3-3-2 函数的极值与导数 函数的最大(小)值与导数
函数的最大值与最小值

函数的最大值与最小值在数学中,函数的最大值和最小值是非常重要的概念。
最大值指的是函数在某个区间上取得的最大数值,而最小值则是函数在该区间上取得的最小数值。
求解函数的最大值和最小值在实际问题中具有重要的应用,如寻找最佳解、优化问题等。
本文将介绍如何求解函数的最大值和最小值,并探讨其中的相关概念和方法。
一、局部最值和全局最值函数的最大值和最小值可以分为局部最值和全局最值两种情况。
局部最值指的是函数在某个小区间内取得的最大或最小值,而全局最值则是函数在整个定义域上取得的最大或最小值。
为了更好地理解这两个概念,我们考虑一个简单的例子。
假设有一个函数f(x) = x^2,在闭区间[-1, 1]上进行观察。
当x为-1时,f(-1) = 1;当x为0时,f(0) = 0;当x为1时,f(1) = 1。
可以看出,函数f(x)在这个区间内的最大值和最小值分别为1和0。
因此,在这个例子中,最大值和最小值都是局部最值。
然而,如果我们考虑函数f(x)在整个定义域上的取值情况,就会发现函数f(x)在x等于0时取得了全局最小值0。
因此,全局最值并不一定出现在局部最值处。
二、求解最值的方法在求解函数的最大值和最小值时,有一些常用的方法和技巧。
1. 导数法导数法是一种常见且经典的求解最值的方法。
它基于一个重要的数学定理:在函数的极值点处,导数等于0。
假设有一个定义在区间[a, b]上的函数f(x),我们想要求解在该区间上的最大值和最小值。
首先,我们可以计算出函数f(x)的导数f'(x)。
然后,我们找到f'(x) = 0的所有解,这些解即为函数f(x)的极值点。
接下来,我们需要判断这些极值点是函数的最大值还是最小值。
可以通过一些判定条件进行判断,如利用二阶导数的符号、导数的变化规律等。
2. 区间法区间法在求解最值时,将区间等分成多个小区间,然后计算函数在每个小区间的取值,并找出最大值和最小值。
具体做法是将区间[a, b]等分成n个小区间,每个小区间的长度为Δx = (b - a) / n。
高二数学选修1、3-3-2函数的极值与导数函数的最大(小)值与导数

3.3.2函数的极值与导数函数的最大(小)值与导数一、选择题1.设x 0为f (x )的极值点,则下列说法正确的是( ) A .必有f ′(x 0)=0 B .f ′(x 0)不存在C .f ′(x 0)=0或f ′(x 0)不存在D .f ′(x 0)存在但可能不为0 [答案] C[解析] 如:y =|x |,在x =0时取得极小值,但f ′(0)不存在. 2.对于可导函数,有一点两侧的导数值异号是这一点为极值的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 [答案] C3.函数y =2-x 2-x 3的极值情况是( ) A .有极大值,没有极小值 B .有极小值,没有极大值 C .既无极大值也无极小值 D .既有极大值也有极小值 [答案] D[解析] y ′=-3x 2-2x =-x (3x +2), 当x >0或x <-23时,y ′<0,当-23<x <0时y ′>0,∴当x =-23时取极小值,当x =0时取极大值.4.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内有极小值点( )A .1个B .2个C .3个D .4个[答案] A[解析] 由f ′(x )的图象可知,函数f (x )在区间(a ,b )内,先增、再减、再增、最后再减,故函数f (x )在区间(a ,b )内只有一个极小值点.5.下列命题:①一个函数的极大值总比极小值大;②可导函数导数为0的点不一定是极值点;③一个函数的极大值可以比最大值大;④一个函数的极值点可在其不可导点处达到,其中正确命题的序号是( )A .①④B .②④C .①②D .③④[答案] B6.函数y =|x -1|,下列结论中正确的是( ) A .y 有极小值0,且0也是最小值 B .y 有最小值0,但0不是极小值 C .y 有极小值0,但不是最小值D .因为y 在x =1处不可导,所以0既非最小值也非极值 [答案] A7.函数f (x )=x (1-x 2)在[0,1]上的最大值为( ) A.239B.229C.329D.38[答案] A[解析] f ′(x )=1-3x 2=0,得x =33∈[0,1], 所以f (x )max =f ⎝⎛⎫33=239. 8.已知函数f (x )=x 3-px 2-qx 的图像与x 轴切于(1,0)点,则函数f (x )的极值是( ) A .极大值为427,极小值为0B .极大值为0,极小值为427C .极大值为0,极小值为-427D .极大值为-427,极小值为0[答案] A[解析] 由题意,得f (1)=0,∴p +q =1① f ′(1)=3-2p -q =0,∴2p +q =3③ 由①②得p =2,q =-1.∴f ′(x )=x 3-2x 2+x ,f ′(x )=3x 2-4x +1=(3x -1)(x -1), 令f ′(x )=0,得x =13或x =1,f ⎝⎛⎭⎫13=427,f (1)=0. 9.已知函数y =|x 2-3x +2|,则( ) A .y 有极小值,但无极大值 B .y 有极小值0,但无极大值 C .y 有极小值0,极大值14D .y 有极大值14,但无极大值[答案] C[解析] 作出函数y =|x 2-3x +2|的图象,由图象知选C.10.设f (x )=x (ax 2+bx +c )(a ≠0)在x =1和x =-1处均有极值,则下列点中一定在x 轴上的是( )A .(a ,b )B .(a ,c )C .(b ,c )D .(a +b ,c ) [答案] A[解析] f ′(x )=3ax 2+2bx +c ,由题意,知1、-1是方程3ax 2+2bx +c =0的两根,1-1=-2b3a,b =0.二、填空题11.函数y =2xx 2+1的极大值为____________,极小值为____________.[答案] -1,-3[解析] y ′=2(1+x )(1-x )(x 2+1)2,令y ′>0得-1<x <1,令y ′<0得x >1或x <-1,∴当x =-1时,取极小值-3,当x =1时,取极大值-1.12.函数y =x 3-6x +a 的极大值为____________,极小值为____________. [答案] a +42 a -4 2[解析] y ′=3x 2-6=3(x +2)(x -2), 令y ′>0,得x >2或x <-2, 令y ′<0,得-2<x <2, ∴当x =-2时取极大值a +42, 当x =2时取极小值a -4 2.13.函数y =x -x 3(x ∈[0,2])的最小值是________. [答案] -6[解析] y ′=1-3x 2,令y ′=0,得x =±33,f (0)=0,f (2)=-6,f ⎝⎛⎭⎫-33=-239,f ⎝⎛⎭⎫33=33-⎝⎛⎭⎫333=33-39=239,∴最小值为-6.14.已知函数f (x )=x (x -c )2在x =2处取极大值,则常数c 的值为________. [答案] 6[解析] f (x )=x (x -c )2=x 3-2cx 2+c 2x ,f ′(x )=3x 2-4cx +c 2,令f ′(2)=0解得c =2或6. 当c =2时,f ′(x )=3x 2-8x +4=(3x -2)(x -2), 故f (x )在x =2处取得极小值,不合题意舍去; 当c =6时,f ′(x )=3x 2-24x +36=3(x 2-8x +12) =3(x -2)(x -6),故f (x )在x =2处取得极大值. 三、解答题15.已知函数f (x )=x 3-3x 2-9x +11. (1)写出函数的递减区间;(2)讨论函数的极大值或极小值,如有试写出极值. [解析] f ′(x )=3x 2-6x -9=3(x +1)(x -3), 令f ′(x )=0,得x 1=-1,x 2=3.x 变化时,f ′(x )的符号变化情况及f (x )的增减性如下表所示:(2)由表可得,当x =-1时,函数有极大值为f (-1)=16;当x =3时,函数有极小值为f (3)=-16.16.求下列函数的最值 (1)f (x )=3x -x 3(-3≤x ≤3); (2)f (x )=sin2x -x ⎝⎛⎭⎫-π2≤x ≤π2. [解析] (1)f ′(x )=3-3x 2=3(1-x )(1+x ). 令f ′(x )=0,得x =1或x =-1,∴x =1和x =-1是函数f (x )在[-3,3]上的两个极值点,且f (1)=2,f (-1)=-2. 又f (x )在区间端点的取值为f (-3)=0,f (3)=-18. 比较以上函数值可得f (x )max =2,f (x )min =-18. (2)f ′(x )=2cos2x -1. 令f ′(x )=0,得cos2x =12,又x ∈⎣⎡⎦⎤-π2,π2, ∴2x ∈[-π,π],∴2x =±π3,∴x =±π6.∴函数f (x )在⎣⎡⎦⎤-π2,π2上的两个极值分别为 f ⎝⎛⎭⎫π6=32-π6,f ⎝⎛⎭⎫-π6=-32+π6. 又f (x )在区间端点的取值为 f ⎝⎛⎭⎫π2=-π2,f ⎝⎛⎭⎫-π2=π2. 比较以上函数值可得f (x )max =π2,f (x )min =-π2.17.已知a ∈R ,讨论函数f (x )=e x (x 2+ax +a +1)的极值点的个数. [解析] f ′(x )=e x (x 2+ax +a +1)+e x (2x +a )=e x [x 2+(a +2)x +(2a +1)]. 令f ′(x )=0,所以x 2+(a +2)x +2a +1=0 ○ .(1)当Δ=(a +2)2-4(2a +1)=a 2-4a >0,即a <0或a >4时,设○ 有两个不同的根x 1,x 2,不妨设x 1<x 2,所以f ′(x )=e x (x -x 1)(x -x 2).即f (x )有两个极值点.(2)当Δ=0,即a =0或a =4时,设有两个相等实根x 1,所以f ′(x )=e x (x -x 1)2≥0,所以f (x )无极值.(3)当Δ<0,即0<a <4时,x 2+(a +2)x +2a +1>0,所以f ′(x )>0.故f (x )也无极值. 综上所述,当a <0或a >4时,f (x )有两个极值, 当0≤a ≤4时f (x )无极值.18.(2010·江西理,19)设函数f (x )=ln x +ln(2-x )-ax (a >0).(提示:[ln(2-x )]′=-12-x) (1)当a =1时,求f (x )的单调区间;(2)若f (x )在(0,1]上 的最大值为12,求a 的值.[分析] 所给函数的非基本函数,故求单调区间和最值可利用导数分析,解题的重点是求导的准确性.及函数定义域的确定.[解析] 函数f (x )的定义域为(0,2), f ′(x )=1x -12-x+a ,(1)当a =1时,f ′(x )=-x 2+2x (2-x ),所以f (x )的单调递增区间为(0,2),单调递减区间为(2,2);(2)当x ∈(0,1]时,f ′(x )=2-2xx (2-x )+a >0,即f (x )在(0,1]上单调递增,故f (x )在(0,1]上的最大值为f (1)=a ,因此a =12.。
(新课标人教A版)选修1-1数学同步课件:3-3-2《函数的极值与导数函数的最大(小)值与导数》

其次,为了清楚起见,可用导数为零的点,将函数的定义
域分成若干小开区间,并列成表格,判断导函数在各个小 开区间的符号. 求函数的最大值和最小值,需要先确定函数的极大值 和极小值,极值是一个局部概念并且不唯一,极大值与极
小值之间无确定的大小关系.
f′(x0)=0只是可导函数f(x)在x0取得极值的必要条件,
当-1<x<2时,f(x)<0
∴ 当 x =- 1 时 f(x) 有极大值, f(x) 极大值= f( - 1) = 5 , 无极小值.故应选C.
[例2] [分析]
求函数f(x)=x3-2x2+1在区间[-1,2]上的最大 首先求f(x)在(-1,2)内的极值.然后将f(x)的各
值与最小值. 极值与 f( -1) , f(2) 比较,其中最大的一个是最大值,最小
[点评] 恒成立转化为最值,即用导数求最值.
函数的极值、最值常与单调性,不等式结合出解答题,
是历年考试的重点,一般分为二至三问,要注意它们之间 的内在联系,另外解此类问题要注意极值,最值的注意事 项.
[例5]
[ 误解 ] 6ax+b.
已知f(x)=x3+3ax2+bx+a2在x=-1时有极值0,
1 1 解得 x1= ,x2=- . 3 3 当 x 变化时,y′和 y 的变化情况如下表:
1 11 因此,当 x=-3时,y 有极大值,并且 y 极大值= 9 . 1 7 而当 x=3时,y 有极小值,并且 y 极小值=9.
[点评] 熟记极值的定义是做好本题的关键,要利用
求函数极值的一般步骤求解.
[ 例 4]
已知函数 f(x) = ax4lnx + bx4 - c(x>0) 在 x = 1 处取
得极值-3-c,其中a、b、c为常数.
【新高考】高三数学一轮复习知识点专题3-2 导数与函数的单调性、极值与最值

专题3.2 导数与函数的单调性、极值与最值(精讲)【考情分析】1.了解函数的单调性与导数的关系;2.能利用导数研究函数的单调性,会求函数的单调区间。
3.了解函数在某点取得极值的必要条件和充分条件;4.会用导数求函数的极大值、极小值;5.会求闭区间上函数的最大值、最小值。
【重点知识梳理】知识点一函数的单调性与导数的关系函数y=f(x)在某个区间内可导,则:(1)若f′(x)>0,则f(x)在这个区间内单调递增;(2)若f′(x)<0,则f(x)在这个区间内单调递减;(3)若f′(x)=0,则f(x)在这个区间内是常数函数.知识点二函数的单调性与导数的关系函数y=f(x)在某个区间内可导,则:(1)若f′(x)>0,则f(x)在这个区间内单调递增;(2)若f′(x)<0,则f(x)在这个区间内单调递减;(3)若f′(x)=0,则f(x)在这个区间内是常数函数.知识点三函数的极值与导数形如山峰形如山谷知识点四函数的最值与导数(1)函数f(x)在[a,b]上有最值的条件如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y =f (x )在[a ,b ]上的最大(小)值的步骤 ①求函数y =f (x )在(a ,b )内的极值;②将函数y =f (x )的各极值与端点处的函数值f (a ),f (b )比较,其中最大的一个是最大值,最小的一个是最小值.【特别提醒】1.函数f (x )在区间(a ,b )上递增,则f ′(x )≥0,“f ′(x )>0在(a ,b )上成立”是“f (x )在(a ,b )上单调递增”的充分不必要条件.2.对于可导函数f (x ),“f ′(x 0)=0”是“函数f (x )在x =x 0处有极值”的必要不充分条件.3.求最值时,应注意极值点和所给区间的关系,关系不确定时,需要分类讨论,不可想当然认为极值就是最值.4.函数最值是“整体”概念,而函数极值是“局部”概念,极大值与极小值之间没有必然的大小关系. 【典型题分析】高频考点一求函数的单调区间例1.【2019·天津卷】设函数()e cos ,()xf x xg x =为()f x 的导函数,求()f x 的单调区间。
人教课标版高中数学选修1-1《函数的最大(小)值与导数》教案-新版

3.3.3 函数的最大(小)值与导数一、教学目标 1.核心素养通过学习函数的最大(小)值与导数,形成基本的逻辑推理和数学运算能力,能围绕讨论问题的主题,观点明确,论述有理有据,并依据运算法则解决数学问题. 2.学习目标(1)借助函数图像,直观地理解函数的最大值和最小值的概念。
(2)弄清函数最大值、最小值与极大值、极小值的区别与联系,理解和熟悉)(x f 必有最大值和最小值的充分条件。
(3)掌握求在闭区间],[b a 上连续的函数)(x f 的最大值和最小值的思想方法和步骤。
3.学习重点利用导数求函数的最大值和最小值的方法. 4.学习难点函数的最大值、最小值与函数的极大值和极小值的区别与联系.二、教学设计 (一)课前设计 1.预习任务 任务1结合函数2)(x x f =在]2,1[-上的图像,想一想:函数2)(x x f =在]2,1[-上的极小值是多少?函数2)(x x f =在]2,1[-上的最大值、最小值分别是多少? 任务2预习教材P96—P98,完成P98相应练习题,并找出疑惑之处.2.预习自测1.下列说法正确的是( )A .函数的极大值就是函数的最大值B .函数的极小值就是函数的最小值C .函数的最值一定是极值D .在闭区间上的连续函数一定存在最值 解:D 最值是极值与闭区间端点处的函数值比较之后得到的.2.函数)(x f 在区间],[b a 上的最大值是M ,最小值是m ,若M=m ,则)(x f '( ) A .等于0 B .大于0 C .小于0 D .以上都有可能 解:A 由题意知函数在闭区间上所有函数值相等,故其导数为0. 3.函数x xe y -=在]4,2[∈x 上的最小值为 .解:44e xx x x e x e xe e y -=-='1)(2,当]4,2[∈x 时,0<'y ,即函数xxe y -=在]4,2[∈x 上单调递减,故当4=x 时,函数有最小值为44e. 4.设b ax ax x f +-=236)(在区间]2,1[-上的最大值为3,最小值为29-,且0>a ,求a ,b 的值 . 解:2=a)4(3123)(2-=-='x ax ax ax x f ,令0)(='x f ,得0=x 或4=x ,则函数)(x f 在]2,1[-上的单调性及极值情况如下表所示: ∴3)0(==b f ,又∵3736)1(+-=+--=-a a a f ,3163248)2(+-=+-=a a a f)1(-<f ,∴29316)2(-=+-=a f ,∴2=a .(二)课堂设计 1.知识回顾⑴常见函数的导数公式及导数的四则运算法则.⑵求函数极值的方法和求解步骤. 2.问题探究问题探究一 函数最大(小)值与导数 ●活动一观察与思考:极值反映的是函数在某一点附近的局部性质,而不是函数在整个定义域内的性质,但是我们往往更关心函数在某个区间上哪个值最大,哪个值最小,观察图中一个定义在闭区间[]b a ,上的函数)(x f 的图象,你能找出函数)(x f y =在闭区间],[b a 上的最大值、最小值吗?一般地,在闭区间[]b a ,上函数()y f x =的图像是一条连续不断的曲线,那么函数()y f x =在[]b a ,上必有最大值与最小值.说明:⑴如果在某一区间上函数()y f x =的图像是一条连续不断的曲线,则称函数()y f x =在这个区间上连续.⑵给定函数的区间必须是闭区间,在开区间(,)a b 内连续的函数)(x f 不一定有最大值与最小值.如函数xx f 1)(=在),0(+∞内连续,但没有最大值与最小值; ⑶在闭区间上的每一点必须连续,即函数图像没有间断,⑷函数)(x f 在闭区间[]b a ,上连续,是)(x f 在闭区间[]b a ,上有最大值与最小值的充分条件而非必要条件. ●活动二想一想:函数的极值与最值有怎样的关系?函数极值与最值的区别与联系:⑴最值”是整体概念,是比较整个定义域内的函数值得出的,具有绝对性;而“极值”是个局部概念,是比较极值点附近函数值得出的,具有相对性.⑵从个数上看,一个函数在其定义域上的最值是唯一的;而极值不唯一.⑶函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个⑷极值只能在定义域内部取得,而最值可以在区间的端点处取得,有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值只要不在端点必定是极值.(5)对于在闭区间上图像连续不断的函数,函数的最大(小)值必在极大(小)值点或区间端点处取得.问题探究二 函数的最大值与最小值的求解●活动一阅读教材P97的例5,根据例5及最值与极值的关系归纳出求函数)(x f y =在闭区间[]b a ,上的最值的步骤.利用导数求函数的最值步骤:一般地,求函数)(x f 在[]b a ,上的最大值与最小值的步骤如下: ⑴求)(x f 在(,)a b 内的极值;⑵将)(x f 的各极值与端点处的函数值)(a f 、)(b f 比较,其中最大的一个是最大值,最小的一个是最小值,得出函数)(x f 在[]b a ,上的最值.●活动二 初步运用 求函数的最值例 1 已知函数4431)(3+-=x x x f ,⑴求曲线)(x f y =在点)4,0(处的切线方程;⑵若]3,3[-∈x ,求函数)(x f 的最大值与最小值.【知识点:导数的几何意义、函数的最值;数学思想:数形结合】详解:⑴4)(2-='x x f ,所以曲线)(x f y =在点)4,0(处的切线的斜率4)0(-='=f k ,故曲线)(x f y =在点)4,0(处的切线方程为44+-=x y .⑵令0)(='x f 得2=x 或2-,列表如下:3)2()(=-=f x f 极大值,3)2()(-==f x f 极小值,又7)3(=-f ,1)3(=f ,∴)(x f 在]3,3[-的最大值是328,最小值是34-.点拨:⑴求函数最值时,若函数)(x f 的定义域是闭区间,则需比较极值点处函数值与端点函数值的大小才能确定函数的最值.⑵若)(x f 的定义域是开区间且只有一个极值点,则该极值点就是最值点. ⑶若)(x f 为单调函数,则端点就是最值点. ●活动三 对比提升 由函数的最值求参数例2 已知函数()ln f x ax x =-,当(]0,e x ∈(e 为自然常数),函数()f x 的最小值为3,求实数a 的值.【知识点:根据函数最值求参数值;数学思想:分类讨论】详解:由()ln f x ax x =-得()1f x a x '=-,因为(]0,e x ∈,所以当1ea ≤时,()f x 在(]0,e x ∈是减函数,最小值为()e e 10f a =-≤,不满足题意;当1a e >时, ()f x 在10,a ⎛⎤ ⎥⎝⎦是减函数,1,e a ⎛⎤⎥⎝⎦是增函数,所以最小值为211ln 3e f a a a ⎛⎫=+=⇒= ⎪⎝⎭,∴实数a 的值为2e .问题探究三 利用最值解不等式恒成立问题函数恒成立问题是高中数学里非常具有探讨价值的问题,下列是一些常见结论:(1)不等式0)(≥x f 在定义域内恒成立⇔0)(min ≥x f ; (2)不等式0)(≤x f 在定义域内恒成立⇔0)(max ≤x f ;(3)不等式)()(x g x f >,),(b a x ∈恒成立⇔0)()()(>-=x g x f x F ,),(b a x ∈恒成立. ●活动一 初步运用例 3 已知函数x x x f ln )(=.⑴ 求()f x 的最小值;⑵若对所有1≥x 都有1)(-≥ax x f ,求实数a 的取值范围.【知识点:求函数的最小值、不等式恒成立;数学思想:转化与化归】详解:⑴)(x f 的定义域为),0(+∞,x x f ln 1)(+=',令0)(>'x f ,解得ex 1>;令0)(<'x f ,解得e x 10<<,从而)(x f 在)1,0(e 上单调递减,在),1(+∞e 上单调递增,∴当e x 1=时,)(x f 取得最小值e1-.⑵依题意,得1)(-≥ax x f 在),1[+∞上恒成立,即不等式xx a 1ln +≤对于),1[+∞∈x 恒成立.令x x x g 1ln )(+=,则)11(111)(2xx x x x g -=-=',当1>x 时,0)(>'x g ,故)(x g 在),1(+∞上是增函数,∴1)1()(min ==g x g ,∴实数a 的取值范围是]1,(-∞. ●活动二 对比提升例4 已知函数()()()()21ln ,22f x a x x g x f x ax a R ⎛⎫=-+=-∈ ⎪⎝⎭.(1)当0a =时,求()f x 在区间1,e e ⎡⎤⎢⎥⎣⎦上的最大值和最小值;(2)若对()()1,,0x g x ∀∈+∞<恒成立,求a 的取值范围.【知识点:求函数最值、不等式恒成立;数学思想:转化与化归、分类讨论】详解:(1)函数21()()ln 2f x a x x =-+的定义域为(0,)+∞,当0=a 时,21()ln 2f x x x =-+,211(1)(1)()x x x f x x x x x -+-+-'=-+==;当11<<x e时,有()0f x '>;当e x <<1时,有()0f x '<,∴()f x 在区间[1e ,1]上是增函数,在[1,e]上为减函数,又211()12f e e=--,2()12e f e =-,1(1),2f =- ∴2min ()()12e f x f e ==-,max 1()(1)2f x f ==-.(2)21()()2()2ln 2g x f x ax a x ax x =-=--+,则()g x 的定义域为(0,)+∞.21(21)21(1)[(21)1]()(21)2a x ax x a x g x a x a x x x --+---'=--+==. ①若12a >,令()0g x '=,得极值点11x =,2121x a =-,当211x x >=,即112a <<时,在)1,0(上有0)(>'x g ,在),1(2x 上有0)(<'x g ,在),(2+∞x 上有0)(>'x g ,此时)(x g 在区间),(2+∞x 上是增函数,并且在该区间上有),),(()(2+∞∈x g x g 不合题意;当112=≤x x ,即1≥a 时,同理可知,)(x g 在区间),1(+∞上,有()((1),),g x g ∈+∞也不合题意;②若12a ≤,则有012≤-a ,此时在区间),1(+∞上恒有0)(<'x g ,从而)(x g 在区间),1(+∞上是减函数;要使()0g x <在此区间上恒成立,只须满足1(1)02g a =--≤12a ⇒≥-,由此求得a 的范围是11[,]22-.综合①②可知,当11[,]22a ∈-时,对x ∀∈(1,)+∞,()0g x <恒成立.点拨:恒成立问题总是要化为求函数的最值问题来解决,常用分类讨论(求最值)法或分离参数法.在不等式或方程中,参数只出现一次,或在几个项中出现的参数只是一次的形式,可以对不等式或方程进行变形,把参数分离到一边去,而另一边则是x 的表达式. 3.课堂总结 【知识梳理】 数学知识:⑴最值的存在性定理. ⑵最值的求解步骤.一般地,求函数)(x f 在[]b a ,上的最大值与最小值的步骤如下: ①求)(x f 在(,)a b 内的极值;②将)(x f 的各极值与端点处的函数值)(a f 、)(b f 比较,其中最大的一个是最大值,最小的一个是最小值,得出函数)(x f 在[]b a ,上的最值. ⑶恒成立问题. 常见结论:(1)不等式0)(≥x f 在定义域内恒成立⇔0)(min ≥x f ; (2)不等式0)(≤x f 在定义域内恒成立⇔0)(max ≤x f ;(3)不等式)()(x g x f >,),(b a x ∈恒成立⇔0)()()(>-=x g x f x F ,),(b a x ∈恒成立. 数学思想:分类讨论、化归与转化等思想. 【重难点突破】 求函数最值的注意点(1)我们讨论的函数是在闭区间[]b a ,上图像连续不断,在开区间),(b a 上可导的函数.在闭区间[]b a ,上图像连续不断,保证函数有最大值和最小值;在开区间),(b a 上可导,才能用导数求解.(2)求函数的最大值和最小值需要先确定函数的极大值和极小值.因此,函数的极大值和极小值的判定是关键.(3)如果仅仅是求最值,可以将上面的方法简化,因为函数)(x f 在),(b a 内的全部极值,只能在)(x f 的导数为零的点或导数不存在的点处取得(以下称这两种点为可疑点),所以只要将这些可疑点求出来,然后将函数)(x f 在可疑点处的函数值与区间端点处的函数值进行比较,就能得到函数的最大值和最小值.(4)当图像连续不断的函数)(x f 在),(b a 内只有一个可疑点时,若在这一点处函数)(x f 有极大(小)值,则可以判定函数)(x f 在该点处取到最大(小)值,这里),(b a 也可以是无穷区间. (5)当图像连续不断的函数)(x f 在[]b a ,上单调时,其最大值和最小值分别在两个端点处取得. 4.随堂检测1.函数)(x f y =在],[b a 上( )A .极大值一定比极小值大B .极大值一定是最大值C .最大值一定是极大值D .最大值一定大于极小值 【知识点:极值与最值的关系】 解:D2.函数x x x f cos 2)(-=在),(+∞-∞上( )A .无最值B .有极值C .有最大值D .有最小值【知识点:单调函数的最值】 解:A3.函数343)(x x x f -=在]1,0[上的最大值是( )A .1B .21C .0D .1- 【知识点:函数的最大值】解:A4.函数x x y -=sin 在区间]2,0[π上的最小值为( ) A .π- B .21π-C .0D .π2- 【知识点:函数的最小值】 解:D5.设5221)(23+--=x x x x f ,当]2,1[-∈x 时,m x f <)(恒成立,则实数m 的取值范围为 .【知识点:不等式恒成立问题】 解:),7(+∞ (三)课后作业 基础型 自主突破1.函数f (x )=x 3-3ax -a 在(0,1)内有最小值,则a 的取值范围是( )A .[0,1)B .(0,1)C .(-1,1)D .1(0,)2【知识点:函数最值与极值的关系;数学思想:转化与化归】解:B ∵f '(x )=3x 2-3a ,令f '(x )=0,可得a =x 2,又∵x ∈(0,1),∴0<a <1,故选B . 2.函数ln xy x=的最大值为( ) A .1-e B .e C .e 2 D .103【知识点:函数最大值】 解:A 令22(ln )'ln '1ln 'x x x x xy x x ⋅-⋅-===0(x >0).解得x =e .当x >e 时,y ′<0;当0<x <e时,y ′>0.y 极大值=f (e)=1e ,在定义域内只有一个极值,所以y max =1e.3.函数241xy x =+在定义域内( )A .有最大值2,无最小值B .无最大值,有最小值-2C .有最大值2,最小值-2D .无最值 【知识点:函数的最值;数学思想:数形结合】解:C 令2222224(1)4244'(1)(1)x x x x y x x +-⋅-+==++=0,得x =±1.2. 4.已知函数f (x )=e x -2x +a 有零点,则a 的取值范围是________. 【知识点:函数最值与零点关系;数学思想:转化与化归】 解:(-∞,2ln2-2]函数f (x )=e x -2x +a 有零点,即方程e x -2x +a =0有实根,即函数g (x )=2x -e x ,y =a 有交点,而g '(x )=2-e x ,易知函数g (x )=2x -e x 在(-∞,ln 2)上递增,在(ln2,+∞)上递减,因而g (x )=2x -e x 的值域为(-∞,2ln2-2],所以要使函数g (x )=2x -e x ,y =a 有交点,只需a ≤2ln 2-2即可.5.函数y =x +2cos x 在区间[0,]2π上的最大值是________.【知识点:函数最大值】解:6π+y ′=1-2sin x =0,x =6π,比较0,6π,2π处的函数值,得y max =6π+6.已知函数f (x )=2x 3-6x 2+a 在[-2,2]上有最小值-37,求a 的值及f (x )在[-2,2]上的最大值.【知识点:函数的最值;数学思想:数形结合】 解:a =3;f (x )的最大值为3.f '(x )=6x 2-12x =6x (x -2),令f '(x )=0,得x =0或x =2,当x 变化时,f '(x ),f (x )的变化情况如下表:∴当x =-2时,f (x )min =-40+a =-37,得a =3. ∴当x =0时,f (x )的最大值为3. 能力型 师生共研7. 若函数3()3f x x x =-在区间2(,6)a a -上有最小值,则实数a 的取值范围是( ) A.( B.[ C .[2,1)- D.(2]- 【知识点:函数的最值;数学思想:数形结合】解:C 由于函数()f x 在开区间2(,6)a a -有最小值,则函数()f x 的极小值点在2(,6)a a -内,且在2(,6)a a -内的单调性是先减再增. 2'()333(1)(1)f x x x x =-=+-,当11x -<<时,'()0f x <,当1x >,'()0f x >,所以()f x 得最小值为(1)f . ∴只需{216()(1)a a f a f <<-≥,得到21a -≤<,故选C.8. 设01a <≤,函数2(),()ln a f x x g x x x x =+=-,若对任意的[]12,1,x x e ∈,都有12()()f xg x ≥成立,则实数a 的取值范围是 .【知识点:不等式恒成立、函数的最值;数学思想:转化与化归】解:]1,2[-e 22222()1a x a f x x x-'=-=,当01a <≤,且[]1,x e ∈时,()0f x '≥,∴()f x 在[]1,e 上是增函数,21min ()(1)1f x f a ==+,又1()1(0)g x x x'=->,∴()g x 在[]1,e 上是增函数,2max ()()1g x g e e ==-.由条件知只需1min 2max ()()f x g x ≥.即211a e +≥-.∴22a e ≥-.即1a ≤≤.9. 已知a 是实数,函数f (x )=x 2(x -a ),求f (x )在区间[-1,0]上的最大值. 【知识点:函数的最大值;数学思想:分类讨论】解:3max31,243(),02720,0.a a f x a a a ⎧---⎪⎪⎪=--⎨⎪⎪⎪⎩≤,<<,≥解析:令f '(x )=0,解得x 1=0,x 2=23a ,①当2323a ≥0,即a ≥0时,f (x )在[-1,0]上单调递增,从而f (x )max =f (0)=0;②当23a ≤-1,即a ≤-32时,f (x )在[-1,0]上单调递减,从而f (x )max =f (-1)=-1-a ; ③当-1<23a <0,即-32<a <0时,f (x )在2[1,]3a -上单调递增;在2[,0]3a 上单调递减,则f (x )max =324()327f a a =-.综上所述:3max31,243(),02720,0.a a f x a a a ⎧---⎪⎪⎪=--⎨⎪⎪⎪⎩≤,<<,≥10. 设函数12)(22-++=t x t tx x f (x ∈R ,t >0). (1)求f (x )的最小值h (t );(2)若h (t )<-2t +m 对t ∈(0,2)恒成立,求实数m 的取值范围.【知识点:不等式恒成立、函数的最值;数学思想:转化与化归、数形结合】 解:(1) h (t ) =-3t +t -1;(2) (1,+∞) .解析:(1)∵f (x )=t (x +t )2-3t +t -1(x ∈R ,t >0),∴当x =-t 时,f (x )取最小值f (-t )=-t 3+t -1,即h (t )=-3t +t -1.(2)令g (t )=h (t )-(-2t +m )=-3t +3t -1-m ,由g '(t )=-3t 2+3=0得t =1,t =-1(不合题意,舍去).当t 变化时g '(t )、g (t )的变化情况如下表:∴对t ∈(0,2),当t =1时,g (t )max 恒成立,也就是g (t )<0,对t ∈(0,2)恒成立,只需g (t )max =1-m <0,∴m >1. 故实数m 的取值范围是(1,+∞) . 探究型 多维突破 11. 已知函数()()2ln 2=-∈a f x x x x a R . (Ⅰ)若不等式()0>f x 有解,求实数a 的取值范围; (Ⅱ)研究函数的极值点个数情况.【知识点:不等式有解与函数的最值的关系、函数的极值;数学思想:转化与化归、分类讨论】 解:(Ⅰ)2<a e;(Ⅱ)()1,∈+∞a 时,有0个极值点;1a =时,有0个极值点;()0,1a ∈时,有两个极值点;(],0∈-∞a 时,有一个极值点解析:(Ⅰ)()0>f x 有解等价于2ln <x a x 有解,即max 2ln ⎛⎫⎛⎫< ⎪⎪⎝⎭⎝⎭x a x ,设()2ln =xg x x ,则()()22ln 1'-=x g x x ,当()0,∈x e 时,()'0>g x ;当(),∈+∞x e 时,()'0<g x ,所以当x e =时,()max 2=g x e ,即2<a e. (2)令()'0=f x 得到ln 10x ax +-=,得到ln 1x a x +=,()()2ln 1ln ,'+-==x xh x h x x x,当()0,1x ∈时,()'0>h x ;当()1,∈+∞x 时,()'0<h x ,又()()0,,,0→→-∞→+∞→x h x x h x ,所以()1,∈+∞a 时,ln 1+=x a x无解,有0个极值点; 1a =时,ln 1+=x a x有一解,但不是极值点;()0,1∈a 时,ln 1+=x a x 有二解,有两个极值点;(],0∈-∞a 时,ln 1+=x a x有一解,有一个极值点.12. 已知函数()ln 2x m f x e x -=-. (1)若1m =,求函数()f x 的极小值; (2)设2m ≤,证明:()ln 20f x +>.【知识点:函数的极值、不等式的证明、函数的最值;数学思想:转化与化归】 解:(1)()11ln 2f =-;(2)证明见解析.解析:(1)()11ln 2ln 2ln x x f x e x e x e -=-=⋅--,所以()1111x x f x e e e x x-'=⋅-=-,观察得()111101f e e '=⋅-=,而()1111x x f x e e e x x-'=⋅-=-在(0,)+∞上单调递增,所以当(0,1)x ∈时()0f x '<,当()1+∞,时()0f x '>;所以()f x 在()0,1单调递减,()f x 在()1+∞,单调递增,故()f x 有极小值()11ln 2f =-.证明:(2)因为2m ≤,所以()2ln 2ln 2x m x f x e x e x --=-≥-, 令221()ln 2ln 2ln x x g x e x e x e -=-=⋅--,则21()x g x e x-'=-,易知()g x '在(0,)+∞单调递增,1(1)10g e '=-<,1(2)102g '=->,所以设02001()0x g x e x -'=-=,则0(1,2)x ∈;当0(0,)x x ∈时,()0g x '<,当0(,)x x ∈+∞时,()0g x '>;所以()g x 在()00,x 上单调递减,()0,x +∞上单调递增, 所以02min 00()()ln 2x g x g x e x -==-,又因为02001()0x g x e x -'=-=,故0201x e x -=,所以02000001ln ln2ln 2ln x e x x x x x -=⇒-=-⇒-=,所以0022min 000()()ln 2ln 2ln x x g x g x e x e x --==-=--001ln 22x x =--+ 0012ln 2ln 2x x =+--≥-当且仅当001x x =,即01x =时等号成立,而0(1,2)x ∈,所以min ()ln 2g x >-,即()ln 2g x >-,所以()ln 2f x >-,即()ln 20f x +>. (四)自助餐1. 函数()ln f x x x =-在区间(0,e](e 为自然对数的底)上的最大值为( ) A.1- B.0 C.1 D.1e - 【知识点:函数的最大值】解:A ()()''1110x f x f x x x-=-=∴>得1x <,所以增区间为()0,1,减区间为()1,+∞,所以函数最大值为()11f =-. 2.函数f (x )=x 3-3x (|x |<1)( ) A .有最大值,但无最小值 B .有最大值,也有最小值 C .无最大值,但有最小值 D .既无最大值,也无最小值【知识点:函数的最值】解:D )(x f '=3x 2-3=3(x +1)(x -1),当x ∈(-1,1)时,)(x f '<0,所以f (x )在(-1,1)上是单调递减函数,无最大值和最小值,故选D . 3.函数y =x -sin x ,x ∈⎣⎢⎡⎦⎥⎤π2,π的最大值是( )A .π-1B .π2-1 C .π D .π+1 【知识点:函数的最大值】解:C 因为y ′=1-cos x ,当x ∈⎣⎢⎡⎦⎥⎤π2,π时,y ′>0,则函数在区间⎣⎢⎡⎦⎥⎤π2,π上为增函数,所以y 的最大值为y max =π-sin π=π,故选C .4.已知函数4)(23-+-=ax x x f 在2=x 处取得极值,若]1,1[,-∈n m ,则)()(n f m f '+的最小值是( )A .13-B .15-C .10D .15 【知识点:函数的极值、最小值】解:A 求导得ax x x f 23)(2+-=',由函数)(x f 在2=x 处取得极值知0)2(='f ,即02243=⨯+⨯-a ,∴3=a .由此可得43)(23-+-=x x x f ,x x x f 63)(2+-=',已知)(x f 在)0,1(-上单调递减,在)1,0(上单调递增,∴当]1,1[-∈m 时,4)0()(min -==f m f .又x x x f 63)(2+-='的图像开口向下,且对称轴为1=x ,∴当]1,1[-∈n 时,9)1()(min -=-'='f n f ,故)()(n f m f '+的最小值是13-.故选A .5. 已知函数)(x f ,)(x g 均为],[b a 上连续且)()(x g x f '<',则)()(x g x f -的最大值为( ) A .)()(a g a f - B .)()(b g b f - C .)()(b g a f - D .)()(a g b f - 【知识点:单调函数的最大值】解:A ='-])()([x g x f 0)()(<'-'x g x f ,∴函数)()(x g x f -在],[b a 上单调递减,∴)()(x g x f -的最大值为)()(a g a f -.6.当]1,2[-∈x 时,不等式03423≥++-x x ax 恒成立,则实数a 的取值范围是( )A .]3,5[--B .]89,6[-- C .]2,6[-- D .]3,4[--【知识点:不等式恒成立;数学思想:转化与化归】解:C 当]1,0(∈x 时,得x x x a 1)1(4)1(323+--≥,令xt 1=,则),1[+∞∈t ,令t t t t g +--=2343)(,),1[+∞∈t ,则)19)(1(189)(2-+-=+--='t t t t t g ,显然在),1[+∞∈t 上,0)(<'t g ,)(t g 单调递减,∴6)1()(max -==g t g ,因此6-≥a ;同理,当)0,2[-∈x 时,的2-≤a ,当0=x 时对任意实数a 不等式也成立,故实数a 的取值范围是26-≤≤-a . 7.在平面直角坐标系xOy 中,若曲线xax y +=22(a 为常数)过点1(-P ,)30-,则函数xax y +=22在区间]4,1[的最大值与最小值的和为________. 【知识点:函数的最值】解:64 曲线过点1(-P ,)30-,∴a -=-230,∴32=a ,∴xx y 3222+=,232324324xx x x y -=-=',令0='y 得2=x ,当1=x 时,34322=+=y ;当2=x 时,24168=+=y ;当4=x 时,40832=+=y ,∴最大值与最小值的和为64.8.函数x x x f cos sin )(+=在]2,2[ππ-∈x 时的最大、最小值分别是 . 【知识点:函数的最值】解:2,1-. 0sin cos )(=-='x x x f ,即1tan =x ,)(4Z k k x ∈+=ππ.而]2,2[ππ-∈x ,当2π-<x <4π时,0)(>'x f ,当4π<x <2π时,)(x f ',∴)4(πf 是极小值.又)4(πf=,1)2(-=-πf ,∴1)2(=πf .∴函数的最大值为2,最小值为1-.9.函数x exy =在[0,2]上的最大值为 .【知识点:函数的最值】解:e 1. 函数x f y ==)(函数)(x f 单调递增;当x ∈(1,2]时,)(x f '<0,此时函数)(x f 单调递减.∴当x =1时,函数)(x f 取得最大值,f )1(=10.已知函数f (x )=x 3-ax 2+a ,b ,c ∈R ).(1)若函数f (x )在x =-1和x =3处取得极值,试求a ,b 的值; (2)在(1)的条件下,当x ∈[-2,6]时,f (x )<2|c |恒成立,求c 的取值范围. 【知识点:函数的极值、不等式恒成立;数学思想:转化与化归】解:(1)39a b =⎧⎨=-⎩;(2)(-∞,-18)∪(54,+∞).解析:(1)f '(x )=3x 2-2ax +b ,∵函数f (x )在x =-1和x =3处取得极值,∴-1,3是方程3x 2-2ax +b =0的两根.∴2133133a b⎧-+=⎪⎪⎨⎪-⨯=⎪⎩,∴39a b =⎧⎨=-⎩.(2)由(1)知f (x )=x 3-3x 2-9x +c ,f '(x )=3x 2-6x -9.当x 变化时,f '(x ),f (x )随x 的变化如下表:而f (-2)=c -2,f (6)=c +54,∴当x ∈[-2,6]时,f (x )的最大值为c +54,要使f (x )<2|c |恒成立,只要c +54<2|c |即可,当c ≥0时,c +54<2c ,∴c >54;当c <0时,c +54<-2c ,∴c <-18. ∴c ∈(-∞,-18)∪(54,+∞),此即为参数c 的取值范围.11.已知函数)(ln )(R a x ax x f ∈+=,(1)若2=a ,求曲线)(x f y =在1=x 处切线的斜率;(2)求)(x f 的单调区间;(3)设22)(2+-=x x x g ,若对任意∈1x (0,+∞),均存在∈2x [0,1],使得)()(21x g x f <,求a 的取值范围.【知识点:导数的几何意义、函数的单调性、不等式有解与最值的关系;数学思想:转化与化归、分类讨论】解:(1) 3;(2)当0≥a 时,)(x f 的单调递增区间为(0,+∞);当0<a 时,函数)(x f 的单调递为3;的单调递增区间为(0,+∞);(3)由题意知,转化为max max )()(x g x f < (其中∈1x (0,+∞),∈2x [0,1]),由(2)知,当0≥a 时,12.已知函数()xf x e=(e 是自然对数的底数),()1ln h x x x x =--. (1)求曲线()y f x =在点(1,(1))f 处的切线方程;(2)求()h x 的最大值;(3)设()'()g x xf x =,其中'()f x 为()f x 的导函数.证明:对任意0x >,2()1g x e -<+. 【知识点:导数的几何意义、函数的最值、不等式证明;数学思想:转化与化归】解:(1)1y e=;(2)()h x 的最大值为22()1h e e --=+;(3)证明见解析.解析:(1)由ln 1()x x f x e +=,得1(1)f e =,1ln '()xx x xf x xe --=,所以'(1)0k f ==,所以曲线()y f x =在点(1,(1))f 处的切线方程为1y e=.(2)()1ln h x x x x =--,(0,)x ∈+∞.所以'()ln 2h x x =--.令'()0h x =得,2x e -=.因此当2(0,)x e -∈时,'()0h x >,()h x 单调递增;当2(,)x e -∈+∞时,'()0h x <,()h x 单调递减.所以()h x 在2x e -=处取得极大值,也是最大值.()h x 的最大值为22()1h e e --=+. (3)证明:因为()'()g x xf x =,所以1ln ()xx x xg x e--=,0x >,2()1g x e -<+等价于21ln (1)x x x x e e ---<+.由(2)知()h x 的最大值为22()1h e e --=+,故21ln 1.x x x e ---≤+只需证明0x >时,1x e >成立,这显然成立.所以221ln 1(1)x x x x e e e ----≤+<+,因此对任意0x >,2()1g x e -<+.。
导数与函数的极值、最值

导数与函数的极值、最值1.函数的极值函数y =f (x )在点x =a 的函数值f (a )比它在点x =a 附近其他点的函数值都小,f ′(a )=0;而且在点x =a 附近的左侧f ′(x )<0,右侧f ′(x )>0,则点a 叫做函数y =f (x )的极小值点,f (a )叫做函数y =f (x )的极小值.函数y =f (x )在点x =b 的函数值f (b )比它在点x =b 附近其他点的函数值都大,f ′(b )=0;而且在点x =b 附近的左侧f ′(x )>0,右侧f ′(x )<0,则点b 叫做函数y =f (x )的极大值点,f (b )叫做函数y =f (x )的极大值.极大值点、极小值点统称为极值点,极大值、极小值统称为极值.[提醒] (1)函数的极值点一定出现在区间的内部,区间的端点不能称为极值点; (2)在函数的整个定义域内,极值不一定是唯一的,有可能有多个极大值或极小值; (3)极大值与极小值之间无确定的大小关系. 2.函数的最值(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值. 3.极值与最值的区别与联系 (1)区别①当连续函数在开区间内的极值点只有一个时,相应的极值点必为函数的最值点; ②极值有可能是最值,但最值只要不在区间端点处取得,其必定是极值.判断正误(正确的打“√”,错误的打“×”) (1)函数在某区间上或定义域内的极大值是唯一的.( )(2)导数为零的点不一定是极值点.( ) (3)函数的极大值不一定比极小值大.( )(4)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.( ) 答案:(1)× (2)√ (3)√ (4)√(教材习题改编)函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内有极小值点( )A .1个B .2个C .3个D .4个解析:选A .导函数f ′(x )的图象与x 轴的交点中,左侧图象在x 轴下方,右侧图象在x 轴上方的只有一个.所以f (x )在区间(a ,b )内有一个极小值点.函数y =ln x -x 在x ∈(0,e]上的最大值为( ) A .e B .1 C .-1D .-e解析:选C .函数y =ln x -x 的定义域为(0,+∞), 又y ′=1x -1=1-x x ,令y ′=0得x =1,当x ∈(0,1)时,y ′>0,函数单调递增; 当x ∈(1,e)时,y ′<0,函数单调递减. 当x =1时,函数取得最大值-1.已知a 为函数f (x )=x 3-12x 的极小值点,则a =________.解析:由题意得f ′(x )=3x 2-12,由f ′(x )=0得x =±2,当x ∈(-∞,-2)时,f ′(x )>0,函数f (x )单调递增,当x ∈(-2,2)时,f ′(x )<0,函数f (x )单调递减,当x ∈(2,+∞)时,f ′(x )>0,函数f (x )单调递增,所以a =2. 答案:2(教材习题改编)函数y =x +2cos x 在区间⎣⎡⎦⎤0,π2上的最大值是________.解析:y ′=1-2sin x ,令y ′=0, 又因为x ∈⎣⎡⎦⎤0,π2,解得x =π6, 则当x ∈⎣⎡⎫0,π6时,y ′>0;当x ∈⎝⎛⎤π6,π2时,y ′<0,故函数y =x +2cos x 在x =π6时取得最大值π6+ 3. 答案:π6+ 3函数的极值问题(高频考点)函数的极值是每年高考的热点,一般为中高档题,三种题型都有.高考对函数极值的考查主要有以下三个命题角度: (1)由图判断函数极值的情况; (2)已知函数解析式求极值; (3)已知函数极值求参数值或范围.[典例引领]角度一 由图判断函数极值的情况(优质试题·高考浙江卷)函数y =f (x )的导函数y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是( )【解析】 原函数先减再增,再减再增,且x =0位于增区间内,故选D . 【答案】 D角度二 已知函数解析式求极值(优质试题·湖南省五市十校联考)已知函数f (x )=ln x -12ax 2+x ,a ∈R .(1)当a =0时,求曲线y =f (x )在(1,f (1))处的切线方程; (2)令g (x )=f (x )-(ax -1),求函数g (x )的极值.【解】 (1)当a =0时,f (x )=ln x +x ,则f (1)=1,所以切点为(1,1),又f ′(x )=1x +1,所以切线斜率k =f ′(1)=2,故切线方程为y -1=2(x -1),即2x -y -1=0. (2)g (x )=f (x )-(ax -1)=ln x -12ax 2+(1-a )x +1,则g ′(x )=1x -ax +(1-a )=-ax 2+(1-a )x +1x ,当a ≤0时,因为x >0,所以g ′(x )>0.所以g (x )在(0,+∞)上是增函数,函数g (x )无极值点. 当a >0时,g ′(x )=-ax 2+(1-a )x +1x=-a (x -1a)(x +1)x ,令g ′(x )=0得x =1a.所以当x ∈(0,1a )时,g ′(x )>0;当x ∈(1a ,+∞)时,g ′(x )<0.因为g (x )在(0,1a )上是增函数,在(1a,+∞)上是减函数.所以x =1a 时,g (x )有极大值g (1a )=ln 1a -a 2×1a 2+(1-a )·1a +1=12a -ln a .综上,当a ≤0时,函数g (x )无极值;当a >0时,函数g (x )有极大值12a -ln a ,无极小值.角度三 已知函数极值求参数值或范围(优质试题·高考山东卷)设f (x )=x ln x -ax 2+(2a -1)x ,a ∈R .(1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值.求实数a 的取值范围. 【解】 (1)由f ′(x )=ln x -2ax +2a , 可得g (x )=ln x -2ax +2a ,x ∈(0,+∞). 则g ′(x )=1x -2a =1-2ax x .当a ≤0时,x ∈(0,+∞)时,g ′(x )>0,函数g (x )单调递增; 当a >0时,x ∈⎝⎛⎭⎫0,12a 时,g ′(x )>0,函数g (x )单调递增, x ∈⎝⎛⎭⎫12a ,+∞时,函数g (x )单调递减. 所以当a ≤0时,g (x )的单调增区间为(0,+∞);当a >0时,g (x )的单调增区间为⎝⎛⎭⎫0,12a ,单调减区间为⎝⎛⎭⎫12a ,+∞. (2)由(1)知,f ′(1)=0.①当a ≤0时,f ′(x )单调递增,所以当x ∈(0,1)时,f ′(x )<0,f (x )单调递减; 当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增. 所以f (x )在x =1处取得极小值,不合题意.②当0<a <12时,12a >1,由(1)知f ′(x )在⎝⎛⎭⎫0,12a 内单调递增, 可得当x ∈(0,1)时,f ′(x )<0,x ∈⎝⎛⎭⎫1,12a 时,f ′(x )>0. 所以f (x )在(0,1)内单调递减,在⎝⎛⎭⎫1,12a 内单调递增, 所以f (x )在x =1处取得极小值,不合题意.③当a =12时,12a =1,f ′(x )在(0,1)内单调递增,在(1,+∞)内单调递减,所以当x ∈(0,+∞)时,f ′(x )≤0,f (x )单调递减,不合题意. ④当a >12时,0<12a <1,当x ∈⎝⎛⎭⎫12a ,1时,f ′(x )>0,f (x )单调递增, 当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减, 所以f (x )在x =1处取得极大值,符合题意. 综上可知,实数a 的取值范围为a >12.(1)利用导数研究函数极值问题的一般流程(2)已知函数极值点或极值求参数的两个要领①列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解. ②验证:因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性.[提醒] 若函数y =f (x )在区间(a ,b )内有极值,那么y =f (x )在(a ,b )内绝不是单调函数,即在某区间上单调函数没有极值.[通关练习]1.(优质试题·高考全国卷Ⅱ)若x =-2是函数f (x )=(x 2+ax -1)e x -1的极值点,则f (x )的极小值为( ) A .-1 B .-2e -3C .5e -3D .1解析:选A.因为f (x )=(x 2+ax -1)e x -1,所以f ′(x )=(2x +a )e x -1+(x 2+ax -1)e x -1=[x 2+(a +2)x +a -1]e x -1.因为x =-2是函数f (x )=(x 2+ax -1)e x -1的极值点,所以-2是x 2+(a +2)x +a -1=0的根,所以a =-1,f ′(x )=(x 2+x -2)e x -1=(x +2)(x -1)e x -1.令f ′(x )>0,解得x <-2或x >1,令f ′(x )<0,解得-2<x <1,所以f (x )在(-∞,-2)上单调递增,在(-2,1)上单调递减,在(1,+∞)上单调递增,所以当x =1时,f (x )取得极小值,且f (x )极小值=f (1)=-1,选择A.2.已知函数f (x )=ln x -ax (a ∈R ). (1)当a =12时,求f (x )的极值;(2)讨论函数f (x )在定义域内极值点的个数.解:(1)当a =12时,f (x )=ln x -12x ,函数的定义域为(0,+∞)且f ′(x )=1x -12=2-x2x,令f ′(x )=0,得x =2,于是当x 变化时,f ′(x ),f (x )的变化情况如表.故f (x )在定义域上的极大值为f (x )极大值=f (2)=ln 2-1,无极小值. (2)由(1)知,函数的定义域为(0,+∞), f ′(x )=1x -a =1-ax x(x >0),当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,即函数在(0,+∞)上单调递增,此时函数在定义域上无极值点; 当a >0时,当x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0, 当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )<0, 故函数在x =1a处有极大值.综上所述,当a ≤0时,函数在定义域上无极值点,当a >0时,函数在x =1a 处有一个极大值点.函数的最值问题[典例引领](优质试题·高考浙江卷)已知函数f (x )=(x -2x -1)e -x (x ≥12).(1)求f (x )的导函数;(2)求f (x )在区间⎣⎡⎭⎫12,+∞上的取值范围. 【解】 (1)因为(x -2x -1)′=1-12x -1,(e -x )′=-e -x ,所以f ′(x )=⎝ ⎛⎭⎪⎫1-12x -1e-x(2)由f ′(x )=(1-x )(2x -1-2)e -x2x -1=0,解得x =1或x =52.当x 变化时,f ′(x ),f (x )的变化情况如下表:求函数f (x )在[a ,b ]上最值的方法(1)若函数在区间[a ,b ]上单调递增或递减,f (a )与f (b )一个为最大值,一个为最小值; (2)若函数在闭区间[a ,b ]内有极值,要先求出[a ,b ]上的极值,与f (a ),f (b )比较,最大的是最大值,最小的是最小值,可列表完成;(3)函数f (x )在区间(a ,b )上有唯一一个极值点,这个极值点就是最大(或最小)值点,此结论在导数的实际应用中经常用到.[通关练习]1.函数f (x )=x 22x +1在⎣⎡⎦⎤-13,1上的最小值与最大值的和为( ) A.13 B.23 C .1D .0解析:选A.f ′(x )=2x (2x +1)-2x 2(2x +1)2=2x (x +1)(2x +1)2,x ∈⎣⎡⎦⎤-13,1,当f ′(x )=0时,x =0; 当f ′(x )<0时,-13≤x <0;当f ′(x )>0时,0<x ≤1.所以f (x )在⎣⎡⎭⎫-13,0上是减函数,在(0,1]上是增函数. 所以f (x )min =f (0)=0. 又f ⎝⎛⎭⎫-13=13,f (1)=13. 所以f (x )的最大值与最小值的和为13.2.(优质试题·贵阳市检测)已知函数f (x )=x -1x -ln x .(1)求f (x )的单调区间;(2)求函数f (x )在[1e ,e]上的最大值和最小值(其中e 是自然对数的底数).解:(1)f (x )=x -1x -ln x =1-1x-ln x ,f (x )的定义域为(0,+∞).因为f ′(x )=1x 2-1x =1-x x 2,所以f ′(x )>0⇒0<x <1,f ′(x )<0⇒x >1,所以f (x )=1-1x -ln x 在(0,1)上单调递增,在(1,+∞)上单调递减.(2)由(1)得f (x )在[1e ,1]上单调递增,在[1,e]上单调递减,所以f (x )在[1e ,e]上的最大值为f (1)=1-11-ln 1=0.又f (1e )=1-e -ln 1e =2-e ,f (e)=1-1e -ln e =-1e ,且f (1e )<f (e).所以f (x )在[1e ,e]上的最小值为f (1e )=2-e.所以f (x )在[1e,e]上的最大值为0,最小值为2-e.函数极值与最值的综合应用[典例引领](优质试题·福州市综合质量检测)已知函数f (x )=a ln x +x 2-ax (a ∈R ). (1)若x =3是f (x )的极值点,求f (x )的单调区间;(2)求g (x )=f (x )-2x 在区间[1,e]上的最小值h (a ). 【解】 (1)f (x )的定义域为(0,+∞), f ′(x )=ax +2x -a =2x 2-ax +a x ,因为x =3是f (x )的极值点,所以f ′(3)=18-3a +a 3=0,解得a =9,所以f ′(x )=2x 2-9x +9x =(2x -3)(x -3)x,所以当0<x <32或x >3时,f ′(x )>0;当32<x <3时,f ′(x )<0.所以x =3是f (x )的极小值点,所以f (x )的单调递增区间为(0,32),(3,+∞),单调递减区间为(32,3).(2)g ′(x )=2x 2-ax +a x -2=(2x -a )(x -1)x.①当a2≤1,即a ≤2时,g (x )在[1,e]上为增函数,h (a )=g (1)=-a -1;②当1<a 2<e ,即2<a <2e 时,g (x )在[1,a 2)上为减函数,在(a 2,e]上为增函数,h (a )=g (a2)=a ln a 2-14a 2-a ;③当a2≥e ,即a ≥2e 时,g (x )在[1,e]上为减函数,h (a )=g (e)=(1-e)a +e 2-2e.综上,h (a )=⎩⎪⎨⎪⎧-a -1,a ≤2a ln a 2-14a 2-a ,2<a <2e.(1-e )a +e 2-2e ,a ≥2e解决函数极值、最值问题的策略(1)求极值、最值时,要求步骤规范,含参数时,要讨论参数的大小.(2)求函数最值时,不可想当然地认为极值点就是最值点,要通过比较才能下结论. (3)函数在给定闭区间上存在极值,一般要将极值与端点值进行比较才能确定最值.。
导数与函数的极值、最值

知识要点
双基巩固
典型例题
易错辨析
提升训练
【解】 (1)因 f(x)=x3-6x2+3x+1, 所以 f′(x)=3x2-12x+3, ∴f′(x)=3(x-2+ 3)(x-2- 3). 当 f′(x)>0 时,x>2- 3,或 x<2+ 3; 当 f′(x)<0 时,2- 3<x<2+ 3. ∴f(x)的单调增区间是(-∞,2- 3),(2+ 3,+∞),单调减 区间是(2- 3,2+ 3).
解析:f′(x)=x2-4=(x-2)(x+2),令f′(x)=0得,x1=-2,x2=2. 当x<-2时,f′(x)>0,-2<x<2时,f′(x)<0,f(x)在x=-2处取 得极大值.
答案:-2
知识要点
双基巩固
典型例题
易错辨析
提升训练
x2+a 5.若函数 f(x)= 在 x=1 处取极值,则 a=________. x+1 解析:∵f(x)在 x=1 处取极值,∴f′(1)=0.
知识要点
双基巩固
典型例题
易错辨析
提升训练
2.函数f(x)的定义域为(a,b),导函数f′(x)在(a,b)内的图象如图 所示,则函数f(x)在开区间(a,b)内极小值点的个数为( )
A.1
B.2
C.3
D.4
解析:极值点在f′(x)的图象上应是f′(x) 的图象与x轴的交点的横坐标,且极小 值点的左侧图象在x轴下方,右侧图象
知识要点
双基巩固
典型例题
易错辨析
提升训练
∵g(x)在 x=0 和 x=2 点处连续, 又∵g(0)=1,g(1)=2-ln 4,g(2)=3-ln 9, 且 2-ln 4<3-ln 9<1, ∴g(x)的最大值是 1, g(x)的最小值是 2-ln 4. 所以在区间[0,2]上原方程恰有两个相异的实根时实数 a 的 取值范围是: 2-ln 4<a≤3-ln 9.
函数的极值与最值知识点

函数的极值与最值知识点函数是数学中非常重要的概念,它描述了变量之间的关系。
在函数中,经常会遇到极值与最值的问题。
本文将介绍与函数的极值与最值相关的知识点。
一、函数的极值函数的极值指的是在函数曲线上存在的最高点或最低点。
根据函数的定义域和值域,可以分为两种极值:最大值和最小值。
1. 定义域与值域在讨论函数的极值之前,首先需要明确函数的定义域和值域。
定义域是指函数的自变量的取值范围,而值域则是函数的因变量的取值范围。
2. 局部极值对于实数域上的函数,如果在某个区间内存在一个点,使得这个点左右两侧的函数值都比它小(或都比它大),那么这个点就是函数在该区间内的局部最小值(或最大值)。
3. 单调性与极值单调性是指函数在定义域内的变化趋势。
如果函数在某个区间内单调递增,那么在这个区间内,函数的最小值一定在区间的起点上;如果函数在某个区间内单调递减,那么在这个区间内,函数的最大值一定在区间的终点上。
二、函数的最值函数的最值指的是函数在定义域内可能取得的最大值或最小值。
1. 最大值与最小值对于连续函数,在有限闭区间上一定存在最大值和最小值。
根据最值的性质,最大值是函数图像上的“最高点”,最小值是函数图像上的“最低点”。
2. 最值的求解方法为了找到函数的最值,可以使用以下方法:(1)导数法:通过求函数的导数,找到导数为零的点,并且通过二阶导数的符号判断这些点是极值点还是驻点。
(2)边界法:当函数定义域为闭区间时,极值可能出现在端点上。
三、综合例题为了更好的理解函数的极值与最值,下面给出一个综合例题:例题:已知函数f(x) = 2x^3 - 3x^2 + 4x - 1,求其在定义域[-2,2]上的最大值和最小值。
解答:首先,将函数f(x)对x求导,得到f'(x) = 6x^2 - 6x + 4。
令f'(x) = 0,解得x = 1/3。
然后,计算f''(1/3) = 4,由于f''(1/3)大于0,所以x = 1/3是函数f(x)的一个局部最小值点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.函数y =2x 3-3x 2-12x +5在[-2,1]上的最大值、最小值分别是( )
A .12;-8
B .1;-8
C .12;-15
D .5;-16
[答案] A
[解析] y ′=6x 2-6x -12,由y ′=0⇒x =-1或x =2(舍去).x =-2时y =1,x =-1时y =12,x =1时y =-8.
∴y max =12,y min =-8.故选A.
2.函数y =2-x 2-x 3的极值情况是( )
A .有极大值,没有极小值
B .有极小值,没有极大值
C .既无极大值也无极小值
D .既有极大值也有极小值
[答案] D
[解析] y ′=-3x 2-2x =-x (3x +2),
当x >0或x <-23时,y ′<0,
当-23<x <0时y ′>0,
∴当x =-23时取极小值,当x =0时取极大值.
3.设函数f (x )=x 3+bx 2+cx +a 在x =±1处均有极值,且f (-1)=-1,则a 、b 、c 的值为( )
A .a =-1,b =0,c =-1
B .a =12,b =0,c =-32
C .a =-3,b =0,c =-3
D .a =3,b =0,c =3
[答案] C
[解析] ∵f ′(x )=3x 2+2bx +c ,∴由题意得,
⎩⎪⎨⎪⎧ f ′(1)=0f ′(-1)=0f (-1)=-1,即⎩⎪⎨⎪⎧ 3+2b +c =03-2b +c =0-1+b -c +a =-1,
解得a =-3,b =0,c =-3.
4.函数y =2x x 2+1
的极大值为____________,极小值为____________.
[答案] 1,-1
[解析] y ′=2(1+x )(1-x )(x 2+1)2
,令y ′>0得-1<x <1, 令y ′<0得x >1或x <-1,∴当x =-1时,取极小值-1,当x =1时,取极大值1.
5.(2012·重庆文)已知函数f (x )=ax 3+bx +c 在点x =2处取得极值c -16.
(1)求a 、b 的值;
(2)若f (x )有极大值28,求f (x )在[-3,3]上的最小值.
[解析] (1)因f (x )=ax 3+bx +c ,故f ′(x )=3ax 2+b ,由于f (x )在点x =2处取得极值c -16
故有⎩⎪⎨⎪⎧
f ′(2)=0f (2)=c -16,
即⎩⎪⎨⎪⎧ 12a +b =08a +2b +c =c -16,化简得⎩⎪⎨⎪⎧ 12a +b =04a +b =-8, 解得a =1,b =-12.
(2)由(1)知f (x )=x 3-12x +c ,
f ′(x )=3x 2-12=3(x -2)(x +2).
令f ′(x )=0,得x 1=-2,x 2=2,
当x ∈(-∞,-2)时,f ′(x )>0,
故f (x )在(-∞,-2)上为增函数;
当x ∈(-2,2)时,f ′(x )<0,
故f (x )在(-2,2)上为减函数;
当x ∈(2,+∞)时,f ′(x )>0,
故f (x )在(2,+∞)上为增函数.
由此可知f (x )在x 1=-2处取得极大值f (-2)=16+c ,f (x )在x 2=2处取得极小值f (2)=c -16.
由题设条件知16+c =28,得c =12.
此时f (-3)=9+c =21,f (3)=-9+c =3, f (2)=c -16=-4,
因此f (x )在[-3,3]上的最小值为f (2)=-4.。