第二章 第十一节 第二课时 导数与函数的极值、最值
第二章 第十一节 导数与函数的单调性、极值、最值课时提升作业

课时提升作业(十四)一、选择题1.设a∈R,若函数y=e x+ax,x∈R有大于零的极值点,则( )(A)a<-1 (B)a>-1(C)a>- (D)a<-2.(2013·榆林模拟)函数y=(3-x2)e x的递增区间是( )(A)(-∞,0)(B)(0,+∞)(C)(-∞,-3)和(1,+∞)(D)(-3,1)3.(2013·铜川模拟)对任意的x∈R,函数f(x)=x3+ax2+7ax不存在极值点的充要条件是( )(A)0≤a≤21 (B)a=0或a=7(C)a<0或a>21 (D)a=0或a=214.(2013·九江模拟)已知f(x),g(x)都是定义在R上的函数,且满足以下条件:①f(x)=a x·g(x)(a>0,a≠1);②g(x)≠0;③f(x)·g′(x)>f′(x)·g(x).若+=,则a等于( )(A) (B)2 (C) (D)2或5.设f′(x)是函数f(x)的导函数,将y=f(x)和y=f′(x)的图像画在同一个直角坐标系中,不可能正确的是( )6.(2013·抚州模拟)函数y=f′(x)是函数y=f(x)的导函数,且函数y=f(x)在点P(x0,f(x0))处的切线为l:y=g(x)=f′(x0)·(x-x0)+f(x0),F(x)=f(x)-g(x),如果函数y=f(x)在区间[a,b]上的图像如图所示,且a<x0<b,那么( )(A)F′(x0)=0,x=x0是F(x)的极大值点(B)F′(x0)=0,x=x0是F(x)的极小值点(C)F′(x0)≠0,x=x0不是F(x)的极值点(D)F′(x0)≠0,x=x0是F(x)的极值点二、填空题7.函数f(x)=的递增区间是.8.若函数f(x)=x(x-c)2在x=2处有极大值,则常数c的值为.9.对于函数f(x)=-2cosx(x∈[0,π])与函数g(x)=x2+lnx有下列命题:①函数f(x)的图像关于x=对称;②函数g(x)有且只有一个零点;③函数f(x)和函数g(x)图像上存在平行的切线;④若函数f(x)在点P处的切线平行于函数g(x)在点Q处的切线,则直线PQ的斜率为.其中正确的命题是.(将所有正确命题的序号都填上)三、解答题10.(2013·合肥模拟)已知函数f(x)=x3-x2+x+b,其中a,b∈R.(1)若曲线y=f(x)在点P(2,f(2))处的切线方程为y=5x-4,求函数f(x)的解析式.(2)当a>0时,讨论函数f(x)的单调性.11.(2013·南昌模拟)已知函数f(x)=ax2-3x+lnx(a>0).(1)若曲线y=f(x)在点P(1,f(1))处的切线平行于x轴,求函数f(x)在区间[,2]上的最值.(2)若函数f(x)在定义域内是单调函数,求a的取值范围.12.(能力挑战题)已知函数f(x)=xlnx.(1)求函数f(x)的极值点.(2)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程.(3)设函数g(x)=f(x)-a(x-1),其中a∈R,求函数g(x)在[1,e]上的最小值(其中e为自然对数的底数).答案解析1.【解析】选A.由y′=(e x+ax)′=e x+a=0,得e x=-a,即x=ln(-a)>0⇒-a>1⇒a<-1.2.【解析】选D.y′=-2xe x+(3-x2)e x=e x(-x2-2x+3)>0⇒x2+2x-3<0⇒-3<x<1,≨函数y=(3-x2)e x的递增区间是(-3,1).3.【解析】选A.f′(x)=3x2+2ax+7a,令f′(x)=0,当Δ=4a2-84a≤0,即0≤a≤21时,f′(x)≥0恒成立,函数不存在极值点.4.【解析】选A.由①②得=a x,又[]′=,由③知[]′<0,故y=a x是减函数,因此0<a<1.由+=,得a+=,解得a=或a=2(舍).5.【解析】选D.对于A来说,抛物线为函数f(x),直线为f′(x);对于B来说,从左到右上升的曲线为函数f(x),从左到右下降的曲线为f′(x);对于C来说,下面的曲线为函数f(x),上面的曲线为f′(x).只有D不符合题设条件.【方法技巧】函数的导数与增减速度及图像的关系(1)导数与增长速度①一个函数的增长速度快,就是说,在自变量的变化相同时,函数值的增长大,即平均变化率大,导数也就大;②一个函数减小的速度快,那么在自变量的变化相同时,函数值的减小大,即平均变化率大,导数的绝对值也就大.(2)导数与图像一般地,如果一个函数在某一范围内的导数的绝对值较大,说明函数在这个范围内变化得快,这时,函数的图像就比较“陡峭”(向上或向下);反之,函数的图像就较“平缓”.6.【思路点拨】y=g(x)是函数y=f(x)在点P(x0,f(x0))处的切线,故g′(x)=f′(x0),据此判断F′(x0)是否为0,再进一步判断在x=x0两侧F′(x)的符号.【解析】选B.F′(x)=f′(x)-g′(x)=f′(x)-f′(x0),≨F′(x0)=f′(x0)-f′(x0)=0,又当x<x0时,从图像上看,f′(x)<f′(x0),即F′(x)<0,此时函数F(x)=f(x)-g(x)是减少的,同理,当x>x0时,函数F(x)是增加的.7.【解析】f′(x)==>0,即cosx>-,结合三角函数图像知,2kπ-<x<2kπ+(k∈Z),即函数f(x)的递增区间是(2kπ-,2kπ+)(k∈Z).答案:(2kπ-,2kπ+)(k∈Z)8.【解析】≧x=2是f(x)的极大值点,f(x)=x(x2-2cx+c2)=x3-2cx2+c2x,≨f′(x)=3x2-4cx+c2,≨f′(2)=3×4-8c+c2=0,解得c=2或c=6,当c=2时,在x=2处不能取极大值,≨c=6.答案:6【误区警示】本题易出现由f′(2)=0求出c后,不验证是否能够取到极大值这一条件,导致产生增根.9.【解析】画出函数f(x)=-2cosx,x∈[0,π]的图像可知①错;函数g(x)=x2+lnx的导函数g′(x)=x+≥2,所以函数g(x)在定义域内为增函数,画图知②正确;因为f′(x)=2sinx≤2,又因为g′(x)=x+≥2,所以函数f(x)和函数g(x)图像上存在平行的切线,③正确;同时要使函数f(x)在点P处的切线平行于函数g(x)在点Q处的切线只有f′(x)=g′(x)=2,这时P(,0),Q(1,),所以k PQ=,④也正确.答案:②③④10.【解析】(1)f′(x)=ax2-(a+1)x+1.由导数的几何意义得f′(2)=5,于是a=3.由切点P(2,f(2))在直线y=5x-4上可知2+b=6,解得b=4.所以函数f(x)的解析式为f(x)=x3-2x2+x+4.(2)f′(x)=ax2-(a+1)x+1=a(x-)(x-1).当0<a<1时,>1,函数f(x)在区间(-≦,1)及(,+≦)上是增加的,在区间(1,)上是减少的;当a=1时,=1,函数f(x)在区间(-≦,+≦)上是增加的;当a>1时,<1,函数f(x)在区间(-≦,)及(1,+≦)上是增加的,在区间(,1)上是减少的.11.【解析】(1)≧f(x)=ax2-3x+lnx,≨f′(x)=2ax-3+,又f′(1)=0,≨2a-2=0,≨a=1,≨f(x)=x2-3x+lnx,f′(x)=2x-3+.令f′(x)=0,即2x-3+=0,解得x=或x=1.列表如下:≨当x=1时,f(x)min=-2;≧f(2)-f()=-2+ln2++ln2=ln4->1->0,≨当x=2时,f(x)max=-2+ln2.(2)f(x)的定义域为(0,+≦),f′(x)=2ax-3+=,令Δ=9-8a.当a≥时,Δ≤0,f′(x)≥0,函数f(x)在(0,+≦)上是增加的,当0<a<时,Δ>0,方程2ax2-3x+1=0有两个不相等的正根x1,x2,不妨设x1<x2,则当x∈(0,x1)∪(x2,+≦)时,f′(x)>0,当x∈(x1,x2)时,f′(x)<0,这时,函数f(x)在定义域内不是单调函数.综上,a的取值范围是[,+≦).12.【思路点拨】(1)先判断f(x)的增减性,再求极值点.(2)设出切点,表示出切线方程,利用直线过点(0,-1),求出切点即可得出切线方程.(3)先求出极值点,再根据该点是否在[1,e]上分类讨论.【解析】(1)f′(x)=lnx+1,x>0.而f′(x)>0,即lnx+1>0,得x>.f′(x)<0,即lnx+1<0,得0<x<,所以f(x)在(0,)上是减少的,在(,+≦)上是增加的.所以x=是函数f(x)的极小值点,极大值点不存在.(2)设切点坐标为(x0,y0),则y0=x0lnx0,切线的斜率为lnx0+1,所以切线l的方程为y-x0lnx0=(lnx0+1)(x-x0).又切线l过点(0,-1),所以有-1-x0lnx0=(lnx0+1)(0-x0).解得x0=1,y0=0.所以直线l的方程为y=x-1.(3)g(x)=xlnx-a(x-1),则g′(x)=lnx+1-a.g′(x)<0,即lnx+1-a<0,得0<x<e a-1,g′(x)>0,得x>e a-1,所以g(x)在(0,e a-1)上是减少的,在(e a-1,+≦)上是增加的.①当e a-1≤1即a≤1时,g(x)在[1,e]上是增加的,所以g(x)在[1,e]上的最小值为g(1)=0.②当1<e a-1<e,即1<a<2时,g(x)在[1,e a-1)上是减少的,在(e a-1,e]上是增加的.g(x)在[1,e]上的最小值为g(e a-1)=a-e a-1.③当e≤e a-1,即a≥2时,g(x)在[1,e]上是减少的,所以g(x)在[1,e]上的最小值为g(e)=e+a-ae.综上,x∈[1,e]时,当a≤1时,g(x)的最小值为0;当1<a<2时,g(x)的最小值为a-e a-1;当a≥2时,g(x)的最小值为a+e-ae.【变式备选】设f(x)=-x3+x2+2ax.(1)若f(x)在(,+≦)上存在递增区间,求a的取值范围.(2)当0<a<2时,f(x)在[1,4]上的最小值为-,求f(x)在该区间上的最大值.【解析】(1)f(x)=-x3+x2+2ax,≨f′(x)=-x2+x+2a,当x∈[,+≦)时,f′(x)的最大值为f′()=+2a.函数f(x)在(,+≦)上存在递增区间,即导函数在(,+≦)上存在函数值大于零成立,≨+2a>0⇒a>-.(2)已知0<a<2,f(x)在[1,4]上取到最小值-,而f′(x)=-x2+x+2a的图像开口向下,且对称轴为x=,≨f′(1)=-1+1+2a=2a>0,f′(4)=-16+4+2a=2a-12<0,则必有一点x0∈[1,4]使得f′(x0)=0,此时函数f(x)在[1,x0]上是增加的,在[x0,4]上是减少的,f(1)=-++2a=+2a>0,≨f(4)=-×64+×16+8a=-+8a,≨-+8a=-,得a=1,此时,由f′(x0)=-+x0+2=0得x0=2或-1(舍去),所以函数f(x)max=f(2)=.。
高中数学课件第十一节 第二课时 导数与函数极值、最值

首页
上一页
下一页
末页
第十一节
第二课时
导数与函数极值、最值
结束
(2)由(1)知,x=-3 是 f(x)的极小值点,所以有 b+c 9a-3 =-e3, -3 e g0=b-c=0, g-3=-9a-32a-b+b-c=0, 解得 a=1,b=5,c=5, x2+5x+5 所以 f(x)= . ex
下一页
末页
第十一节
第二课时
导数与函数极值、最值
结束
[解]
2ax+bex-ax2+bx+cex (1)f′(x)= ex2
-ax2+2a-bx+b-c = , ex 令 g(x)=-ax2+(2a-b)x+b-c, 因为 ex>0, 所以 y=f′(x)的零点就是 g(x)=-ax2+(2a-b)x +b-c 的零点,且 f′(x)与 g(x)符号相同. 又因为 a>0,所以-3<x<0 时,g(x)>0,即 f′(x)>0, 当 x<-3 或 x>0 时,g(x)<0,即 f′(x)<0,所以 f(x)的单调 增区间是(-3,0),单调减区间是(-∞,-3),(0,+∞).
3
,(2,+∞).
fx ln x (2)g(x)= x =|x-a|+ x ,x∈[1,e]. ln x ①若a≤1,则g(x)=x-a+ x , 1-ln x x2+1-ln x 故g′(x)=1+ = . x2 x2 因为x∈[1,e],所以0≤ln x≤1,所以1-ln x≥0, x2+1-ln x>0,所以g′(x)>0.
a2 a2 f′(x)=6x+6 +b- , 6
a 即 y=f′(x)关于直线 x=- 对称. 6
导数与函数的极值、最值 经典课件(最新)

高中数学课件
3.(教材改编)一条长为 2 的铁丝截成两段,分别弯成两个正方形,要使两个正方形 的面积之和最小,则两段铁丝的长度分别是________,________.
解析:设两段铁丝的长分别为 x,2-x,0<x<2,则两个正方形的面积之和 S=1x62 + (2-16x)2=18x2-41x+14,故 S′=4x-14.令 S′=0,得 x=1.当 0<x<1 时,S′<0;当 2>x>1 时,S′>0.所以 S 在 x=1 处取得极小值也是最小值,所以两段铁丝的长都是 1.
(2)由(1)知,当 x= 2时,函数取得极小值,故极小值为 2+ 22=2 2. (3)由(1)(2)知,函数的极小值恰好是函数的最小值,故 ymin=2 2.极值是个“局部” 概念,最值是“整体”概念.
答案:(1)x= 2 (2)2 2 (3)2 2
高中数学课件
5.(改编题)设 f(x)=lnx,g(x)=f(x)+f′(x),则 g(x)的最小值为________. 解析:对 f(x)=lnx 求导,得 f′(x)=1x, 则 g(x)=lnx+1x,且 x>0. 对 g(x)求导,得 g′(x)=x-x21, 令 g′(x)=0,解得 x=1. 当 x∈(0,1)时,g′(x)<0,函数 g(x)=lnx+1x在(0,1)上单调递减; 当 x∈(1,+∞)时,g′(x)>0,函数 g(x)=lnx+1x在(1,+∞)上单调递增. 所以当 x=1 时,g(x)min=g(1)=1.
极小值
在包含 x0 的一个区间(a,b)内,函数 y
在包含 x0 的一个区间(a,b)内, 函数 y=f(x)在任何一点的函数值
第二节 导数与函数的极值、最值知识点汇总

第二节导数与函数的极值、最值知识点汇总考点一利用导数研究函数的极值考法(一) 已知函数的解析式求函数的极值点个数或极值[例1] 已知函数f(x)=x-1+ae x(a∈R,e为自然对数的底数),求函数f(x)的极值.[解] 由f(x)=x-1+ae x,得f′(x)=1-ae x.①当a≤0时,f′(x)>0,f(x)为(-∞,+∞)上的增函数,所以函数f(x)无极值.②当a>0时,令f′(x)=0,得e x=a,即x=ln a,当x∈(-∞,ln a)时,f′(x)<0;当x∈(ln a,+∞)时,f′(x)>0,所以函数f(x)在(-∞,ln a)上单调递减,在(ln a,+∞)上单调递增,故函数f(x)在x=ln a处取得极小值且极小值为f(ln a)=ln a,无极大值.综上,当a≤0时,函数f(x)无极值;当a>0时,函数f(x)在x=ln a处取得极小值ln a,无极大值.[例2] 设函数f(x)=ln(x+1)+a(x2-x),其中a∈R.讨论函数f(x)极值点的个数,并说明理由.[解] f′(x)=1x+1+a(2x-1)=2ax2+ax-a+1x+1(x>-1).令g(x)=2ax2+ax-a+1,x∈(-1,+∞).①当a=0时,g(x)=1,f′(x)>0,函数f(x)在(-1,+∞)上单调递增,无极值点.②当a>0时,Δ=a2-8a(1-a)=a(9a-8).当0<a≤89时,Δ≤0,g(x)≥0,f′(x)≥0,函数f(x)在(-1,+∞)上单调递增,无极值点.当a>89时,Δ>0,设方程2ax2+ax-a+1=0的两根为x1,x2(x1<x2),因为x1+x2=-1 2,所以x1<-14,x2>-14.由g(-1)=1>0,可得-1<x1<-1 4 .所以当x∈(-1,x1)时,g(x)>0,f′(x)>0,函数f(x)单调递增;当x∈(x1,x2)时,g(x)<0,f′(x)<0,函数f(x)单调递减;当x∈(x2,+∞)时,g(x)>0,f′(x)>0, 函数f(x)单调递增.因此函数f(x)有两个极值点.③当a<0时,Δ>0,由g(-1)=1>0,可得x1<-1<x2.当x∈(-1,x2)时,g(x)>0,f′(x)>0,函数f(x)单调递增;当x∈(x2,+∞)时,g(x)<0,f′(x)<0,函数f(x)单调递减.所以函数f(x)有一个极值点.综上所述,当a<0时,函数f(x)有一个极值点;当0≤a≤89时,函数f(x)无极值点;当a>89时,函数f(x)有两个极值点.考法(二) 已知函数的极值点的个数求参数[例3] 已知函数g(x)=ln x-mx+mx存在两个极值点x1,x2,求m的取值范围.[解] 因为g(x)=ln x-mx+m x ,所以g′(x)=1x-m-mx2=-mx2-x+mx2(x>0),令h(x)=mx2-x+m,要使g(x)存在两个极值点x1,x2,则方程mx2-x+m=0有两个不相等的正数根x 1,x 2.故只需满足⎩⎪⎨⎪⎧h 0>0,12m>0,h ⎝ ⎛⎭⎪⎫12m <0,解得0<m <12.所以m 的取值范围为⎝ ⎛⎭⎪⎫0,12.考法(三) 已知函数的极值求参数[例4] (2018·北京高考)设函数f (x )=[ax 2-(4a +1)x +4a +3]e x . (1)若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ; (2)若f (x )在x =2处取得极小值,求a 的取值范围. [解] (1)因为f (x )=[ax 2-(4a +1)x +4a +3]e x , 所以f ′(x )=[ax 2-(2a +1)x +2]e x . 所以f ′(1)=(1-a )e.由题设知f ′(1)=0,即(1-a )e =0,解得a =1. 此时f (1)=3e ≠0. 所以a 的值为1.(2)由(1)得f ′(x )=[ax 2-(2a +1)x +2]e x =(ax -1)(x -2)e x .若a >12,则当x ∈⎝ ⎛⎭⎪⎫1a ,2时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0. 所以f (x )在x =2处取得极小值.若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0,所以f ′(x )>0.所以2不是f (x )的极小值点. 综上可知,a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.考点二 利用导数研究函数的最值[典例精析]已知函数f (x )=ln xx-1.(1)求函数f (x )的单调区间;(2)设m >0,求函数f (x )在区间[m,2m ]上的最大值. [解] (1)因为函数f (x )的定义域为(0,+∞),且f ′(x )=1-ln xx 2, 由⎩⎨⎧f ′x >0,x >0,得 0<x <e ;由⎩⎨⎧f ′x<0,x >0,得x >e.所以函数f (x )的单调递增区间为(0,e),单调递减区间为(e ,+∞). (2)①当⎩⎨⎧2m ≤e ,m >0,即0<m ≤e2时,函数f (x )在区间[m,2m ]上单调递增,所以f (x )max =f (2m )=ln2m 2m-1;②当m <e <2m ,即e2<m <e 时,函数f (x )在区间(m ,e)上单调递增,在(e,2m )上单调递减,所以f (x )max =f (e)=ln e e -1=1e-1; ③当m ≥e 时,函数f (x )在区间[m,2m ]上单调递减, 所以f (x )max =f (m )=ln mm-1.综上所述,当0<m ≤e 2时,f (x )max =ln 2m2m -1;当e 2<m <e 时,f (x )max =1e -1; 当m ≥e 时,f (x )max =ln mm-1.[题组训练]1.(2018·全国卷Ⅰ)已知函数f (x )=2sin x +sin 2x ,则f (x )的最小值是________.解析:f ′(x )=2cos x +2cos 2x =2cos x +2(2cos 2x -1) =2(2cos 2x +cos x -1)=2(2cos x -1)(cos x +1).∵cos x +1≥0,∴当cos x <12时,f ′(x )<0,f (x )单调递减;当cos x >12时,f ′(x )>0,f (x )单调递增.∴当cos x =12,f (x )有最小值.又f (x )=2sin x +sin 2x =2sin x (1+cos x ), ∴当sin x =-32时,f (x )有最小值, 即f (x )min =2×⎝ ⎛⎭⎪⎫-32×⎝ ⎛⎭⎪⎫1+12=-332.答案:-3322.已知函数f (x )=ln x +ax 2+bx (其中a ,b 为常数且a ≠0)在x =1处取得极值.(1)当a =1时,求f (x )的单调区间;(2)若f (x )在(0,e]上的最大值为1,求a 的值.解:(1)因为f (x )=ln x +ax 2+bx ,所以f (x )的定义域为(0,+∞),f ′(x )=1x+2ax +b ,因为函数f (x )=ln x +ax 2+bx 在x =1处取得极值, 所以f ′(1)=1+2a +b =0, 又a =1,所以b =-3,则f ′(x )=2x 2-3x +1x,令f ′(x )=0,得x 1=12,x 2=1.当x 变化时,f ′(x ),f (x )随x 的变化情况如下表:所以f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,12,(1,+∞),单调递减区间为⎝ ⎛⎭⎪⎫12,1.(2)由(1)知f ′(x )=2ax 2-2a +1x +1x=2ax -1x -1x(x >0),令f ′(x )=0,得x 1=1,x 2=12a, 因为f (x )在x =1处取得极值,所以x 2=12a≠x 1=1. ①当a <0,即12a<0时,f (x )在(0,1)上单调递增,在(1,e]上单调递减, 所以f (x )在区间(0,e]上的最大值为f (1),令f (1)=1,解得a =-2. ②当a >0,即x 2=12a>0时, 若12a <1,f (x )在⎝ ⎛⎭⎪⎫0,12a ,[1,e]上单调递增,在⎣⎢⎡⎭⎪⎫12a ,1上单调递减,所以最大值可能在x =12a 或x =e 处取得,而f ⎝ ⎛⎭⎪⎫12a =ln 12a +a ⎝ ⎛⎭⎪⎫12a 2-(2a +1)·12a =ln 12a -14a-1<0, 令f (e)=ln e +a e 2-(2a +1)e =1,解得a =1e -2. 若1<12a <e ,f (x )在区间(0,1),⎣⎢⎡⎦⎥⎤12a ,e 上单调递增,在⎣⎢⎡⎭⎪⎫1,12a 上单调递减,所以最大值可能在x =1或x =e 处取得, 而f (1)=ln 1+a -(2a +1)<0, 令f (e)=ln e +a e 2-(2a +1)e =1, 解得a =1e -2,与1<x 2=12a<e 矛盾. 若x 2=12a≥e ,f (x )在区间(0,1)上单调递增,在(1,e]上单调递减,所以最大值可能在x =1处取得,而f (1)=ln 1+a -(2a +1)<0,矛盾.综上所述,a=1e-2或a=-2.考点三利用导数求解函数极值和最值的综合问题[典例精析](2019·贵阳模拟)已知函数f(x)=ln x+12x2-ax+a(a∈R).(1)若函数f(x)在(0,+∞)上为单调递增函数,求实数a的取值范围;(2)若函数f(x)在x=x1和x=x2处取得极值,且x2≥e x1(e为自然对数的底数),求f(x2)-f(x1)的最大值.[解] (1)∵f′(x)=1x+x-a(x>0),又f(x)在(0,+∞)上单调递增,∴恒有f′(x)≥0,即1x+x-a≥0恒成立,∴a≤⎝⎛⎭⎪⎫x+1x min,而x+1x≥2 x·1x=2,当且仅当x=1时取“=”,∴a≤2.即函数f(x)在(0,+∞)上为单调递增函数时,a的取值范围是(-∞,2].(2)∵f(x)在x=x1和x=x2处取得极值,且f′(x)=1x+x-a=x2-ax+1x(x>0),∴x1,x2是方程x2-ax+1=0的两个实根,由根与系数的关系得x1+x2=a,x1x2=1,∴f(x2)-f(x1)=ln x2x1+12(x22-x21)-a(x2-x1)=lnx2x1-12(x22-x21)=lnx2x1-12(x22-x21)1x1x2=lnx2x1-12⎝⎛⎭⎪⎫x2x1-x1x2,设t=x2x1(t≥e),令h(t)=ln t-12⎝⎛⎭⎪⎫t-1t(t≥e),则h′(t)=1t-12⎝⎛⎭⎪⎫1+1t2=-t-122t2<0,∴h(t)在[e,+∞)上是减函数,∴h(t)≤h(e)=12⎝⎛⎭⎪⎫1-e+ee,故f (x 2)-f (x 1) 的最大值为12⎝ ⎛⎭⎪⎫1- e +e e .[题组训练]已知函数f (x )=ax 2+bx +ce x(a >0)的导函数f ′(x )的两个零点为-3和0.(1)求f (x )的单调区间;(2)若f (x )的极小值为-e 3,求f (x )在区间[-5,+∞)上的最大值. 解:(1)f ′(x )=2ax +be x -ax 2+bx +ce x e x 2=-ax 2+2a -bx +b -ce x.令g (x )=-ax 2+(2a -b )x +b -c ,因为e x >0,所以f ′(x )的零点就是g (x )=-ax 2+(2a -b )x +b -c 的零点,且f ′(x )与g (x )符号相同.又因为a >0,所以当-3<x <0时,g (x )>0,即f ′(x )>0, 当x <-3或x >0时,g (x )<0,即f ′(x )<0,所以f (x )的单调递增区间是(-3,0),单调递减区间是(-∞,-3),(0,+∞).(2)由(1)知,x =-3是f (x )的极小值点,所以有⎩⎪⎨⎪⎧f -3=9a -3b +ce-3=-e 3,g 0=b -c =0,g-3=-9a -32a -b+b -c =0,解得a =1,b =5,c =5,所以f (x )=x 2+5x +5e x.由(1)可知当x =0时f (x )取得极大值f (0)=5,故f (x )在区间[-5,+∞)上的最大值取f (-5)和f (0)中的最大者. 而f (-5)=5e-5=5e 5>5=f (0), 所以函数f (x )在区间[-5,+∞)上的最大值是5e 5.[课时跟踪检测]A级1.函数f(x)=x e-x,x∈[0,4]的最小值为( )A.0 B.1 eC.4e4D.2e2解析:选A f′(x)=1-x e x,当x∈[0,1)时,f′(x)>0,f(x)单调递增,当x∈(1,4]时,f′(x)<0,f(x)单调递减,因为f(0)=0,f(4)=4e4>0,所以当x=0时,f(x)有最小值,且最小值为0.2.若函数f(x)=a e x-sin x在x=0处有极值,则a的值为( )A.-1 B.0C.1 D.e解析:选C f′(x)=a e x-cos x,若函数f(x)=a e x-sin x在x=0处有极值,则f′(0)=a-1=0,解得a=1,经检验a=1符合题意,故选C.3.已知x=2是函数f(x)=x3-3ax+2的极小值点,那么函数f(x)的极大值为( )A.15 B.16C.17 D.18解析:选D 因为x=2是函数f(x)=x3-3ax+2的极小值点,所以f′(2)=12-3a=0,解得a=4,所以函数f(x)的解析式为f(x)=x3-12x+2,f′(x)=3x2-12,由f′(x)=0,得x=±2,故函数f(x)在(-2,2)上是减函数,在(-∞,-2),(2,+∞)上是增函数,由此可知当x=-2时,函数f(x)取得极大值f(-2)=18.4.(2019·合肥模拟)已知函数f(x)=x3+bx2+cx的大致图象如图所示,则x21+x22等于( )A.23B.43C.83D.163解析:选C 由图象可知f (x )的图象过点(1,0)与(2,0),x 1,x 2是函数f (x )的极值点,因此1+b +c =0,8+4b +2c =0,解得b =-3,c =2,所以f (x )=x 3-3x 2+2x ,所以f ′(x )=3x 2-6x +2,则x 1,x 2是方程f ′(x )=3x 2-6x +2=0的两个不同的实数根,因此x 1+x 2=2,x 1x 2=23,所以x 21+x 22=(x 1+x 2)2-2x 1x 2=4-43=83.5.(2019·泉州质检)已知直线y =a 分别与函数y =e x +1和y = x -1交于A ,B 两点,则A ,B 之间的最短距离是( )A.3-ln 22 B.5-ln 22 C.3+ln 22D.5+ln 22解析:选D 由y =e x +1得x =ln y -1,由y =x -1得x =y 2+1,所以设h (y )=|AB |=y 2+1-(ln y -1)=y 2-ln y +2,h ′(y )=2y -1y =2⎝⎛⎭⎪⎫y -22⎝ ⎛⎭⎪⎫y +22y(y >0),当0<y <22时,h ′(y )<0;当y >22时,h ′(y )>0,即函数h (y )在区间⎝ ⎛⎭⎪⎫0,22上单调递减,在区间⎝ ⎛⎭⎪⎫22,+∞上单调递增,所以h (y )min =h ⎝ ⎛⎭⎪⎫22=⎝ ⎛⎭⎪⎫222-ln 22+2=5+ln 22.6.若函数f (x )=x 3-3a 2x +a (a >0)的极大值是正数,极小值是负数,则a 的取值范围是________.解析:f ′(x )=3x 2-3a 2=3(x +a )(x -a ),由f ′(x )=0得x =±a ,当-a <x <a 时,f ′(x )<0,函数f (x )单调递减; 当x >a 或x <-a 时,f ′(x )>0,函数f (x )单调递增, ∴f (x )的极大值为f (-a ),极小值为f (a ). ∴f (-a )=-a 3+3a 3+a >0且f (a )=a 3-3a 3+a <0, 解得a >22. ∴a 的取值范围是⎝ ⎛⎭⎪⎫22,+∞.答案:⎝ ⎛⎭⎪⎫22,+∞7.(2019·长沙调研)已知y =f (x )是奇函数,当x ∈(0,2)时,f (x )=ln x -ax ⎝⎛⎭⎪⎫a >12,当x ∈(-2,0)时,f (x )的最小值为1,则a =________.解析:由题意知,当x ∈(0,2)时,f (x )的最大值为-1. 令f ′(x )=1x -a =0,得x =1a,当0<x <1a时,f ′(x )>0;当x >1a时,f ′(x )<0.∴f (x )max =f ⎝ ⎛⎭⎪⎫1a =-ln a -1=-1,解得a =1.答案:18.(2018·内江一模)已知函数f (x )=a sin x +b cos x (a ,b ∈R),曲线y =f (x )在点⎝ ⎛⎭⎪⎫π3,f ⎝ ⎛⎭⎪⎫π3处的切线方程为y =x -π3.(1)求a ,b 的值;(2)求函数g (x )=f ⎝ ⎛⎭⎪⎫x +π3x在⎝⎛⎦⎥⎤0,π2上的最小值.解:(1)由切线方程知,当x =π3时,y =0,∴f ⎝ ⎛⎭⎪⎫π3=32a +12b =0.∵f ′(x )=a cos x -b sin x ,∴由切线方程知,f ′⎝ ⎛⎭⎪⎫π3=12a -32b =1,∴a =12,b =-32.(2) 由(1)知,f (x )=12sin x -32cos x =sin ⎝ ⎛⎭⎪⎫x -π3,∴函数g (x )=sin x x ⎝ ⎛⎭⎪⎫0<x ≤π2,g ′(x )=x cos x -sin xx 2.设u (x )=x cos x-sin x ⎝ ⎛⎭⎪⎫0≤x ≤π2,则u ′(x )=-x sin x <0,故u (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递减.∴u (x )<u (0)=0,∴g (x )在⎝ ⎛⎦⎥⎤0,π2上单调递减.∴函数g (x )在 ⎝ ⎛⎦⎥⎤0,π2上的最小值为g ⎝ ⎛⎭⎪⎫π2=2π.9.已知函数f (x )=a ln x +1x(a >0).(1)求函数f (x )的单调区间和极值;(2)是否存在实数a ,使得函数f (x )在[1,e]上的最小值为0?若存在,求出a 的值;若不存在,请说明理由.解:由题意,知函数的定义域为{x |x >0},f ′(x )=a x -1x2=ax -1x2(a >0).(1)由f ′(x )>0,解得x >1a,所以函数f (x )的单调递增区间是⎝ ⎛⎭⎪⎫1a ,+∞;由f ′(x )<0,解得0<x <1a,所以函数f (x )的单调递减区间是⎝⎛⎭⎪⎫0,1a .所以当x =1a 时,函数f (x )有极小值f ⎝ ⎛⎭⎪⎫1a =a ln 1a +a =a -a ln a ,无极大值.(2)不存在,理由如下:由(1)可知,当x ∈⎝ ⎛⎭⎪⎫0,1a 时,函数f (x )单调递减;当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,函数f (x )单调递增.①若0<1a≤1,即a ≥1时,函数f (x )在[1,e]上为增函数,故函数f (x )的最小值为f (1)=a ln 1+1=1,显然1≠0,故不满足条件. ②若1<1a ≤e ,即1e ≤a <1时,函数f (x )在⎣⎢⎡⎭⎪⎫1,1a 上为减函数,在⎣⎢⎡⎦⎥⎤1a ,e 上为增函数,故函数f (x )的最小值为f (x )的极小值f ⎝ ⎛⎭⎪⎫1a =a ln 1a +a =a -a ln a =0,即lna =1,解得a =e ,而1e≤a <1,故不满足条件.③若1a >e ,即0<a <1e 时,函数f (x )在[1,e]上为减函数,故函数f (x )的最小值为f (e)=a ln e +1e =a +1e =0,即a =-1e ,而0<a <1e,故不满足条件.综上所述,不存在这样的实数a ,使得函数f (x )在[1,e]上的最小值为0.B 级1.(2019·郑州质检)若函数f (x )=x 3-ax 2-bx +a 2在x =1时有极值10,则a ,b 的值为( )A .a =3,b =-3或a =-4,b =11B .a =-4,b =-3或a =-4,b =11C .a =-4,b =11D .以上都不对解析:选C 由题意,f ′(x )=3x 2-2ax -b , 则f ′(1)=0,即2a +b =3.①f (1)=1-a -b +a 2=10,即a 2-a -b =9.② 联立①②,解得⎩⎨⎧a =-4,b =11或⎩⎨⎧a =3,b =-3.经检验⎩⎨⎧a =3,b =-3不符合题意,舍去.故选C.2.(2019·唐山联考)若函数f (x )=x 2-12ln x +1在其定义域内的一个子区间(a -1,a +1)内存在极值,则实数a 的取值范围是________.解析:由题意,得函数f (x )的定义域为(0,+∞),f ′(x )=2x -12x =4x 2-12x ,令f ′(x )=0,得x =12⎝ ⎛⎭⎪⎫x =-12舍去,则由已知得⎩⎪⎨⎪⎧a -1≥0,a -1<12,a +1>12,解得1≤a <32.答案:⎣⎢⎡⎭⎪⎫1,323.(2019·德州质检)已知函数f (x )=-13x 3+x 在(a,10-a 2)上有最大值,则实数a 的取值范围是________.解析:由f ′(x )=-x 2+1,知f (x )在(-∞,-1)上单调递减,在[-1,1]上单调递增,在(1,+∞)上单调递减,故函数f (x )在(a,10-a 2)上存在最大值的条件为⎩⎨⎧a <1,10-a 2>1,f 1≥f a,其中f (1)≥f (a ),即为-13+1≥-13a 3+a ,整理得a 3-3a +2≥0,即a 3-1-3a +3≥0, 即(a -1)(a 2+a +1)-3(a -1)≥0,即(a -1)(a 2+a -2)≥0,即(a -1)2(a +2)≥0,即⎩⎨⎧a <1,10-a 2>1,a -12a +2≥0,解得-2≤a <1.答案:[-2,1)4.已知函数f (x )是R 上的可导函数,f (x )的导函数f ′(x )的图象如图,则下列结论正确的是( )A .a ,c 分别是极大值点和极小值点B .b ,c 分别是极大值点和极小值点C .f (x )在区间(a ,c )上是增函数D .f (x )在区间(b ,c )上是减函数解析:选C 由极值点的定义可知,a 是极小值点,无极大值点;由导函数的图象可知,函数f (x )在区间(a ,+∞)上是增函数,故选C.5.如图,在半径为103的半圆形(O 为圆心)铁皮上截取一块矩形材料ABCD ,其中A ,B 在直径上,C ,D 在圆周上,将所截得的矩形铁皮ABCD 卷成一个以AD 为母线的圆柱形罐子的侧面(不计剪裁与拼接损耗),记圆柱形罐子的体积为V ,设AD =x ,则V max =________.解析:设圆柱形罐子的底面半径为r , 由题意得AB =21032-x 2=2πr ,所以r =300-x 2π,所以V =πr 2x =π⎝⎛⎭⎪⎫300-x 2π2x =1π(-x 3+300x )(0<x <103),故V ′=-3π(x 2-100)=-3π(x +10)(x -10)(0<x <103). 令V ′=0,得x =10(负值舍去), 则V ′,V 随x 的变化情况如下表:x (0,10) 10 (10,103)V ′ +0 -V极大值所以当x =所以V max =2 000π. 答案:2 000π6.已知函数f (x )=ln(x +1)-ax 2+xx +12,其中a 为常数.(1)当1<a ≤2时,讨论f (x )的单调性;(2)当x >0时,求g (x )=x ln ⎝ ⎛⎭⎪⎫1+1x +1x ln(1+x )的最大值.解:(1)函数f (x )的定义域为(-1,+∞),f ′(x )=x x -2a +3x +13,①当-1<2a -3<0,即1<a <32时,当-1<x <2a -3或x >0时,f ′(x )>0,则f (x )在(-1,2a -3),(0,+∞)上单调递增,当2a -3<x <0时,f ′(x )<0,则f (x )在(2a -3,0)上单调递减. ②当2a -3=0,即a =32时,f ′(x )≥0,则f (x )在(-1,+∞)上单调递增.③当2a -3>0,即a >32时,当-1<x <0或x >2a -3时,f ′(x )>0, 则f (x )在(-1,0),(2a -3,+∞)上单调递增,当0<x <2a -3时,f ′(x )<0,则f (x )在(0,2a -3)上单调递减. 综上,当1<a <32时,f (x )在(-1,2a -3),(0,+∞)上单调递增,在(2a-3,0)上单调递减;当a =32时,f (x )在(-1,+∞)上单调递增;当32<a ≤2时,f (x )在(-1,0),(2a -3,+∞)上单调递增,在(0,2a -3)上单调递减.(2)∵g (x )=⎝ ⎛⎭⎪⎫x +1x ln(1+x )-x ln x =g ⎝ ⎛⎭⎪⎫1x ,∴g (x )在(0,+∞)上的最大值等价于g (x )在(0,1]上的最大值. 令h (x )=g ′(x )=⎝ ⎛⎭⎪⎫1-1x 2ln(1+x )+⎝ ⎛⎭⎪⎫x +1x ·11+x -(ln x +1)=⎝⎛⎭⎪⎫1-1x 2ln(1+x)-ln x+1x-21+x,则h′(x)=2x3⎣⎢⎡⎦⎥⎤ln1+x-2x2+xx+12.由(1)可知当a=2时,f(x)在(0,1]上单调递减,∴f(x)<f(0)=0,∴h′(x)<0,从而h(x)在(0,1]上单调递减,∴h(x)≥h(1)=0,∴g(x)在(0,1]上单调递增,∴g(x)≤g(1)=2ln 2,∴g(x)的最大值为2ln 2.。
第二章 第十一节 导数与函数的单调性、极值、最值

【思路点拨】(1)由y′<0的解集为 ( 3 , 3 ), 确定a的取值
3 3
范围.(2)先求出导函数,再利用导数与单调性的关系或转化为 恒成立问题求解.
【规范解答】(1)选A.
≧ y 3a(x 2 1 ) 3a(x 3 )(x 3 ),
3 当 3 < x< 3 3 3 3 3 3 3 因为函数y=a(x3-x)在 ( 3 , 3 ) 上是减少的, 3 3
考向 2
已知函数的单调性求参数的范围
3 3
【典例2】(1)若函数y=a(x3-x)的递减区间为 ( 3 , 3 ), 则a
的取值范围是( )
(A)a>0
(C)a>1
(B)-1<a<0
(D)0<a<1
(2)(2013·厦门模拟)若函数f(x)=x3-ax2+1在[1,2]上是 减少的,求实数a的取值范围.
(i)当a>1时,1-2a<-1,
当x变化时,f′(x)与f(x)的变化情况如下表: x
f′(x) f(x)
(-≦,1-2a)
+ 增加
(1-2a,-1)
减少
(-1,+≦)
+ 增加
由此得,函数f(x)的递增区间为(-≦,1-2a)和(-1,+≦),递减 区间为(1-2a,-1).
(ii)由a=1时,1-2a=-1,此时,f′(x)≥0恒成立,且仅在x=
(1) f′(x)>0是f(x)为增函数的充要条件.( )
(2)函数在某区间上或定义域内极大值是唯一的.(
(3)函数的极大值不一定比极小值大.( )
)
(4)对可导函数f(x),f′(x0)=0是x0点为极值点的充要条 件.( )
(5)函数的最大值不一定是极大值,函数的最小值也不一定是 极小值.( )
高考数学总复习第十一节 第二课时 导数与函数的极值、最值

当 x∈(-∞,ln a)时,f′(x)<0;
当 x∈(ln a,+∞)时,f′(x)>0,
所以函数 f(x)在(-∞,ln a)上单调递减,在(ln a,+∞)上单
调递增,故函数 f(x)在 x=ln a 处取得极小值且极小值为 f(ln a)
=ln a,无极大值.
综上,当 a≤0 时,函数 f(x)无极值;
第 二 课时 导数与函数的极值、最值
课堂·考点突破
自主研、合作探、多面观、全扫命题题点
课后·三维演练
基础练、题型练、能力练、全练力保全能
返回
课 堂 考点突破
自主研、合作探、多面观、全扫命题题点
返回
考点一 运用导数解决函数的极值问题
题点多变型考点——多角探明 [锁定考向] 函数的极值是每年高考的必考内容,题型既有选择题、 填空题,也有解答题,难度适中,为中高档题. 常见的命题角度有: (1)知图判断函数极值; (2)已知函数求极值或极值点; (3)已知函数极值情况求参数值(范围).
返回
[由题悟法] 求函数 f(x)在[a,b]上的最大值和最小值的 3 步骤 (1)求函数在(a,b)内的极值; (2)求函数在区间端点的函数值 f(a),f(b); (3)将函数 f(x)的极值与 f(a),f(b)比较,其中最大的一个 为最大值,最小的一个为最小值.
返回
[即时应用] 已知函数 f(x)=lnxx-1. (1)求函数 f(x)的单调区间; 解:因为函数 f(x)的定义域为(0,+∞),且 f′(x)=1-xl2n x, 由fx′>0x,>0, 得 0<x<e;由fx′>0x,<0, 得 x>e. 所以函数 f(x)的单调递增区间为(0,e),单调递减区间为 (e,+∞).
导数与函数的极值最值

2.函数的最值 (1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值 与最小值. (2)若函数f(x)在[a,b]上单调递增,则___f(_a_)_为函数的最小 值,__f_(b_)__为函数的最大值;若函数f(x)在[a,b]上单调递减, 则___f(_a_)__为函数的最大值, __f_(b_)__为函数的最小值.
a=1,
∴f1=-b=-12,
解得b=12.
(2)由(1)得 f(x)=ln x-12x2, 则 f′(x)=1x-x=1-x x2, ∵当1e≤x≤e 时,令 f′(x)>0 得1e≤x<1; 令 f′(x)<0,得 1<x≤e,∴f(x)在1e,1上单调递增,在[1, e]上单调递减,∴f(x)max=f(1)=-12.
)
A.137
B.-137
4
2
C.e4
D.e2
[解析] f′(x)=x2+2x-3,f′(x)=0,x∈[0,2], 得 x=1.比较 f(0)=-4,f(1)=-137,f(2)=-130.可知最小 值为-137. [答>0 是 f(x)为增函数的充要条件. ②函数在某区间上或定义域内的极大值是唯一的. ③函数的极大值不一定比极小值大. ④对可导函数 f(x),f′(x0)=0 是 x0 点为极值点的充要条件. ⑤函数的最大值不一定是极大值,函数的最小值也不一定 是极小值. 其中真命题的是________.(写出所有真命题的序号)
[解析] 由题图可知,当 x<-2 时,f′(x)>0;当-2<x <1 时,f′(x)<0;当 1<x<2 时,f′(x)<0;当 x>2 时,f′(x) >0.由此可以得到函数 f(x)在 x=-2 处取得极大值,在 x=2 处 取得极小值.
[答案] D
【高中数学】导数与函数的极值、最值

高中数学学科
t1,t2,t3 是公差为 d 的等差数列.
(1)若 t2=0,d=1,求曲线 y=f(x)在点(0,f(0))处的切线方程;
所以 f′(x)=ex(cos x-sin x)-1,f′(0)=0.
又因为 f(0)=1,
所以曲线 y=f(x)在点(0,f(0))处的切线方程为 y=1.
(2)设 h(x)=ex(cos x-sin x)-1,
则 h′(x)=ex(cos x-sin x-sin x-cos x)=-2exsin x.
N=-19,M-N=1-(-19)=20.
2.(2018·梅州期末)函数 y=f(x)的导函数的图象如图所示,则下列说法错误的是( )
A.(-1,3)为函数 y=f(x)的单调递增区间
高中数学学科
B.(3,5)为函数 y=f(x)的单调递减区间
C.函数 y=f(x)在 x=0 处取得极大值
D.函数 y=f(x)在 x=5 处取得极小值
高中数学学科
导数与函数的极值、最值
一、基础知识
1.函数的极值 (1)函数的极小值: 函数 y=f(x)在点 x=a 的函数值 f(a)比它在点 x=a 附近其他点的函数值都小,f′(a)=0; 而且在点 x=a 附近的左侧 f′(x)<0,右侧 f′(x)>0,则点 a 叫做函数 y=f(x)的极小值点, f(a)叫做函数 y=f(x)的极小值. (2)函数的极大值: 函数 y=f(x)在点 x=b 的函数值 f(b)比它在点 x=b 附近其他点的函数值都大,f′(b)=0; 而且在点 x=b 附近的左侧 f′(x)>0,右侧 f′(x)<0,则点 b 叫做函数 y=f(x)的极大值点, f(b)叫做函数 y=f(x)的极大值. 极小值点、极大值点统称为极值点,极大值和极小值统称为极值.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时规范练A 组 基础对点练1.设a ∈R ,若函数y =e x +ax ,x ∈R 有大于零的极值点,则( )A .a <-1B .a >-1C .a >-1eD .a <-1e解析:∵y =e x +ax ,∴y ′=e x +a .∵函数y =e x +ax 有大于零的极值点,则方程y ′=e x +a =0有大于零的解,∵x >0时,-e x <-1,∴a =-e x <-1.选A.答案:A2.已知函数f (x )=x 3+ax 2+bx +a 2在x =1处有极值10,则f (2)等于( )A .11或18B .11C .18D .17或18 解析:∵函数f (x )=x 3+ax 2+bx +a 2在x =1处有极值10,∴f (1)=10,且f ′(1)=0,f ′(x )=3x 2+2ax +b ,即⎩⎪⎨⎪⎧ 1+a +b +a 2=10,3+2a +b =0,解得⎩⎪⎨⎪⎧ a =-3,b =3,或⎩⎪⎨⎪⎧a =4,b =-11. 而当⎩⎪⎨⎪⎧a =-3,b =3时,f ′(x )=3x 2-6x +3=3(x -1)2,x ∈(-∞,1),f ′(x )>0,x ∈(1,+∞),f ′(x )>0,故舍去.∴f (x )=x 3+4x 2-11x +16,∴f (2)=18.选C.答案:C3.(2019·岳阳模拟)下列函数中,既是奇函数又存在极值的是( )A .y =x 3B .y =ln(-x )C.y=x e-x D.y=x+2 x解析:A、B为单调函数,不存在极值,C不是奇函数,故选D.答案:D4.若a>0,b>0,且函数f(x)=4x3-ax2-2bx+2在x=1处有极值,若t=ab,则t的最大值为()A.2 B.3C.6 D.9解析:∵f(x)=4x3-ax2-2bx+2,∴f′(x)=12x2-2ax-2b,又∵f(x)在x=1处有极值,∴f′(1)=12-2a-2b=0⇒a+b=6,∵a>0,b>0,a+b≥2ab,∴ab≤9,当且仅当a=b=3时等号成立.故选D.答案:D5.已知f(x)=2x3-6x2+m(m为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值是()A.-37 B.-29C.-5 D.以上都不对解析:f′(x)=6x2-12x=6x(x-2),所以f(x)在[-2,0]上单调递增,在(0,2]上单调递减.所以x=0为极大值点,也为最大值点.所以f(0)=m=3,所以m=3.所以f(-2)=-37,f(2)=-5.所以最小值是-37.答案:A6.设函数f(x)=ax2+bx+c(a,b,c∈R).若x=-1为函数f(x)e x的一个极值点,则下列图象不可能为y=f(x)图象的是()解析:因为[f (x )e x ]′=f ′(x )e x +f (x )(e x )′=[f (x )+f ′(x )]e x ,且x =-1为函数f (x )e x 的一个极值点,所以f (-1)+f ′(-1)=0;选项D 中,f (-1)>0,f ′(-1)>0,不满足f ′(-1)+f (-1)=0.答案:D7.函数y =2x -1x 2的极大值是________.解析:y ′=2+2x 3,令y ′=0,得x =-1.当x <-1时,y ′>0;当-1<x <0时,y ′<0.当x >0,y ′>0, 所以当x =-1时,y 取极大值-3.答案:-38.已知函数y =f (x )=x 3+3ax 2+3bx +c 在x =2处有极值,其图象在x =1处的切线平行于直线6x +2y +5=0,则f (x )的极大值与极小值之差为________. 解析:因为y ′=3x 2+6ax +3b ,⎩⎪⎨⎪⎧ 3×22+6a ×2+3b =0,3×12+6a +3b =-3⇒⎩⎪⎨⎪⎧a =-1,b =0. 所以y ′=3x 2-6x ,令3x 2-6x =0,则x =0或x =2.所以f (x )极大值-f (x )极小值=f (0)-f (2)=4.答案:49.已知函数f (x )=x 3+mx 2+(m +6)x +1既存在极大值又存在极小值,则实数m 的取值范围是________.解析:因为f ′(x )=3x 2+2mx +(m +6),所以Δ=4m 2-4×3(m +6)>0,解得m >6或m <-3,所以实数m 的取值范围是(-∞,-3)∪(6,+∞).答案:(-∞,-3)∪(6,+∞)10.已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4.(1)求a ,b 的值;(2)讨论f (x )的单调性,并求f (x )的极大值.解析:(1)f ′(x )=e x (ax +a +b )-2x -4.由已知得f (0)=4,f ′(0)=4,故b =4,a +b =8.从而a =4,b =4.(2)由(1)知f (x )=4e x (x +1)-x 2-4x ,f ′(x )=4e x (x +2)-2x -4=4(x +2)⎝ ⎛⎭⎪⎫e x -12. 令f ′(x )=0,得x =-ln 2或x =-2.从而当x ∈(-∞,-2)∪(-ln 2,+∞)时,f ′(x )>0;当x ∈(-2,-ln 2)时,f ′(x )<0.故f (x )在(-∞,-2),(-ln 2,+∞)上单调递增,在(-2,-ln 2)上单调递减.当x =-2时,函数f (x )取得极大值,极大值为f (-2)=4(1-e -2).B 组 能力提升练11.已知e 为自然对数的底数,设函数f (x )=(e x -1)(x -1)k (k =1,2),则( )A .当k =1时,f (x )在x =1处取到极小值B .当k =1时,f (x )在x =1处取到极大值C .当k =2时,f (x )在x =1处取到极小值D .当k =2时,f (x )在x =1处取到极大值解析:当k =1时,f (x )=(e x -1)(x -1),0,1是函数f (x )的零点.当0<x <1时,f (x )=(e x -1)(x -1)<0,当x >1时,f (x )=(e x -1)(x -1)>0,1不会是极值 点.当k =2时,f (x )=(e x -1)(x -1)2,零点还是0,1,但是当0<x <1,x>1时,f (x )>0,由极值的概念,知选C.答案:C12.若0<x 1<x 2<1,则( )A .e x 2-e x 1>ln x 2-ln x 1B .e x 1-e x 2<ln x 2-ln x 1C .x 2e x 1>x 1e x 2D .x 2e x 1<x 1e x 2解析:令f (x )=e x x ,则f ′(x )=x e x -e x x 2=e x(x -1)x 2.当0<x <1时,f ′(x )<0,即f (x )在(0,1)上单调递减,∵0<x 1<x 2<1,∴f (x 2)<f (x 1),即e x 2x 2<e x 1x 1,∴x 2e x 1>x 1e x 2,故选C. 答案:C13.已知奇函数f (x )=⎩⎪⎨⎪⎧ e x x-1(x >0),h (x )(x <0)则函数h (x )的最大值为__________.解析:先求出x >0时,f (x )=e x x -1的最小值.当x >0时,f ′(x )=e x(x -1)x 2,∴x ∈(0,1)时,f ′(x )<0,函数单调递减,x ∈(1,+∞)时,f ′(x )>0,函数单调递增,∴x =1时,函数取得极小值即最小值,为e -1,∴由已知条件得h (x )的最大值为1-e.答案:1-e14.若函数f (x )=x 3-3x 在区间(a,6-a 2)上有最小值,则实数a 的取值范围是________.解析:若f ′(x )=3x 2-3=0,则x =±1,且x =1为函数的极小值点,x =-1为函数的极大值点.函数f (x )在区间(a,6-a 2)上有最小值,则函数f (x )的极小值点必在区间(a,6-a 2)内,且左端点的函数值不小于f (1),即实数a 满足a <1<6-a 2且f (a )=a 3-3a ≥f (1)=-2.解a <1<6-a 2,得-5<a <1.不等式a3-3a≥f(1)=-2,即a3-3a+2≥0,a3-1-3(a-1)≥0,(a-1)(a2+a -2)≥0,即(a-1)2(a+2)≥0,即a≥-2,故实数a的取值范围为[-2,1).答案:[-2,1)15.已知a,b是实数,1和-1是函数f(x)=x3+ax2+bx的两个极值点.(1)求a和b的值.(2)设函数g(x)的导函数g′(x)=f(x)+2,求g(x)的极值点.解析:(1)由题设知f′(x)=3x2+2ax+b,且f′(-1)=3-2a+b=0,f′(1)=3+2a+b=0,解得a=0,b=-3.将a=0,b=-3代入检验知符合题意.(2)由(1)知f(x)=x3-3x.因为f(x)+2=(x-1)2(x+2),所以g′(x)=0的根为x1=x2=1,x3=-2,于是函数g(x)的极值点只可能是x=1或x=-2.当x<-2时,g′(x)<0;当-2<x<1时,g′(x)>0,故x=-2是g(x)的极小值点.当-2<x<1或x>1时,g′(x)>0,故x=1不是g(x)的极值点.所以g(x)的极小值点为x=-2,无极大值点.16.已知函数f(x)=a6x3-a4x2-ax-2的图象过点A(4,103).(1)求函数f(x)的单调区间.(2)若函数g(x)=f(x)-2m+3有3个零点,求m的取值范围.解析:(1)因为函数f(x)=a6x3-a4x2-ax-2的图象过点A(4,103).所以32a3-4a-4a-2=103,解得a=2,即f(x)=13x3-12x2-2x-2,所以f′(x)=x2-x-2.由f′(x)=x2-x-2<0,解得-1<x<2;由f′(x)>0,得x<-1或x>2.所以函数f (x )的递减区间是(-1,2),递增区间是(-∞,-1),(2,+∞).(2)由(1)知f (x )的极大值=f (-1)=-13-12+2-2=-56,同理,f (x )的极小值=f (2)=83-2-4-2=-163,由数形结合思想,要使函数g (x )=f (x )-2m +3有三个零点,则-163<2m -3<-56,解得-76<m <1312.所以m 的取值范围为⎝ ⎛⎭⎪⎫-76,1312.。