的面积为 .15.如图,点P是ZAOB的角平分线上一点,过P作P C//OA交OB于点C .若ZAOB=60°,O C = 4 , 则点P 到O A 的距离P D 等于三、解答题(本大题共8个小题,满分75分)16 . (8分)(第15题图)17 . (9分)如图,点E 、F 、G分别是□ABCD 的边AB 、BC、CD 、DA 的中点.求证:△BEF丝△DGH .18. (9分)下图是2006年某省各类学校在校生数情况制作的扇形统计图和不完整的条形统计图.人数 ( 万人)得分评卷人得分评卷人已知2006年该省普通高校在校生为97.41万人,请根据统计图中提供的信息解答下列问题:(1)2006 年该省各类学校在校生总人数约多少万人? (精确到1万)(2)补全条形统计图;(3)请你写出一条合理化建议.19.(9分)张彬和王华两位同学为得到一张观看足球比赛的入场券,各自设计了一种方案:张彬:如图,设计了一个可以自由转动的转盘,随意转动转盘,当指针指向阴影区域时,张彬得到了入场券;否则,王华得到入场券;王华:将三个完全相同的小球分别标上数字1、2、3后,放入一个不透明的袋子中.从中随机取出一个小球,然后放回袋子;混合均匀后,再随机取出一个小球.若两次取出的小球上的数字之和为偶数,王华得到入场券;否则,张彬得到入场券.请你运用所学的概率知识,分析张彬和王华的设计方案对双方是否公平.20. (9分)如图,A BCD 是边长为1的正方形,其中D E 、EF 、FG 的圆心依次是点A 、B 、C .(1)求点D 沿三条圆弧运动到G 所经过的路线长; (2)判断直线GB 与DF 的位置关系,并说明理由 .(2)在你所画的等腰△ ABC 中设底边BC=5米,求腰上的高BE . 22. (10分)某商场用36万元购进A 、B 两种商品,销售完后共获利6万元,其进价和售价如下表:(注:获利=售价一进价)(1)该商场购进A 、B 两种商品各多少件?底边上的高AD=BC .(1)求tanB 和sinB 的值;21. (10分)请你画出一个以BC 为底边的等腰△ ABC,使(2)商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原价出售,而B种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B种商品最低售价为每件多少元?23 . (11分)如图,对称轴为直线的抛物线经过点A ( 6 , 0 ) 和B ( 0 , 4 ) .(1)求抛物线解析式及顶点坐标;(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求四边形OEAF的面积S与x之间的函数关系式,并写出自变量x 的取值范围;(3)①当四边形OEAF的面积为24时,请判断OEAF是否为菱形?②是否存在点E,使四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.2007年河南省实验区中考数学试题参考答案79例三、解答题16.解:方程两边同乘以(x+2)(x-2),得3x(x-2)+2(x+2)=3(x+2)(x-2)解之,得X= 4检验:当x=4时,(x+2)(x-2)=(4+2)(4-2)≠0所以,X=4是原方程的解.17. 证明:∵四边形ABCD 是平行四边形,·ZB= ZD,AB = CD,BC =AD.又∵E、F 、G 、H 分别是平行四边形ABCD 的四边中点, . · B E = DG,BF = DH. · △BEF 丝△DGH.18. 解:(1)2006年该省种类学校在校生总数为97 .41÷4 . 87%≈2000(万人) .(2)普通高中在校生人数约为2000×10 . 08%= 201 . 6(万人) . (没有计算,但图形正确者可给满分)(3)(答案不唯一 ,回答合理即可) .19. 解:张彬的设计方案:,,,所以,张彬的设计方案不公平.王华的设计方案:可能出现的的所有结果列表如下:第一次第二次1 2 31 2 3 42 3 4 53 4 5 65: P ( 王华得到入场券) = P ( 和为偶数) = 9 ,4P(张彬得到入场券)=P(和不是偶数)=9因头所以,王华的设计方案也不公平.20.解:(1)∵AD=1,ZDAE=90°,. D E 的长同理,EF的长所以,点D运动到点G所经过的路线长l=l+1z+l3=3π(2)直线GBLDF .理由如下:延长GB交DF于H.∵CD=CB,LDCF= ZBCG,CF = CG,·△FDC丝△GBC .·ZF =LG.又∵ZF+ ZFDC = 90°,LG + ZFDC = 90°,即ZGHD = 9 0 ,故G B L D F .21. 解:如图,正确画出图形.(1)∵A B=A C,A D工B C,A D=B C,·:AB=√ED²+AD⁷=√5BD即AD=2BD ..(2)作BELAC 于E .在Rt △BEC 中,又 ∵·故BE=2 √5(米).22. (1)设购进A 种商品X 件,B 种商品Y 件.根据题意,得化简,得解之,得答:该商场购进A 、B 两种商品分别为200件和120件. (2)由于A 商品购进400件,获利为(1380- 1200)×400 = 72000(元).从而B 商品售完获利应不少于81600-72000 = 9600(元).设B 商品每件售价为x 元,则120(x- 1000)≥9600. 解之,得x≥1080.所以,B 种商品最低售价为每件1080元.23. 解:(1)由抛物线的对称轴是,可设解析式为把A 、B 两点坐标代入上式,得解之,得故抛物线解析式为,顶点为.(2)∵点E(x y)在抛物线上,位于第四象限,且坐标适合:y<0,即-y>0,-y 表示点E 到OA 的距离.∵0A是口OEAF 的对角线,因为抛物线与X 轴的两个交点是(1,0)的(6,0),所以,自变量X 的取值范围是1<X<6.根据题意,当S = 24时,即化简,得 解之,得×=3,X2= 4. 故所求的点E 有两个,分别为El(3,-4),E2(4,—4).点E1(3,-4)满足OE = AE,所以□OEAF 是菱形;点E2(4,—4)不满足OE = AE,所以□OEAF 不是菱形.当OALEF,且OA=EF 时,口OEAF 是正方形,此时点E 的坐标只能是(3, 一 3) .而坐标为(3,-3)的点不在抛物线上,故不存在这样的点E,使□OEAF为正方形.(实验区)(濮阳市的中原油田、南阳市的南阳油田)2008年河南省高级中等学校招生统一考试试卷数 学注意事项:1、本试卷共8页,三大题,满分120分,考试时间100分钟。
北京市中考数学试卷及答案(完整版)

北京市中考数学试卷及答案(完整版)(文档可以直接使用,也可根据实际需要修改使用,可编辑欢迎下载)2021年北京市高级中等学校招生考试数学试卷 解析满分120分,考试时间120分钟一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的。
1. 在《关于促进城市南部地区加快发展第二阶段行动计划(2021-2021)》中,北京市提出了总计约3 960亿元的投资计划。
将3 960用科学计数法表示应为 A. 39.6×102 B. 3.96×103 C. 3.96×104 D. 3.96×104 答案:B解析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3 960=3.96×103 2. 43-的倒数是 A. 34 B. 43 C. 43- D. 34-答案:D解析:(0)a a ≠的倒数为1a ,所以,43-的倒数是34- 3. 在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为 A.51 B. 52 C. 53 D. 54答案:C解析:大于2的有3、4、5,共3个,故所求概率为534. 如图,直线a ,b 被直线c 所截,a ∥b ,∠1=∠2,若∠3=40°,则∠4等于A. 40°B. 50°C. 70°D. 80° 答案:C解析:∠1=∠2=12(180°-40°)=70°,由两直线平行,内错相等,得 ∠4=70°。
5. 如图,为估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上。
若测得BE=20m,EC=10m,CD=20m,则河的宽度AB等于A. 60mB. 40mC. 30mD. 20m答案:B解析:由△EAB∽△EDC,得:CE CDBE AB=,即102020AB=,解得:AB=406. 下列图形中,是中心对称图形但不是轴对称图形的是答案:A解析:B既是轴对称图形,又是中心对称图形;C只是轴对称图形;D既不是轴对称图形也不是中心对称图形,只有A符合。
2002年福州市中考数学试卷(含答案)

福建省福州市2002年初中毕业会考、高级中等学校招生考试数学试卷(满分:150分;考试时间:120分钟) 一、填空题(每小题3分,满分36分) 1.-5的相反数是__________. 2.分解因式:a 3-ab 2=__________. 3.在函数中,自变量x 的取值范围是__________.xy 1= 4.计算:=__________.21121⎪⎭⎫⎝⎛-- 5.六边形的内角和等于__________度. 6.如图为某地的等高线示意图,图中a 、b 、c 为等高线,海拔最低的一条为60米,等高距为10米,结合地理知识写出等高线a 为_____米,b 为_____米,c 为______米. 7.已知:线段a =4cm ,b =9cm ,则线段a 、b 的比例中项c 为__________cm . 8.用换元法解分式方程:,设y =x 2+x ,那么原方程化为y 的3122=+++xx x x 一元二次方程的一般形式为__________. 9.在⊙O 中,直径AB =4cm ,弦CD ⊥AB 于E ,OE =,则弦CD 的长为3_____cm . 10.若圆锥底面的直径为6cm ,母线长为5cm ,则它的侧面积为________cm 3(结果保留π). 11.已知:x 2-x -1=0,则-x 3+2x 2+2002的值为__________. 12.如图:四边形 ABCD 是正方形,曲线DA 1B 1C 1D 1…叫做“正方形的渐开线”,其中、、、、…的圆心依次按A 、B 、C 、D 循环,它依次连接.取AB =1,则曲线DA 1B 1…C 2D 2的长是__________(结果保留π). 二、选择题(每小题4分.满分32分,每小题都有(A )、(B )、(C )、(D )四个选项,其中只有一个选项是正确的,请把正确选项的代号写在题末的括号内) 13.下列运算不正确的是 ( ) (A )(a 5)2=a 10(B )2a 2·(-3a 3)=-6a 5 (C )b ·b 3=b4(D )b 5·b 5=b25 14.如果反比例函数的图象经过点(-2,-1),那么k 的值为 ( )xky = (A )(B )-(C )2(D )-22121 15.下列二次根式中,属于最简二次根式的是 ( ) (A )(B )(C )(D )2x 82x12+x 16.等腰三角形的两边长分别为2和7,则它的周长是 ( ) (A )9(B )11(C )16(D )11或16 17.如图:PA 切⊙O 于点A ,PBC 是⊙O 的一条割线,且PA =,PB =BC ,23那么BC 的长是 ( ) (A )3(B )(C )(D )22333 18.下列四个命题中错误的是 ( ) (A )两条对角线互相平分的四边形是平行四边形 (B )两条对角线相等的四边形是矩形 (C )两条对角线互相垂直的矩形是正方形 (D )两条对角线相等的菱形是正方形 19.某市在“旧城改造”中计划在市内一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米售价a 元,则购买这种草皮至少需要 ( ) (A )450a 元(B )225a 元(C )150a 元(D )300a 元 20.已知:二次函数y =x 2+bx +c 与x 轴相交于A (x 1,0)、B (x 2,0)两点,其顶点坐标为P (,),AB =︱x 1-x 2︱,若S △APB =1,则b 与c 的关系式是( 2b -442bc -) (A )b 2-4c +1=0(B )b 2-4c -1=0 (C )b 2-4c +4=0(D )b 2-4c -4=0 三、(每小题7分,满分28分) 21.解不等式组并把它的解集在数轴上表示出来.()()⎩⎨⎧+<+-≤-7513412x x xx 22.如图:已知□ABCD 的对角线AC 、BD 相交于点O ,EF 过点O ,且与BC 、AD 分别相交于点E 、F ,求证OE =OF . 23.已知:图A 、图B 分别是6×6正方形网格上的两个轴对称图形(阴影部分),其面积分别为S A 、S B (网格中最小的正方形面积为一个平方单位),请观察图形并解答下列问题. (1)填空:SA ︰SB的值是___________; (2)请在图C的网格上画出一个面积为8个平方单位的中心对称图形;图A 图B 图C 24.随机抽取某城市一年(以365天计)中的30天的日平均气温状况统计如下:温度(x℃)10141822263032天数t3557622 请根据上述数据填空: (1)该组数据的中位数是_______℃; (2)该城市一年中日平均气温为26℃的约有_______天; (3)若日平均气温在17℃~23℃为市民“满意温度”,则该城市一年中达到市民“满意温度”的约有_______天. 四、(满分10分) 25.为落实“珍惜和合理利用每一寸土地”的基本国策.某地区计划经过若干年开发“改造后可利用土地”360平方千米,实际施工中,每年比原计划多开发2平方千米,按此进行预计可提前6年完成开发任务,问实际每年可开发多少平方千米? 五、(满分10分) 26.已知:二次函数y=x2+bx+c(b、c为常数). (1)若二次函数的图象经过A(-2,-3)和B(2,5)两点,求此二次函数的解析式; (2)若(1)中的二次函数的图象过点P(m+1,n2+4n),且m≠n,求m+n的值. 六、(满分10分) 27.已知:半径不等⊙O 1与⊙O 2相切于点P ,直线AB 、CD 都经过切点P ,并且AB 分别交⊙O 1、⊙O 2于A 、B 两点,CD 分别交⊙O 1、⊙O 2于C 、D 两点(点A 、B 、C 、D 、P 互不重合),连结AC 和BD . (1)请根据题意画出图形; (2)根据你所画的图形,写出一个与题设有关的正确结论,并证明这个结论(结论中不能出现题设以外的其他字母). 七、(满分12分) 28.如图:已知△ABC 中,AB =4,D 在AB 边上移动(不与A 、B 重合),DE ∥BC 交AC 与E ,连结CD .设S △ABC =S ,S △DEC =S 1. (1)当D 为AB 中点时,求S 1∶S 的值; (2)若AD =x ,,求y 关于x 的函数关系式及自变量x 的取值范围;y SS 1 (3)是否存在点D ,使得S 1>S 成立?若存在,求出D 点位置;若不存在,请说41明理由. 八、(满分12分) 29.已知:矩形ABCD 在平面直角坐标系中,顶点A 、B 、D 的坐标分别为A (0,0),B (m ,0),D (0,4),其中m ≠0. (1)写出顶点C的坐标和矩形ABCD的中心P点的坐标(用含m的代数式表示); (2)若一次函数y=kx-1的图象l把矩形ABCD分成面积相等的两部分,求此一次函数的解析式(用含m的代数式表示); (3)在(2)的前提下,l又与半径为1的⊙M相切,且点M(0,1),求此时矩形ABCD的中心P的坐标.福建省福州市2002年初中毕业会考、高级中等学校招生考试数学试卷评分标准及参考答案 一、(每小题3分,共36分) (1)5(2)a(a+b)(a-b)(3)x>0(4)2 (5)720(6)60,70,80(7)6(8)y2-3y+1=0 (9)2(10)15π(11)2003(12)18π 二、(每小题4分,共28分) (13)D(14)C(15)D(16)C (17)A(18)B(19)C(20)D 三、(每小题7分,共28分) 21. 解不等式(1)得:x≤2 (3分) 解不等式(2)得:x>-2 (5分) ∴ 原不等式组的解集是:-2<x≤2 (6分) 原不等式组解集在数轴上表示如下: 22.证法一: ∵ □ABCD, (7分) ∴ AD ∥BC OA =OC . (2分) 且∠CAD =∠ACB (或∠AFO =∠CEO ) 又∵ ∠AOF =∠COE (写出满足全等的条件得4分) ∴ △AOF ≌△COE (6分) ∴ OE =OF (7分) 证法二: ∵ □ABCD ∴ AD ∥BC OA =OC (2分) ∴ (6OEOFOC OA 分) ∴ OE =OF (7分) 23.①S A :S B = (3119分) ②画出图形具有中心对称得2分,面积为8个平方单位得2分 (参考答案见第4页) 24.(1)22 (3分) (2)73 (2分) (3)146 (2分) 四.(本题10分) 25.解:设实际每年可开发x 平方千米 (1 则依题意得:=6 (6xx 3602360--分) 整理得x 2-2x -120=0 (7分) 解得:∴x 1=12,x 2=-10 经检验:x 1=12,x 2=-10都是原方程的解, 但x 2=-10不合题意舍去,所以只取x =12 答:实际每年可开发12平方千米. (10分) 注:检验与答案缺一个或二个都只扣1分. 五、(本题第(1)小题6分,第(2)小题4分,共10分) 26.解:①依题意得 (2()⎪⎩⎪⎨⎧cb c b ++=+--=-22522322分) 解得: (5⎩⎨⎧32=-=c b 分) ∴ 所求二次函数的解析式是:y =x 2+2x -3 (6分) 解②∵ 二次函数图象过点P (m +1,n 2+4n ) ∴ n 2+4n =(m +1)2+2(m +1)-3 (7分) n 2+4n =m 2+4m (8分) (n -m )(n +m +4)=0 (9分) ∵ m ≠n ,∴ n +m +4=0. 即n +m =-4 (10 六、(本题第(1)小题4分,第(2)小题6分,共10分) 27.(1)正确画出每个图形各得2分. (2)解答:(以两圆外切为例,内切评分标准与外切对应得分) 第一种结论:AC∥BD (6分) 证明:过P作两圆的公切线MN (7分) ∴ ∠MPA=∠C ∠NPB=∠D (8分) ∵ ∠APM=∠NPB ∴ ∠C=∠D (9分) ∴ AC∥BD (10分) 第二种结论:△APC∽△BPD (6分) 证明:过P作两圆公切线MN (7分) ∴ ∠MPA=∠C,∠NPB=∠D (8分) ∵ ∠APM=∠NPB,∴ ∠C=∠D. (9分) 又∵ ∠APC=∠BPD, ∴ △APC∽△BPC. (10 第三种结论:O 1、P 、O 2三点共线(或连心线O 1O 2必过切点P )(6分) 证明:∵ ①圆是轴对称图形 ②相切的两圆也组成一个轴对称图形 ③连心线O 1、O 2是两圆的对称轴 ∴ O 1、P 、O 2三点共线(或连心线O 1O 2必过切点P ) (10分) 注:(每写一点各得1分) 七.(本题第(1)小题3分,第(2)小题4分,第(3)小题5分,共12分) 28.解(1)∵ DC ∥BC ,D 为AB 的中点 ∴ △ADE ∽△ABC , (121AC AE AB AD 分) ∴ (2412==⎪⎭⎫⎝⎛∆AB AD S S ADE 分) ∵ 121==⎪⎭⎫⎝⎛∆EC AE S S ADE ∴ (3411=S S 分) 解(2)∵ AD =x ,y SS =1 ∴ (4xxAD DB AE EC S S ADE-41===△分) 又∵ 1622x AB AD S S ADE ==△⎪⎭⎫ ⎝⎛ ∴ S △ADE =·S (4162x分) ∴ S 1=S ⎪⎭⎫ ⎝⎛-x x 4162x ∴ 16421x x S S +-= 即y =-+ (6162x x 41分) 自变量x 的取值范围是:0<x <4 (7分) 解(3)不存在点D ,使得S 1>S 成立 (841分) 理由:假设存在点D ,使得S 1>S 成立41 那么:即∴ y >411>S S 41 ∴ (94141162>+-x x 分) (x -2)2<0 (10分) ∵ (x -2)2≥0 ∴ x 不存在 即不存在点D ,使得S 1>S 成立 (1241分) 29.(本题第(1)小题3分,每(2)小题4分,第(3)小题5分,共12分) 解: (1)C 点坐标为(m ,4) (1分) P 点坐标为(,2) (32m分) (2)∵ 直线l 把矩形ABCD 分成面积相等两部分: ∴ l 必过中心点P (,2) (42m分) ∴ 4=km -2 (5分) ∵ m ≠0, ∴ k = (6m 6分) ∴ y =x -1 (7m 6分) (3)设直线l 与y 轴相交于点F ∴ F 点坐标为(0,-1) ∴ ⊙M 的半径为1, ∴ sin ∠EFD ==MF ME21 ∴ ∠EFD =30° (8分) 过P 作PG ⊥y 轴于G ∴ =tan ∠EFD =tan30°=FG PG33 ∴PG =FG =333 ∴││=2m 3 m =± (103分) ∴P 点坐标为(,2)3 或(-,2) (123分) (m 值与P 点缺一各扣1分)。
2019年河南省中考数学试卷及答案(Word解析版)

2019年河南省初中学业水平暨高级中等学校招生考试试卷数 学注意事项:1. 本试卷共8页,三个大题,满分120分,考试时间100分钟,请用蓝、黑色水笔或圆珠笔直接答在试卷上。
参考公式:二次函数图像2(0)y ax bx c a =++≠的顶点坐标为24(,)24b ac b a a-- 一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填在题后括号内。
1、-2的相反数是【】(A )2 (B)2-- (C)12 (D)12- 【解析】根据相反数的定义可知:-2的相反数为2【答案】A2、下列图形中,既是轴对称图形又是中心对称图形的是【】【解析】轴对称是指在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形。
中心对称图形是指平面内,如果把一个图形绕某个点旋转180°后,能与自身重合,那么就说这两个图形关于这个点成中心对称。
结合定义可知,答案是D【答案】D3、方程(2)(3)0x x -+=的解是【】(A )2x = (B )3x =- (C )122,3x x =-= (D )122,3x x ==-【解析】由题可知:20x -=或者30x +=,可以得到:122,3x x ==-【答案】D4、在一次体育测试中,小芳所在小组8个人的成绩分别是:46,47,48,48,49,49,49,50.则这8个人体育成绩的中位数是【】(A ) 47 (B )48 (C )48.5 (D )49【解析】中位数是将数据按照从小到大的顺序排列,其中间的一个数或中间两个数的平均数就是这组数的中位数。
本题的8个数据已经按照从小到大的顺序排列了,其中间的两个数是48和49,它们的平均数是48.5。
因此中位数是48.5【答案】C5、如图是正方形的一种张开图,其中每个面上都标有一个数字。
那么在原正方形中,与数字“2”相对的面上的数字是【】(A )1 (B )4 (C )5 (D )6【解析】将正方形重新还原后可知:“2”与“4”对应,“3”与“5”对应,“1”与“6”对应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中毕业、高级中等学校招生考试 数学试题注意事项:1 .本试卷满分130分,考试时间为120分。
2•卷中除要求近似计算的结果取近似值外,其余各题均应给出精确结果。
、细心填一填(本大题共有13小题,16个空,每空2分,共32分•请把结果直接填在题 中的横线上•只要你理解概念,仔细运算,相信你一定会填对的!)1. ___________________ — 3的绝对值是 ___________ , 4的算术平方根是 。
2. 分解因式: x 3 -4x = _______________ .3•温家宝总理在十届全国人大四次会议上谈到解决关于“三农”问题时说,2006年中央财政用于“三农”的支出将达到 33 970 000万元,这个数据用科学记数法可表示 为 __________ 万元.4 •函数v=—中,自变量X 的取值范围是;函数V 二上「二中,自变量X 的取x +2值范围是 __________________ 。
5.点(2 , — 1)关于x 轴的对称点的坐标为 __________ 。
36•函数y的图象经过点(一I , a ),则a = ________________x7.如图所示,图中的/ 1 = ____________ 0.&如图,点A B 、C 、D 在O O 上,若/ C = 60o ,则 Z D =_________ o ,Z 0= __________ o .9.若一个多边形的每一个外角都等于 400,则这个多边形的边数是。
把它们搅匀后从中任意摸出1个球,则摸到红球的概率是 _________________11. 据国家统计局 5月23日发布的公告显示,2006年一季度 GDP直为43390亿元,其中,第一、第二、第三产业所占比 例如图所示。
根据图中数据可知,今年一季度第一产业的 GDP 直约为 ___________ 亿元(结果精确到0.01). 12. 已知Z AOB= 30o , C 是射线0B 上的一点,且 OC= 4 .若以C为圆心,r 为半径的圆与射线 OA 有两个不同的交点,贝U r 的取值范围是_________________________________________________________________________________ 13. 在实数的原有运算法则中我们补充定义新运算“①”如下:2当 a >b 时,a ® b = b ;当 a v b 时,a ® b = a .10.在一个不透明的口袋中装有3个红球、1个白球, 它们除颜色不相同外, 其余均相同.若 (第&题) 仝第一产业宫笫二产业O 第三产业则当x = 2时,(1 ® x)• x—(3 ® x)的值为(“• ”和“一”仍为实数运算中的乘号和减号).、精心选一选(本大题共有7小题,每小题3分,共21分•在每小题给出的四个选项中, 只有一项是正确的,请把正确选项前的字母代号填在题后的括号内。
只要你掌握概念,认真思考,相信你一定会选对的!)18.已知O O和O 02的半径分别为2和5,圆心距00= 3,则这两圆的位置关系是()A.相离B.外切C.相交D.内切19. 现有边长相等的正三角形、正方形、正六进形、正八边形形状的地砖,如果选择其中的两钟铺满平整的地面,那么选择的两种地砖形状不能是()A.正三角形与正方形B.正三角形与正六边形C.正方形与正六边形D.正方形与正八边形20. 探索规律:根据下图中箭头指向的规律,从2004到2005再到2006,箭头的方向是()三、认真答一答(本大题共有8小题,共61分。
解答需写出必要的文字说明、演算步骤或证明过程.只要你积极思考,细心运算,你一定会解答正确的!)21. (本小题满分8分)2x 1 : x(1)计算:—虫—(兀—J2)°+tan45o (2)解不等式组:X!-- 色1314. 下列各式中,与.3是同类根式的是(A.、、1815.如图,0是原点,是()B. 24实数C.、、12D. ,9a、b、c在数轴上对应的点分别为A、B、C,则下列结论错误的A. a —b > 0 ab v 0 C. a+ b v 0 D. b(a —c) > 016.设一元二次方程B.X2—2X—4 = 0的两个实根为X1和X2,则下列结论正确的是(A. X1+X2 = 2B. x计X2= —4C. x i • X2=—2D. X1 • X2= 417.在下面四个图案中, 如果不考虑图中的文字和字母,那么不是轴对称图形的是(B. C.22. (本小题满分7分)已知:如图,ABCD中,/ BCD的平分线交AB于E,交DA的延长线于F.求证:AE= AF.23. (本小题满分7分)甲、乙两人都想去买一本某种辞典,到书店后,发现书架上只有一本该辞典,于是两人都想把书让给对方先买,为此两人发生了“争执”•最后两人商定,用掷一枚各面分别标有数字1,2,3, 4的正四面体骰子来决定谁先买。
若甲赢,则乙买;若乙赢,则甲买。
具体规则是:“每人各掷一次,若甲掷得的数字比乙大,则甲赢;若甲掷得的数字不比乙大,则乙赢”.请你用“画树状图”的方法帮他们分析一下,这个规则对甲、乙双方是否公平?24. (本小题满分6分)(1)如图I ,己知△ ABC中, AB>AC试用直尺(不带刻度)和圆规在图I中过点A作一条直线I,使点C关于直线I的对称点在边AB上(不要求写作法,也不必说明理由,但要保留作图痕迹).⑵如图2,己知格点厶ABC请在图2中分别画出与△ ABCt目似的格点厶ABC和格点△ AB2C2, 并使△ ABC与厶ABC的相似比等于2,而A2B2C2与厶ABC的相似比等于J5。
(说明:顶点都在网格线交点处的三角形叫做格点三角形.友情提示:请在画出的三角形的项点处标上相对应的字母!)姚明是我国著名的篮球运动员,他在2005 —2006赛季NBA常规赛中表现非常优异•下面是他在这个赛季中,分期与“超音速队”和“快船队”各四场比赛中的技术统计.(1) 请分别计算姚明在对阵“超音速”和“快船”两队的各四场比赛中,平均每场得多少分?(2) 请你从得分的角度分析,姚明在与“超音速”和“快船”的比赛中,对阵哪一个队的发挥更稳定?(3) 如果规定“综合得分”为:平均每场得分X | +平均每场篮板X 1 . 5十平均每场失误X ( — 1.5),且综合得分越高表现越好,那么请你利用这种评价方法,来比较姚明在分别与“超音速”和“快船”的各四场比赛中,对阵哪一个队表现更好?26. (本小题满分7分)一商场计划到计算器生产厂家购进一批A、B两种型号的计算器•经过商谈,A型计算器单价为50元,100只起售,超过100只的超过部分,每只优惠20%; B型计算器单价为22元,150只起售,超过150只的超过部分,每只优惠2元•如果商家计划购进计算器的总量既不少于700只,又不多于800只,且分别用于购买A、B这两种型号的计算器的金额相等,那么该商场至少需要准备多少资金?如图,△ ABC中,/ ACB= 90o, AC= BC= 1,将△ ABC绕点C逆时针旋转角a。
(0 o va V 90o)得到△ A i B i C i,连结BB1.设CB 交AB于D, AB 分别交AB AC于E、F.(1) 在图中不再添加其它任何线段的情况下,请你找出一对全等的三角形,并加以证明(△ ABC M^ A i B i C 全等除外);(2) 当厶BBD是等腰三角形时,求a ;(3) 当a = 60o 时,求BD的长.28. (本小题满分9分)已知抛物线y= ax + bx + c(a > 0)的顶点是C(0 , 1),直线I : y=—ax+ 3与这条抛物线交于P、Q两点,与x轴、y轴分别交于点M和N.(1) 设点P到x轴的距离为2,试求直线l的函数关系式;(2) 若线段MP与PN的长度之比为3:1,试求抛物线的函数关系式。
四、实践与探索(本大题共有2小题,满分16分,只要你开动脑筋,大胆实践,勇于探索,你一定会成功!)29. (本小题满分7分)图I是“口子窖”酒的一个由铁皮制成的包装底盒,它是一个无盖的六棱柱形状的盒子(如图2),侧面是矩形或正方形•经测量,底面六边形有三条边的长是9cm,有三条边的长是3cm,每个内角都是120o,该六棱校的高为3cm。
现沿它的侧棱剪开展平,得到如图3的平面展开图.■►ban *图】(1)制作这种底盒时,可以按图4中虚线裁剪出如图3的模片.现有一块长为17.5cm、宽为16.5cm的长方形铁皮,请问能否按图4的裁剪方法制作这样的无盖底盒?并请你说明理由;(2)如果用一块正三角形铁皮按图5中虚线裁剪出如图3的模片,那么这个正三角形的边长至少应为cm。
(说明:以上裁剪均不计接缝处损耗. )I ___ I图430. (本小题满分9分)如图,在等腰梯形ABCD中, AB// DC AB= 8cm, CD= 2cm, AA 6cm.点P从点A出发,以2cm/s的速度沿AB向终点B运动;点Q从点C出发,以1cm/s的速度沿CD DA向终点A 运动(P、Q两点中,有一个点运动到终点时,所有运动即终止)•设P、Q同时出发并运动了t秒.(1) 当PQ将梯形ABCD分成两个直角梯形时,求t的值;(2) 试问是否存在这样的t,使四边形PBCQ的面积是梯形ABCD面积的一半?若存在,求出这样的t的值,若不存在,请说明理由。