_实际问题与一元二次方程(利润问题)
合集下载
人教版九年级上册实际问题与一元二次方程利润问题优秀ppt

练习1、 某种服装,平均每天可销售20件,每件盈 利44元.若每件降价1元,则每天可多售5件.如 果每天盈利1600元,应降价多少元?
等量关系是:每件服装的利润 每天售出的数量=1600 分析:若设每件服装降价x元,每件盈利(_4_4___x_) 元,每天 能售出(_2_0__5_x_)件.
解: 设每件服装应降价 x元,根据题意,得 (44 x)(20 5x) 1600.
均每天销售这种衬衫的盈利要达到1200元,每件衬衫
解应:降⑴价设多每少件元衬? 衫( 2应)降每价天x衬元衫 降⑵价设多 商少 元场时平,均商每场天平盈利
根据均题每意天得盈:利最多?
为y元
(40-x)(20+2x)=1200 则:y= (40-x)(20+2x)
∴ x2-30x+200=0 解之得:x1=10, x2=20 而商场为了尽快减少库存
解: 设每件衬衫应降价 x元,根据题意,得
(40 x)(20 2x) 1200.
整理得 : x2 30 x 200 0. 解这个方程 ,得
x1 20, x2 10. 20 2x 60,或20 2x 40.
答 :为了尽快减少库存 ,应降价20元.
3.某个体经营户以2元/千克的价格购进一批西瓜,以3元 /千克的价格出售,每天可卖出200千克,为了促销,该 经营户决定降价销售。经调查发现这种西瓜每降价0.1 元/千克 ,每天可多售出40千克(每天房租等费用共计 24元),该经营户要想赢利200元,应将每千克的西瓜 的售价降低多少元?
例1: 某商场将进货价为30元的台灯以40元售出,
平均每月能售出600个.市场调研表明:当销售价
为每上涨1元时,其销售量就将减少10个.商场要
《实际问题与一元二次方程2-销售利润问题》

一元二次方程标准形式及解法
一元二次方程的标准形式
01
$ax^2 + bx + c = 0$,其中 $a neq 0$。
解法
02
一元二次方程的解法包括因式分解法、完全平方公式法和公式
法(韦达定理)。
公式法中的求根公式
03
$x = frac{-b pm sqrt{b^2 - 4ac}}{2a}$。
判别式与根个数关系
结果展示
将求解得到的最优产品价格和销售量组合进行展示,并计算出对应的最大销售利润。
结果解释
对求解结果进行详细解释,说明最优组合是如何实现销售利润最大化的。
讨论与局限性
讨论模型的适用性和局限性,以及在实际应用中可能遇到的问题和解决方案。例如,市场 需求变化、竞争对手策略调整等因素可能对最优组合产生影响,需要企业根据实际情况进 行调整和优化。
04 建立销售利润问题数学模 型
确定未知数和参数
未知数设定
通常将我们需要求解的量设为未知数 ,如销售量、销售单价、成本等。
参数设定
除了未知数外,问题中还会给出一些 已知条件或参数,如固定成本、单位 变动成本、销售价格等。
根据实际问题建立方程
利润公式
利润 = (销售单价 - 单位成本) × 销售量 - 固定成本。
求解过程
按照所选解法逐步求解方程,得出未知数的值。在求解过程中,需要注意计算准 确性和步骤规范性。
05 案例分析:某企业销售利 润最大化问题
案例背景介绍
企业基本情况
目标市场与消费者需求
某企业是一家生产并销售家居用品的 公司,近年来面临市知名度等方面有较 高要求。
06 总结与展望
本文主要工作及成果总结
学会列一元二次方程解决有关销售利润问题教学设计

学会列一元二次方程解决有关销售利润问题教学设计
一复习回顾
1我们学过的有关销售利润问题中常见的量有哪些?它们之间有怎样的数量关系?
常见的几个量有:进价,售价,销售量、利润,利润率.
数量关系:单件利润 =单件售价-单件进价
商品总利润=总收入-总成本
※=单件利润*销售量
利润率= 售价−进价
*100%
进价
2根据题意填空
(1)某种电器,每件进价a元,售价b元,则销售这种电器每件的利润为元 .
(2)某种月饼,每盒进价a元,原售价b元,如果每盒降价c元销售,则降价后这种月饼每盒的利润为元.
(3)某种月饼,每盒进价a元,原售价b元,如果每盒升价c元销售,则升价后这种月饼每盒的利润为元.
(4)某商人将进价为每件8元的某种商品按每件10元出售,则1件利润是
____元 ;若每天可销出100件,则一天的总利润是______元.
二新课讲授
例1:某超市将购进一批单价为40元的商品按50元出售时,能卖500个,已知该商品要涨价1元,其销售量就要减少10个,为了赚8000元利润,售价应定为多少?
解:设每个商品涨价x元
由题意,得 (50+x-40)(500-10x)=8000,
整理得 x2-40x+300=0,
解得x1=10,x2=30。
21.3实际问题与一元二次方程——利润问题

整理,得 x2 30x 200 0 解得 x1 10, x2 20
思考:这两个根都可以取吗?
探究1 :
某商场销售一批衬衫,平均每天可售出20件,每件盈利40元,为了扩大销量, 增加盈利,尽快减少库存,商场决定采取适当的降价措施。经调查发现,如果 每件衬衫降价1元,商场平均每天可多售出2件。若商场平均每天销售这种衬衫 的盈利要达到1200元,每件衬衫应降价多少元?
练习:
2、某童装大世界在销售中发现:“宝宝乐”牌童装平均每天可售出20
件,每件盈利40元. 为了迎接”六一”儿童节,尽快减少库存,商场决定
采取适当的降价措施经调查发现,如果每件童装降价0.5元,那么平均每
天就可多售出4件. 要想平均每天盈利1200元,那么每件童装应该降价多
少元?
每件童装降价1元,多售出
润为 500 元。
所用等量关系为 单件利润×数量=总利润 。
探究1 :
某商场销售一批衬衫,平均每天可售出20件,每件盈利40元,为了扩大销量, 增加盈利,尽快减少库存,商场决定采取适当的降价措施。经调查发现,如果 每件衬衫降价1元,商场平均每天可多售出2件。若商场平均每天销售这种衬衫 的盈利要达到1200元,每件衬衫应降价多少元?
分析:每件衬衫降价0.5元,多售出5件,销售量为 (20+5)件;
每每件件衬衬衫衫降降价价1x元元,,多多售售出出05.55 =1x0件件,,销销售售量量为为((2200++
5) 05.5x)
件 件
0.5
0.5
练习:
1、某童装大世界在销售中发现:“宝宝乐”牌童装平均每天可售出20
件,每件盈利40元. 为了迎接”六一”儿童节,尽快减少库存,商场决定
教学重点: 列一元二次方程解利润问题应用题.
思考:这两个根都可以取吗?
探究1 :
某商场销售一批衬衫,平均每天可售出20件,每件盈利40元,为了扩大销量, 增加盈利,尽快减少库存,商场决定采取适当的降价措施。经调查发现,如果 每件衬衫降价1元,商场平均每天可多售出2件。若商场平均每天销售这种衬衫 的盈利要达到1200元,每件衬衫应降价多少元?
练习:
2、某童装大世界在销售中发现:“宝宝乐”牌童装平均每天可售出20
件,每件盈利40元. 为了迎接”六一”儿童节,尽快减少库存,商场决定
采取适当的降价措施经调查发现,如果每件童装降价0.5元,那么平均每
天就可多售出4件. 要想平均每天盈利1200元,那么每件童装应该降价多
少元?
每件童装降价1元,多售出
润为 500 元。
所用等量关系为 单件利润×数量=总利润 。
探究1 :
某商场销售一批衬衫,平均每天可售出20件,每件盈利40元,为了扩大销量, 增加盈利,尽快减少库存,商场决定采取适当的降价措施。经调查发现,如果 每件衬衫降价1元,商场平均每天可多售出2件。若商场平均每天销售这种衬衫 的盈利要达到1200元,每件衬衫应降价多少元?
分析:每件衬衫降价0.5元,多售出5件,销售量为 (20+5)件;
每每件件衬衬衫衫降降价价1x元元,,多多售售出出05.55 =1x0件件,,销销售售量量为为((2200++
5) 05.5x)
件 件
0.5
0.5
练习:
1、某童装大世界在销售中发现:“宝宝乐”牌童装平均每天可售出20
件,每件盈利40元. 为了迎接”六一”儿童节,尽快减少库存,商场决定
教学重点: 列一元二次方程解利润问题应用题.
一元二次方程实际应用之利润问题

• 分析:可列方程为:
(a-21)(350-10a)=450
1、某商店从厂家以每件21元的价格购进一批商品,若每 件商品售价为x元,则每天可卖出(350-10x)件,但物价局限 定每件商品加价不能超过进价的20%.商店要想每天赚400 元,需要卖出多少件商品?每件商品的售价应为多少元?
例2 某商场销售一批名牌衬衫,平均每天 可销售出20件,每件盈利40元,经调查发 现,如果每件衬衫每降价1元,商场平均 每天可多售出2件.若商场平均每天要盈 利1200元,每件衬衫应降价多少元?
等量关系是:每件服装的利润 每天售出的数量=1600
分析:若设每件服装降价x元,每件盈利(_4_4 _ _x)__元,每天
能售出_(_20__5_x_)件.
规定 : 利润 = 售价 - 进价 5.利润率:利润占进价的百分率,即利润率 = 利润÷进价×100﹪ 6.打折:卖货时,按照标价乘以十分之几或百分之几十,则称
将标价进行了几折.或理解为:销售价占标价的百分率. 例如某种服装打 8 折即按标价的百分之八十出售,或 按标价的十分之八出售
• 例1、某商场从厂家以每件21元的价格购进 一批商品,若每件的售价为a元,则可卖出 (350—10a)件,商场计划要赚450元,则 每件商品的售价为多少元?
解:设每件衬衫应降价 x 元,根据题 意,得
(40-x)(20+2x)=1200.
整理得:x2-30x+200=0. 解得,x1=10,x2=20. 答:每件衬衫应降价 10 元或 20 元.
• 引例3某商店经销一种销售成本为每千克40元的 水产品,椐市场分析,若按每千克50元销售,一 个月能售出500千克;销售单价每涨1元,月销售 量就减少10千克。针对这种水产品的销售情况, 要使月销售利润达到8000元,销售单价应定为多
(a-21)(350-10a)=450
1、某商店从厂家以每件21元的价格购进一批商品,若每 件商品售价为x元,则每天可卖出(350-10x)件,但物价局限 定每件商品加价不能超过进价的20%.商店要想每天赚400 元,需要卖出多少件商品?每件商品的售价应为多少元?
例2 某商场销售一批名牌衬衫,平均每天 可销售出20件,每件盈利40元,经调查发 现,如果每件衬衫每降价1元,商场平均 每天可多售出2件.若商场平均每天要盈 利1200元,每件衬衫应降价多少元?
等量关系是:每件服装的利润 每天售出的数量=1600
分析:若设每件服装降价x元,每件盈利(_4_4 _ _x)__元,每天
能售出_(_20__5_x_)件.
规定 : 利润 = 售价 - 进价 5.利润率:利润占进价的百分率,即利润率 = 利润÷进价×100﹪ 6.打折:卖货时,按照标价乘以十分之几或百分之几十,则称
将标价进行了几折.或理解为:销售价占标价的百分率. 例如某种服装打 8 折即按标价的百分之八十出售,或 按标价的十分之八出售
• 例1、某商场从厂家以每件21元的价格购进 一批商品,若每件的售价为a元,则可卖出 (350—10a)件,商场计划要赚450元,则 每件商品的售价为多少元?
解:设每件衬衫应降价 x 元,根据题 意,得
(40-x)(20+2x)=1200.
整理得:x2-30x+200=0. 解得,x1=10,x2=20. 答:每件衬衫应降价 10 元或 20 元.
• 引例3某商店经销一种销售成本为每千克40元的 水产品,椐市场分析,若按每千克50元销售,一 个月能售出500千克;销售单价每涨1元,月销售 量就减少10千克。针对这种水产品的销售情况, 要使月销售利润达到8000元,销售单价应定为多
一元二次方程与实际问题--利润问题

总利润为 (41-30)×(60-(41-40)) 元。
Байду номын сангаас
4、当售价为x元时,单利为 x-30 元,销量为 60-(x-40) 件,
总利润为 (x-30)×(60-(x-40))
元。
阿克苏市第四中学
精讲实练 例:某电脑批发店的一款鼠标垫现在的售价为每 个30元,每天可卖出100个.经市场调查反映,每 涨价2元,每天要少卖出20个.已知进价为每个20 元,当鼠标垫的售价为多少元/个时,这天的利润 为960元.
阿克苏市第四中学
归纳小结
知识点 列一元二次方程解应用题的一般步骤 (1)审:审题; (2)设:设未知数,设未知数的方法有直接设
和间接设; (3)列:根据题中的等量关系列方程; (4)解:解所列方程; (5)验:检验方程的根是否符合题意; (6)答:回答题目中要解决的问题.
阿克苏市第四中学
作业布置 练习题1、2、3
阿克苏市第四中学
谢谢!
阿克苏市第四中学
精讲实练 例:某电脑批发店的一款鼠标垫现在的售价为每个 30元,每天可卖出100个.经市场调查反映,每 涨 降 价2元,每天要 多少卖出20个.已知进价为每个20元 ,当鼠标垫的售价为多少元/个时,这天的利润为 960元.
阿克苏市第四中学
变式练习 变式1:某西瓜经营户以2元/千克的价格购进一批小 型西瓜,以3元/千克的价格出售,每天可售出200千 克.为了减少库存,该经营户决定降价销售.经调 查发现,这种小型西瓜每千克每降价0.1元,每天可 多售出40千克.另外,每天的房租等固定成本共24 元.该经营户要想每天盈利200元,应将每千克小型 西瓜的售价降低多少元. (只列方程)
一元二次方程与实际问题 -----利润问题
实际问题与一元二次方程(利润问题、表格问题和动点问题)2022-2023学年九年级数学上册(人教版)

3)列:列方程;
4)解:解方程;
5)验:根据实际验结果;
6) 答:写出答案。
九年级学生小明在暑假期间进行勤工俭学.
问题一:他每天在村上以每斤2.5元买进黄瓜,到市场以每斤4元卖掉黄瓜,那么
他卖1斤黄瓜的利润是
1.5 元;
问题二:如果他每天买进并卖完300斤黄瓜,则他每天销售利润是
售价-进价=单件利润
解得,x1=40,x2=70
当x=40时, [800-10(x-30)]=800-10 (40-30)=700 >500
当x=70时, [800-10(x-30)]=800-10 (70-30)=400 <500(不符合题意,舍去)
结合题目内容,你觉得这两个结果都符合题意吗?
(利用一元二次方程解决表格问题)
如果设提价x元,你能根据提示信息列出方程吗?
(10+x)(800-20x)=12000
利用一元二次方程解决利润问题
某工厂生产的某种产品按供需要求分为十个档次.若生产第一档次(最低档次)的产品,一
天可生产76件,每件的利润为10元,每提高一个档次,每件的利润增加2元,每天的产量将
减少4件.设产品的档次(每天只生产一个档次的产品)为x,请解答下列问题.
当运动时间为4s时,P,Q两点的距离为多少?
x=2时,由运动知AP=3×2=6 cm,CQ=2×2=4 cm,
∴四边形ABCD是矩形,
3x
∴QE=AD=6,
∴PE=AB﹣BE﹣AP=16﹣6﹣4=6,
根据勾股定理得PQ=
+
= ,
∴当x=2 s时,P,Q两点的距离为6 cm;
16-5x
Q两点之间的距离是10cm?
4)解:解方程;
5)验:根据实际验结果;
6) 答:写出答案。
九年级学生小明在暑假期间进行勤工俭学.
问题一:他每天在村上以每斤2.5元买进黄瓜,到市场以每斤4元卖掉黄瓜,那么
他卖1斤黄瓜的利润是
1.5 元;
问题二:如果他每天买进并卖完300斤黄瓜,则他每天销售利润是
售价-进价=单件利润
解得,x1=40,x2=70
当x=40时, [800-10(x-30)]=800-10 (40-30)=700 >500
当x=70时, [800-10(x-30)]=800-10 (70-30)=400 <500(不符合题意,舍去)
结合题目内容,你觉得这两个结果都符合题意吗?
(利用一元二次方程解决表格问题)
如果设提价x元,你能根据提示信息列出方程吗?
(10+x)(800-20x)=12000
利用一元二次方程解决利润问题
某工厂生产的某种产品按供需要求分为十个档次.若生产第一档次(最低档次)的产品,一
天可生产76件,每件的利润为10元,每提高一个档次,每件的利润增加2元,每天的产量将
减少4件.设产品的档次(每天只生产一个档次的产品)为x,请解答下列问题.
当运动时间为4s时,P,Q两点的距离为多少?
x=2时,由运动知AP=3×2=6 cm,CQ=2×2=4 cm,
∴四边形ABCD是矩形,
3x
∴QE=AD=6,
∴PE=AB﹣BE﹣AP=16﹣6﹣4=6,
根据勾股定理得PQ=
+
= ,
∴当x=2 s时,P,Q两点的距离为6 cm;
16-5x
Q两点之间的距离是10cm?
九年级数学 实际问题与一元二次方程--利润问题

(2)在不改变上述关系的情况下,请你帮助商场经理策划每件 商品定价为多少元时,每日盈利可达到1600元?
生活有关一元二次方程的利润问题
例2:百佳超市将进货单价为40元的商品按50元出售时,能卖 500个,已知该商品要涨价1元,其销售量就要减少10个,为 了赚8000元利润,售价应定为多少,这时应进货为多少个?
分析:设商品单价为(50+x)元,则每个商品得利润[(50+x) —40]元, 因为每涨价1元,其销售会减少10,则每个涨价x元,其销售量会减少 10 x个,故销售量为(500 —10 x)个,根据每件商品的利润×件数 =8000,则应用(500 —10 x)·[(50+x) —40]=8000
解:设每个商品涨价x元,则销售价为(50+x)元,销售量为(500 —10 x)个, 则(500 —10 x)·[(50+x) —40]=8000,整理得 x2 40 x 300 0,
解得 x1 10, x2 30都符合题意。
当x=10时,50+ x =60,500 —10 x=400;
当 x=30时,50+ x =80, 500 —10 x=200。
解:(1)100×(100-80)=2000(元). 答:原来一天可获利润 2000 元. (2)设每件商品应降价 x 元,由题意,得 (100-80-x)(100+10x)=2160, 即 x2-10x+16=0. 解得 x1=2,x2=8. 答:商店经营商品一天要获利 2160 元,每件商品应降价 2 元或 8 元.
第21章一元二次方程
21.3实际问题与一元二次方程
复习:
1、一支钢笔的进价为5元,售价为9元,
则一支钢笔获利__4____元。 2、如果购买了10支钢笔则获利__4_0__元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、审清题意,找出等量关系式是列方程的关键. 2、销售问题基本关系式有:
分析:每个台灯的销售利润×平均每月台灯的销售量
=10000元
售价应定为x元,则每个台灯的销售利润为__x___3_0__元;
平均每月的销售量为_6__0_0__1_0_(_x___4_0_)_个。
某商场将进货价为30元的台灯以40元售出,平均每月
能售出600个.市场调研表明:当销售价每上涨1元时, 其销售量就将减少10个.商场要想销售利润平均每月 达到10000元,每个台灯的定价应为多少元?这时应进 台灯多少个?
(1)当销售单价定为每千克55元时,计算销售量和月销售 利润.
(2)设销售单价为每千克x元,月销售利润为y元,求y与 x的关系式.
(3)商品想在月销售成本不超过10000元的情况下,使得 月销售利润达到8000元,销售单价应为多少?
分析:(3)月销售成本不超过10000元,那么销售量就不超过 10000/40=250kg,在这个前提下, 求月销售利润达到8000元, 销售单价应为多少.
某商店经销一种销售成本为每千克40元的产品,据市场分 析, 若每千克50元销售,一个月能售出500kg,销售单价每 涨1元,月销售量就减少10kg,针对这种情况,请解答以下 问题:
(1)当销售单价定为每千克55元时,计算销售量和月销售 利润.
(2)设销售单价为每千克x元,月销售利润为y元,求y与 x的关系式.
1、若将例题中“当销售价每上涨1元时,其销售量就 将减少10个”变为“当销售价每上涨5元时,其销售 量就将减少10个”应如何解答? 2、若将例题中“当销售价每上涨1元时,其销售量就 将减少10个”变为“当销售价每降低5元时,其销售 量就将增加10个”应如何解答?
1. 某种服装,平均每天可销售20件,每件盈利 44元.若每件降价1元,则每天可多售5件.如果 每天盈利1600元,应降价多少元?
x1 36, x2 4. 答 : 每件服装应降价36元或4元.
2、某商店将进价为8元的商品按每件10元售出, 每天可售出200件,现采取提高售价减少销量的办 法增加利润,如果这种商品销售价每提高0.5元, 销量将减少10件.问每商品定价多少元,才能使每 天的利润为640元?
分析:每件商品的销售利润×平均每天商品的销售量
(1)当销售单价定为每千克55元时,计算销售量和月销售 利润.
(2)设销售单价为每千克x元,月销售利润为y元,求y与 x的关系式.
(3)商品想在月销售成本不超过10000元的情况下,使得 月销售利润达到8000元,销售单价应为多少?
分析:(1)销售单价定为55元,比原来的销售价50元提高5元, 因此,销售量就减少5×10kg.
1、一种衣服进价为m元,售价为n元,
销售10件衣服可获利 10(n m元) .
2、某玩具售出一件获利x元,现在降价
3元销售,售出m件可获利 m(x 3元) .
某商场将进货价为30元的台灯以40元售出,平均每月
能售出600个.市场调研表明:当销售价每上涨1元时, 其销售量就将减少10个.商场要想销售利润平均每月 达到10000元,每个台灯的定价应为多少元?这时应进 台灯多少个?
分析:若设每件服装降价x元,每件盈利_(_44__x_)_元,每天 能售出_(2_0__5_x_) 件.
等量关系是:每件服装的利润 每天售出的数量=1600
解 : 设每件服装应降价x元, 根据题意, 得
(44 x)(20 5x) 1600思. 考:
为了尽快减小库存,
整理得: x2 40x 144 服0. 装应降价元? 解这个方程, 得
=640元
售价应定为x元,则每件商品的销售利润为__x__8___元; 平均每天的销售量为_2__0_0___2_0_(_x__1_0_)_件。
3、某商店经销一种销售成本为每千克40元的产品,据市场 分析, 若每千克50元销售,一个月能售出500kg,销售单价 每涨1元,月销售量就减少10kg,针对这种情况,请解答以 下问题:
(3)商品想在月销售成本不超过10000元的情况下,使得 月销售利润达到8000元,销售单价应为多少?
分析;(2)销售利润y=(销售单价-销售成本40)×销售量
[500-10(x-50)]
某商店经销一种销售成本为每千克40元的产品,据市场分 析, 若每千克50元销售,一个月能售出500kg,销售单价每 涨1元,月销售量就减少10kg,针对这种情况,请解答以下 问题: