东北大学数值分析2014-2015试卷手抄版
东北大学数值分析 总复习+习题21页文档

11、获得的成功越大,就越令人高兴 。野心 是使人 勤奋的 原因, 节制使 人枯萎 。 12、不问收获,只问耕耘。如同种树 ,先有 根茎, 再有枝 叶,尔 后花实 ,好好 劳动, 不要想 太多, 那样只 会使人 胆孝懒 惰,因 为不实 践,甚 至不接 触社会 ,难道 你是野 人。(名 言网) 13、不怕,不悔(虽然只有四个字,但 常看常 新。 14、我在心里默默地为每一个人祝福 。我爱 自己, 我用清 洁与节 制来珍 惜我的 身体, 我用智 慧和知 识充实 我的头 脑。 15、这世上的一切都借希望而完成。 农夫不 会播下 一粒玉 米,如 果他不 曾希望 它长成 种籽; 单身汉 不会娶 妻,如 果他不 曾希望 有小孩 ;商人 或手艺 人不会 工作, 如果他 不曾希 望因此 而有收 益。-- 马钉路 德。
谢谢!
36、自己的鞋子,自己一不会改正的缺点是软弱。——拉罗什福科
xiexie! 38、我这个人走得很慢,但是我从不后退。——亚伯拉罕·林肯
39、勿问成功的秘诀为何,且尽全力做你应该做的事吧。——美华纳
40、学而不思则罔,思而不学则殆。——孔子
2012数值分析试题及答案

aii
(bi
n
aij
x
(k j
)
)
,
j 1
i 1,2,, n
(1) 求此迭代法的迭代矩阵 M ;
(2) 证明:当 A 是严格对角占优矩阵, 0.5 时,此迭代格式收敛.
解:迭代法的矩阵形式为:
x(k1) x(k) D 1 (b Ax (k) ) D 1 (D A)x(k) D 1b
x2 3/5
).
线 …
8.对离散数据 xi yi
1 0 1 2 的拟合曲线 y 5 x 2 的均方差为( 2.5 1.58 ).
2 1 1 3
6
…
…
…
9.设求积公式
2
f (x)dx
1
A0 f (1) A1 f (0) A2 f (1) 是插值型求积公式,则积分系
… 数 A0 3/ 4 , A1 0 , A2 9 / 4 .
2
2
2
2
2
2
R[ f ] 0 f (x)dx 0 p1 (x)dx 0 f (x)dx 0 H 3 (x)dx 0 H 3 (x)dx 0 p1(x)dx
2 f (4) ( x ) (x 1 )2 (x 1 )2 dx f (4) () 2 (x2 1)2 dx
…
四、(10 分)利用复化 Simpson 公式 S2 计算定积分 I
2
cos
xdx
的近似值,并估
0
… 计误差。
… …
解:
I
S2
1 [cos0 6
cos2
2014_2015学年第一学期末数值分析考试试题A

中北大学数值分析课程考试试题(课程名称须与教学任务书相同)2014/2015 学年第1 学期试题类别 A 命题期望值70拟题日期2014.12.12 拟题教师课程编号教师编号1120048 基层教学组织负责人课程结束时间2014.11.28 印刷份数使用班级2014级研究生备注:(1)试题要求用B5纸由计算机打印,并将其电子稿于课程结束后上传至考务管理系统。
(2)试题类别指A卷或B卷。
(3)试题印制手续命题教师到院教务科办理。
2014/2015 学年 第 1 学期末考试试题(A 卷)课程名称 数值分析1使用班级: 2014级研究生一、填空题(每空2分,共30分)1. 用1457ˆe536=作为常数e (自然对数的底)的近似值具有 位有效数字,用355ˆπ113=作为圆周率π的近似值的绝对误差限可取为 ;用ˆπˆe u=%作为πe u =的近似值 具有 位有效数字;2. 已知求解某线性方程组的Jacobi 迭代公式为(k+1)(k)(k)123(k+1)(k)(k)213(k+1)(k)(k)3120.10.27.20.10.28.3,1,2,0.20.28.4x x x x x x k x x x ⎧=++⎪=++=⎨⎪=++⎩L 记其迭代矩阵为J G ,则J ∞=G ,又设该线性方程组的解为*x ,取初始解向量为()T(0)0,0,0=x,则(1)=x ,(20)*∞-≤x x ;3. 方程e 0xx +=的根*x ≈ (要求至少具有7位有效数字);4. 用割线法求解方程ln 20x x --=的迭代公式为;若取初始值03x =,14x =,则由该公式产生的迭代序列的收敛速度的阶至少是 。
5. 取权函数()x ρ=,在区间[-1,1]上计算函数()1f x =与()221g x x =-的积(),f g =;6. 设()()10.5,01,(1)2f f f -===,二阶差商[]1,0,1f -= ;7. 设()f x 在区间[,]a b 上具有连续的二阶导数,取等距节点(),0,1,,k x a kh k n =+=L ,b ah n-=,则近似计算积分()d b a I f x x =⎰的复化梯形公式的截断误差T R = ;该公式具有 次代数精度;8.求解常微分方程初值问题()()00,,y f t y t t T y t y'=≤≤⎧⎪⎨=⎪⎩的Euler折线法的计算公式为;它是一个阶方法。
东北大学数值分析考试题解析

数值分析提供了许多实用的算法, 这些算法可以解决各种实际问题, 如线性方程组、微分方程、积分 方程等。这些算法在科学计算、 工程仿真、数据分析等领域都有 广泛的应用。
数值分析在解决实际问题时具有 高效、精确和可靠的特点。通过 数值分析,我们可以快速地得到 问题的近似解,并且可以通过误 差分析来控制解的精度。这使得 数值分析成为解决实际问题的重 要工具。
详细描述
数值分析是一门应用广泛的学科,它通过数学方法将实际问题转 化为可计算的数学模型,并寻求高效的数值计算方法来求解这些 问题。数值分析在科学计算、工程、经济、金融等领域中发挥着 重要的作用,为实际问题的解决提供了有效的工具。
数值分析的应用领域
总结词
数值分析的应用领域非常广泛,包括科学计算、工程、经济、金融等。
非线性方程组的求解精度和速 度取决于所选择的方法和初值 条件。
非线性方程组的求解在科学计 算、工程技术和计算机图形学 等领域有广泛应用。
最优化方法
最优化方法是寻找使某个 函数达到最小或最大的参 数值的方法。
最优化方法的效率和精度 取决于所选择的算法和初 始参数值。
常用的最优化方法包括梯 度下降法、牛顿法和拟牛 顿法等。
数值分析在人工智能领域的应用
总结词
数值分析在人工智能领域的应用关键,涉及深度学习、神经 网络等领域。
详细描述
数值分析为人工智能提供了理论基础和算法支持,特别是在 深度学习和神经网络方面。通过数值分析的方法,可以优化 神经网络的参数和结构,提高人工智能的性能和准确性。
数值分析在金融领域的应用
总结词
常见的迭代法有雅可比迭代法 、高斯-赛德尔迭代法等。
牛顿法
牛顿法是一种基于泰勒级数 的迭代方法,用于求解非线 性方程的根。
数值分析实验2014

数值分析实验(2014,9,16~10,28)信计1201班,人数34人数学系机房数值分析计算实习报告册专业__________________学号_______________姓名_______________2014~2015年第一学期实验一数值计算的工具Matlab1. 解释下MATLABS序的输出结果程序:t=0.1n=1:10e=n/10-n*te 的结果:0 0 -5.5511e-017 0 0-1.1102e-016 -1.1102e-016 0 0 02. 下面MATLABS序的的功能是什么?程序:x=1;while 1+x>1,x=x/2,pause(0.02),e nd用迭代法求出x=x/2,的最小值x=1;while x+x>x,x=2*x,pause(0.02),e nd用迭代法求出x=2*x,的值,使得2x>Xx=1;while x+x>x,x=x/2,pause(0.02),e nd用迭代法求出x=x/2,的最小值,使得2x>X3. 考虑下面二次代数方程的求解问题2ax bx c = 0公式x=电上4ac是熟知的,与之等价地有_____________________________ ,对于2a-b ■ b -4aca =1,b =100000000,c =1,应当如何选择算法。
b ~4ac计算,因为b与b2— 4ac相近,两个相加减不宜应该用2a u做分母3 5 74. 函数sin(x)有幂级数展开sin x = x - x - - ■■3! 5! 7!利用幕级数计算sinx的MATLAB程序为fun cti on s=powers in(x)s=0;t=x;n=1;while s+t~=s;s=s+t ;t=-x A2/ ((n+1)*(n+2) ) *t ;n=n+2 ;endt仁cputime;pause(10);t2=cputime;t0=t2-t1(a) 解释上述程序的终止准则。
东北大学数值分析-总复习+习题

二、(13分)设函数(x)=x2-sinx-1 (1)试证方程(x)=0有唯一正根; (2)构造一种收敛的迭代格式xk+1=(xk),k=0,1,2,…计算精度为=10-2的近似根; (3)此迭代法的收敛阶是多少?说明之.
解 (1)因为0<x1时,(x)<0,x2时,(x)>0,所以(x)仅在(1,2)内有零点,而当1<x<2 时,(x)>0,故(x)单调.因此方程(x)=0有唯一正根,且在区间(1,2)内.
(1) xkp阶收敛于是指: (2) 若()0,则迭代法线性收敛.
lim xk1 C k xk p
4.会建立Newton迭代格式;知道Newton迭代法的优缺点.了解Newton迭代法的变形.
xk 1
xk
f (xk ) f (xk )
局部平方收敛.
五、矩阵特征值问题
1. 了解Gerschgorin圆盘定理, 会估计特征值. 2. 了解乘幂法、反幂法的思想及加速技巧. 3. 了解Jacobi方法的思想以及平面旋转矩阵的构造.
总复习
一、绪论
1.掌握绝对误差、绝对误差限、相对误差、相对误差限及有效数字的概念。掌握误差 限和有效数字之间的关系。会计算误差限和有效数字。
一般地,凡是由精确值经过四舍五入得到的近似值,其绝对误差限等于该近似值末位的 半个单位。
定义1 设数x是数x*的近似值,如果x的绝对误差限是它的某一数位的半个单位,并 且从x左起第一个非零数字到该数位共有n位,则称这n个数字为x的有效数字,也 称用x近 似x*时具有n位有效数字。
是不是一种向量范数_____. 是
东北大学秦皇岛分校(14-15)2015年1月高数A试题

东 北 大 学秦 皇 岛 分 校课程名称: 高等数学(一) 试卷: A 考试形式:闭卷授课专业:相关专业 考试日期:2015年1 月 9 日 试卷:共2页一、填空题(每小题3分,共18分)1. 201sin3coslimln(1)x x x x x →+=+ 。
2. 设()f x 在点1x =处可导,且满足条件14)1()1(lim-=--→xf x f x ,则曲线()y f x =在(1,(1))f 处的切线斜率为 。
3. 设函数()y y x =由方程1y y xe =-确定,则x dydx== 。
4. =-)d(arctane x x -e d 。
5.32222(sin )cos x x xdx ππ-+=⎰。
6. 曲线0=tan (0)4x y tdt x π≤≤⎰的弧长s = 。
二、选择题 (每小题3分,共18分)1. [ ] 设212,1()2,1x x x f x x ⎧-+≠⎪=⎨=⎪⎩,则在点1=x 处函数)(x fA .不连续B .连续但不可导C .可导,但导数不连续D .可导且导数连续2. [ ] 已知极限0arctan limkx x xc x→-=,其中,k c 为常数,且0c ≠,则下列说法正确的是A .13,3k c ==B .13,3k c ==-C .12,2k c ==-D .12,2k c ==3. [ ] 曲线122+=x x y 渐近线的条数是A . 0B .1C .2D .3 4. [ ] 设()f x 在[0, 1]有二阶连续导数,且(0)1,(2)3,(2)5,f f f '=== 则10(2)x f x dx ''⎰等于A .0B .1C .2D .4 5. [ ] 下列反常积分中收敛的是A .22(1)dxx -⎰B . 1+∞⎰C .422(2)dx x -⎰D .33()dxx lnx +∞⎰ 6. [ ] 曲线)4(3-=x x y 在区间[)∞+,3上是A .上升且凹的B . 下降且凹的C .上升且凸的D .下降且凸的三、计算题 (每小题8分,共32分)1. 求20tan limsin x x xx x→-装订线装 订 线 内 不 要 答 题学 号姓 名班 级2. 设2203t u x e du y t -⎧=⎪⎨⎪=⎩⎰,求212d d t y x =。
2015-同济大学数值分析-参考答案

1
1
ex
2
1
1 x
2
dx
34 0 34 e e e 5.481
3
将 f ( x) =x 代入,左边 = 将 f ( x) =x 4 代入, 左边 =
1
1
3 3 3 3 3 dx sin d 0 0 2 右边 3 2 1 x2 2
(10 分)
l1 0 0 y1 5 Ly = 1 l2 0 y2 = 3.25 0 2.5 l y -29 3 3
追:
l1 4 l2 5.25 1 u1 5 l3 10.5 2.5 u2 10
x
y
0
2
2
1
1
3 2
2 (10 分)
基函数: 0 ( x) 1, 1 ( x) cos x, 2 ( x) sin x
(0 , 0 ) (0 , 1 ) (0 , 2 ) a (0 , f ) 法方程: (1 , 1 ) (1 , 2 ) b (0 , f ) sym (2 , 2 ) c (0 , f )
xk
4.5 4.766 4 4.789 6 4.790 6 4.790 6
3/4
k 0 1 2 3 4
4.5
Ans Ans cos( Ans) Ans 1 cos( Ans) Ans sin( Ans) 1
= = =
2014-2015 数值分析试卷
维基解密
x3
2
3