函数极值与导数练习(基础)
《导数》基础训练题(1)答案

高考数学模拟卷基础题型训练(1)姓名:导数概念公式【笔记】课堂练习1、在曲线2y x =上切线倾斜角为4π的点是( D ) A .(0,0) B .(2,4) C .11(,)416 D .11(,)24【笔记】 2、曲线221y x =+在点(1,3)P -处的切线方程为( A )A .41y x =--B .47y x =--C .41y x =-D .47y x =+【笔记】 3、函数在322y x x =-+在2x =处的切线的斜率为 10【笔记】4、函数1y x x=+的导数是( A ) A .211x -B .11x -C .211x + D .11x+ 【笔记】5、函数cos xy x=的导数是( C ) A .2sin x x - B .sin x - C .2sin cos x x x x +- D . 2cos cos x x xx+- 【笔记】6、函数sin (cos 1)y x x =+的导数是( C )A .cos2cos x x -B .cos2sin x x +C .cos2cos x x +D .2cos cos x x +【笔记】课后作业(1) 姓名:1、32()32f x ax x =++,若'(1)4f -=,则a 的值等于( D )A .319 B .316 C .313 D .3102、函数sin 4y x =在点(,0)M π处的切线方程为( D )A .y x π=-B .0y =C . 4y x π=-D .44y x π=- 3、求下列函数的导数:(1)12y x =; (2)41y x=; (3)y 【答案】(1)11'12x y =, (2)54--=x y ;(3)5253-=x y4、若3'0(),()3f x x f x ==,则0x 的值为_________1±________5、函数sin x y x =的导数为___________2'sin cos xx x x y -=__________ 6、与曲线y =1ex 2相切于P (e ,e)处的切线方程是(其中e 是自然对数的底)高考数学模拟卷基础题型训练(2)姓名:1、已知曲线3:C y x =。
极值与导数常见题型归纳讲义2023届高三数学二轮专题复习

函数的极值与导数常见题型归纳题模一:函数极值的概念与判定 1. 下列结论中正确的是( ) A.导数为零的点一定是极值点B.如果在x 0附近的左侧f′(x )>0,右侧f′(x )<0,那么f (x 0)是极大值C.如果在x 0附近的左侧f′(x )>0,右侧f′(x )<0,那么f (x 0)是极小值D.如果在x 0附近的左侧f′(x )<0,右侧f′(x )>0,那么f (x 0)是极大值 2. 函数的定义域为开区间,导函数在内的图象如图所示,则函数在开区间内有极大值点________个;有极小值点________个. 2. 已知与是定义在上的连续函数,如果与仅当时的函数值为,且,那么下列情形不可能出现的是( ) A., B.是的极小值点 C.是的极小值点 D.是的极小值点题模二:具体函数的极值1. 下列函数中,0x =是极值点的函数式( ) A.3y x =- B.2cos y x = C.sin y x x =- D.1y x=2. 函数f (x )=14x 4-13x 3+x 2-2在R 上的极值点有( ) A.3个 B.2个 C.1个D.0个3. 已知函数.求的极小值.4. 已知函数f (x )=2f′(1)lnx -x ,则f (x )的极大值为____.5. 已知函数f (x )=(x+t )2+4ln (x+1)的图象在点(1,f (1))处的切线垂直于y 轴. (1)求实数t 的值; (2)求f (x )的极值.题模三:已知含参函数极值点求参数1.函数f (x )=x 3+ax 2+3x -9,已知f (x )在x=-3时取得极值,则a=( ) A.2 B.3 C.4D.5()f x ()a b ,'()f x ()a b ,()f x ()a b ,()f x ()g x R ()f x ()g x 0x =0()()f x g x ≥x R ∀∈()()0f x f x ≤0x -()f x -0x -()f x -0x -()f x --()3213232f x x x x =-+()f x 题模精讲.2 设函数.若的两个极值点为、,且,求实数________.3. 若函数y=e 1a x -()+4x (x∈R )有大于零的极值点,则实数a 范围是( )A.a >-3B.a <-3C.a >-13D.a <-134. 若函数321111()(1)3245f x a x ax x =-+-+在其定义域内有极值点,则a 的取值为 .题模四:已知含参函数极值情况求参数范围1. 若函数3()63f x x bx b =-+在(0,1)内有极小值,则实数b 的取值范围是( ) A.(0,1)B.(,1)-∞C.(0,)+∞D.1(0,)22. 已知三次函数f (x )=ax 3-x 2+x 在(0,+∞)上存在极大值点,则a 的范围是( )A.(0,13)B.(0,13]C.(-∞,13)D.(-∞,0)∈(0,13)3. 已知f (x )=22(1)x bx --无极值,则b 的值为( )A.1B.2C.3D.44. 已知函数,,且有极值.求实数的取值范围.1.下列函数中,既是奇函数又存在极值的是( A.y=x 3B.y=ln (-x )C.y=xe -xD.y=x+2x2.关于函数()32f x x x x =-+,下列说法正确的是( )A.有极大值,没有极小值B.有极小值,没有极大值C.既有极大值也有极小值D.既无极大值也无极小值3. 已知函数f (x )=(x 2+a )•e x (x∈R )在点A (0,f (0))处的切线l 的斜率为-3. (1)求a 的值以及切线l 的方程;(2)求f (x )在R 上的极大值和极小值.4.已知函数f (x )=(x 2+ax -2a 2+3a )e x (x∈R ),若a∈R ,求函数f (x )的单调区间与极值.5. 函数f (x )=x 2+aln (1+x )有两个不同的极值点x 1,x 2,且x 1<x 2,则实数a 的范围是()()326322f x x a x ax =+++()f x 1x 2x 121x x =a =()ln f x ax x =+(1)x e ∈,()f x a 随堂练习____.6. 已知函数y=ax 3+bx 2,当x=1时,有极大值3. (1)求a ,b 的值;(2)求函数y 的极小值.7. 设函数,(1)当时,求曲线在点处的切线方程;(2)当为何值时,函数有极值?并求出极大值.8. 若函数f (x )=x 3+x 2+mx+1在R 上无极值点,则实数m 的取值范围是____.9. 函数y=x 3-2ax+a 在(0,1)内有极小值,则实数a 的取值范围是( )A.(0,3)B.(0,32) C.(0,+∞) D.(-∞,3)10 已知f (x )与g (x )是定义在R 上的连续函数,如果f (x )与g (x )仅当x=0时的函数值为0,且f (x )≥g (x ),那么下列情形不可能出现的是( ) A.0是f (x )的极大值,也是g (x )的极大值 B.0是f (x )的极小值,也是g (x )的极小值 C.0是f (x )的极大值,但不是g (x )的极值 D.0是f (x )的极小值,但不是g (x )的极值11设函数f (x )=2x+lnx 则 ( )A.x=12为f (x )的极大值点B.x=12为f (x )的极小值点C.x=2为 f (x )的极大值点D.x=2为 f (x )的极小值点()()3211132f x x ax a x =-+-1a =()y f x =()00,a ()y f x =12 已知函数f (x )=4x +a x -lnx -32,其中a∈R ,且曲线y=f (x )在点(1,f (1))处的切线垂直于直线y=12x . (∈)求a 的值;(∈)求函数f (x )的单调区间与极值.13 已知函数,试讨论的极值 .14已知函数().讨论在区间上的极值点.15 若函数f (x )=21x ax ++在x=1处取极值,则a=____.16 如果函数322()f x x ax bx a =+++在1x =时有极值10,那么a = ,b = .()ln f x ax x =+()f x ()2ln 2x f x a x =-1a >()f x ()1e ,答案解析题模一:函数极值的概念与判定 1.【答案】B 【解析】导数为零的点且左右两边的符号不同才是极值点,故A 错;如果在x 0附近的左侧f′(x )>0,右侧f′(x )<0,则函数先增后减,则f (x 0)是极大值; 如果在x 0附近的左侧f′(x )<0,右侧f′(x )>0,则函数先减后增,则f (x 0)是极小值; 故选B .2.【答案】2;1【解析】从的图象可知在内从左到右的单调性依次为增→减→增→减, 根据极值点的定义可知在内只有2个极大值点,1个极小值点.3.【答案】D【解析】A 项,()是的极大值点,不一定是最大值点,故不正确; B 项,是把的图象关于轴对称,因此,是的极大值点; C 项,是把的图象关于轴对称,因此,是的极小值点;D 项,是把的图象分别关于轴、轴对称,因此是的极小值点.题模二:具体函数的极值 1.【答案】B【解析】A .230y x '=-<,所以无极值点;B .2cos sin y x x '=-,在,02π⎛⎫- ⎪⎝⎭上0y '>,在0,2π⎛⎫⎪⎝⎭上0y '<,所以0x =是极大值点;C .cos 10y x '=-≤,所以无极值点;D .210y x'=-<,所以无极值点.2.【答案】C 【解析】f′(x )=x 3-x 2+2x=x (x 2-x+2),∈x 2-x+2>0,∈x∈(-∞,0)时,f′(x )<0;x∈(0,+∞)时,f′(x )>0; ∈x=0是函数f (x )的极小值点. 故选:C ..3【答案】极小值为.【解析】.列表如下:1 2 + 0 - 0 +单调递增极大值单调递减极小值单调递增所以,的极小值为. '()f x ()f x ()a b ,()a b ,0x 00x ≠()f x ()f x -()f x y 0x -()f x -()f x -()f x x 0x ()f x -()f x --()f x x y 0x -()f x --()223f =23212f x x x x x '=-+=--x ()1-∞,()12,()2+∞,()f x '()f x ()f x ()23f =4.【答案】2ln2-2【解析】由于函数f (x )=2f′(1)lnx -x ,则f′(x )=2f′(1)×1x-1(x >0),f′(1)=2f′(1)-1,故f′(1)=1,得到f′(x )=2×1x -1=2xx-,令f′(x )>0,解得:0<x <2,令f′(x )<0,解得:x >2, 则函数在(0,2)上为增函数,在(2,+∞)上为减函数, 故f (x )的极大值为f (2)=2ln2-2 故答案为:2ln2-25.【答案】(1)t=-2(2)f(x)极大值=4,f (x )极小值=1+4ln2 【解析】(1)∈f (x )=(x+t )2+4ln (x+1),∈f '(x)=2(x+t)+41x +,∈函数f (x )=(x+t )2+4ln (x+1)的图象在点(1,f (1))处的切线垂直于y 轴,∈f '(1)=2(1+t)+42=0,解得t=-2.(2)由(1)知f '(x)=2(1)1x x x -+,x >-1,由f′(x )>0,得0<x <1;由f′(x )<0,得-1<x <0或x >1, ∈f (x )的增区间为(0,1),减区间为(-1,0),(1,+∞), ∈f(x)极大值=f (0)=4,f (x )极小值=f (1)=1+4ln2. 1.【答案】D 【解析】∵f′(x )=3x 2+2ax+3,又f (x )在x=-3时取得极值 ∈f′(-3)=30-6a=0 则a=5. 故选D2.【答案】9.【解析】.已知,从而,所以.3.【答案】B 【解析】因为函数y=e 1a x -()+4x ,所以y′=(a -1)e 1a x -()+4(a <1),所以函数的零点为x 0=11a -ln 41a-,因为函数y=e 1a x -()+4x (x∈R )有大于零的极值点,()()218622f x x a x a '=+++()()120f x f x ''==122118a x x ==9a =所以x 0=11a -ln 41a ->0,即ln 41a-<0, 解得:a <-3. 故选B .4.【答案】15a --<或15a -+>或1a =【解析】即21()(1)04f x a x ax =-+-=有解.当–10a =时,满足.当–10a ≠时,只需2(1)0a a ∆=+->.题模四:已知含参函数极值情况求参数范围 1.【答案】D【解析】∵()2'36f x x b =-,由题意,函数'()f x 图象如右图.''(0)0,(1)0,f f ⎧<⎪∴⎨>⎪⎩即60,360,b b -<⎧∴⎨->⎩得102b <<.故选D 2.【答案】D【解析】由题意知,f′(x )=3ax 2-2x+1,∈三次函数f (x )=ax 3-x 2+x 在(0,+∞)上存在极大值点, ∈f′(x )=3ax 2-2x+1=0有两个不同的正实数根或一正一负根, ∈当a >0时,此时3ax 2-2x+1=0有两个不同的正实数根, ∈44310203103a aa⎧⎪=-⨯⨯>⎪⎪>⎨⎪⎪>⎪⎩,即0<a <13,∈当a <0时,此时3ax 2-2x+1=0有一正一负根,只须∈>0,即4-12a >0,∈a <13,∈a <0综上所述,a 的范围是(-∞,0)∈(0,13)故选D .3.【答案】B 【解析】∵f′(x )=32(1)2(2)(1)x x b x ----=32(1)(1)x b x -+--, ∈若函数f (x )=22(1)x bx --无极值,则1-b=-1,∈b=2.故选B .4.【答案】. 11e ⎛⎫-- ⎪⎝⎭,【解析】由求导可得,令,可得. ∵,∴,∴ 又因为所以,有极值,实数的取值范围为.1.【答案】D 【解析】由题可知,B 、C 选项不是奇函数,A 选项y=x 3单调递增(无极值),而D 选项既为奇函数又存在极值. 故选:D .2.【答案】D【解析】∵()22123213033f x x x x ⎛⎫'=-+=-+> ⎪⎝⎭恒成立,∴()f x 在R 上单调递增,∴既无极大值也无极小值,故选D .3.【答案】(1)a=-3,3x+y+3=0 (2)极大值为6e -3,极小值为-2e 【解析】(1)f (x )=(x 2+a )•e x ∈f'(x )=(x 2+2x+a )•e x … 所以f'(0)=-3∈a=-3,…(4分)所以f (0)=-3,切线方程为3x+y+3=0;…(2)f (x )=(x 2+a )•e x ∈f'(x )=(x 2+2x -3)•e x =(x+3)(x -1)e x ∈f'(x )=0∈x=-3或x =1,…当x∈(-∞,-3),f'(x )>0,f (x )单调递增, 当x∈(-3,1),f'(x )<0,f (x )单调递减, 当x∈(1,+∞),f'(x )>0,f (x )单调递增,… 所以极大值为f (-3)=6e -3,极小值为f (1)=-2e .…4.【答案】见解析 【解析】f′(x )=[x 2+(a+2)x -2a 2+4a]e x令f′(x )=0 解得x=-2a 或x=a -2以下分三种情况讨论.()ln f x ax x =+1()f x a x '=+1()0f x a x '=+=1a x=-(1)x e ∈,111x e ⎛⎫-∈-- ⎪⎝⎭,11a e ⎛⎫∈-- ⎪⎝⎭,(1)x e ∈,()f x a 11e ⎛⎫-- ⎪⎝⎭,极大值x 11a ⎛⎫- ⎪⎝⎭,1a -1e a ⎛⎫- ⎪⎝⎭,()f x '+0-()f x ↗↘随堂练习(1)若a >23,则-2a <a -2.当x 变化时,f′(x ),f (x )的变化如下表: -所以f (x )在(-∞,-2a ),(a -2,+∞)内是增函数在(-a ,a -2)内是减函数 函数f (x )在x=2处取得极大值f (-2a ),且f (-2a )=3ae -2a函数f (x )在x=a -2处取得极小值f (a -2),且f (a -2)=(4-3a )e a -2(2)若a <23则-2a >a -2当x 变化时,f′(x ),f (x )的变化如下表:函数f (x )在x=2处取得极小值f (-2a ),且f (-2a )=3ae -2a函数f (x )在x=a -2处取得极大值f (a -2),且f (a -2)=(4-3a )e a -2(3)若a=23则-2a=a -2函数f (x )在(-∞,+∞)内单调递增,此时函数无极值5.【答案】(0,12)【解析】∵f (x )定义域为(-1,+∞),又f′(x)=2x+1ax +,令f'(x )=0,则2x+1ax +=0,∈函数在(-1,+∞)内有两个不同的实数根, ∈a=-2x (x+1),令y 1=a ,y 2=-2x (x+1), 如图示:∈0<a <12. 6.【答案】(1)a=-6,b=9(2)0 【解析】(1)y′=3ax 2+2bx ,当x=1时,y′|x=1=3a+2b=0,y|x=1=a+b=3, 即3203a b a b +=⎧⎨+=⎩,a=-6,b=9(2)y=-6x 3+9x 2,y′=-18x 2+18x ,令y′=0,得x=0或x=1当x >1或x <0时,y′<0函数为单调递减;当0<x <1时,y′>0,函数单调递增. ∈y 极小值=y|x=0=0.7.1);(2).【解析】.(1)当时,,则曲线在点处的切线方程为; (2)显然,当时,即时函数有极值.1 + 0 - 0 +递增极大值点递减极小值点递增此时,函数极大值为.1+ 00 +递增极大值点 递减极小值点递增此时,函数极大值为 . 综上,.8.【答案】[13,+∞)【解析】f′(x )=3x 2+2x+m ,∈函数f (x )=x 3+x 2+mx+1在R 上无极值点, ∈f (x )在R 上是单调函数,∈∈=4-12m≤0,解得m≥13,0y =()24(1)26=2223aa a f x a a -⎧-<⎪⎪⎨⎪->⎪⎩极大值,,()()()2111f x x ax a x x a '=-+-=---⎡⎤⎣⎦1a =()00k f '==()y f x =()00,0y =11a -≠2a ≠2a <11a -<x ()1a -∞-,1a -()11a -,()1+∞,()f x '()f x ()y f x =()()2116f a a -=-x ()1-∞,()11a -,1a -()f x '-()f x ()y f x =()213f =-()24(1)26=2223a a a f x a a -⎧-<⎪⎪⎨⎪->⎪⎩极大值,,故答案为:[13,+∞).9.【答案】B【解析】根据题意,y'=3x 2-2a=0有解,所以a >0 23a 所以23a 所以023a 1 0<23a <1 0<a <3210【答案】C【解析】根据题意和图形知结合函数的图象分析:可得A ,B ,D 可能.当0是f (x )的极大值时,不是g (x )的极值是不可能的,选C .11【答案】D【解析】∈f (x )=2x+lnx ; ∈f′(x )=-22x +1x =22x x ; x >2∈f ′(x )>0;0<x <2∈f ′(x )<0.∈x=2为 f (x )的极小值点.故选:D .12【答案】(Ⅰ)54,(Ⅱ)函数f (x )的单调递增区间为(5,+∞); 单调递减区间为(0,5);当x=5时,函数取极小值-ln5.【解析】(∈)∈f (x )=4x +a x -lnx -32, ∈f′(x )=14-2a x -1x, ∈曲线y=f (x )在点(1,f (1))处的切线垂直于直线y=12x . ∈f′(1)=14-a -1=-2,解得:a=54, (∈)由(∈)知:f (x )=4x +54x -lnx -32,f′(x )=14-254x -1x =22454x x x --(x >0), 令f′(x )=0,解得x=5,或x=-1(舍),∈当x∈(0,5)时,f′(x )<0,当x∈(5,+∞)时,f′(x )>0,故函数f (x )的单调递增区间为(5,+∞);单调递减区间为(0,5);当x=5时,函数取极小值-ln5.13【答案】当时,函数不存在极值;当时,函数在处取得极大值.无极小值.【解析】函数的定义域为(0,+∞),f′(x)=a+=. 当a≥0时,f'(x )>0,所以f (x )在(0,+∞)上为增函数,此时函数不存在极值.当a <0时,由f'(x )>0,解得0<x <-,此时函数递增.由f'(x )<0,解得x >-此时函数递减.此时函数在x=-处取得极大值.无极小值. 综上所述:当时,函数不存在极值;当时,函数在处取得极大值.无极小值.14【答案】的极小值点为【解析】,导数=, ≥e ,即a≥e 2时,在区间(1,e )上单调递减,无极值点.②当<e ,即1<a <e 2时,在区间(1)上单调递减,在区间(,e)单调递增,则的极小值点为,无极大值点.15【答案】3【解析】f′(x )=22222(1)x x x a x +--+=222(1)x x a x +-+. 因为f (x )在1处取极值,所以1是f′(x )=0的根,将x=1代入得a=3.故答案为316【答案】411-,【解析】22()32.(1)320,(1)110f x x ax b f a b f a b a =++=++==+++=′由已知得′,22334311.9a b a a b b a a b +=-=-=⎧⎧⎧⎨⎨⎨==-++=⎩⎩⎩,,,联立解得或,当3a =-时,1x =不是极值点. 当411a b ==-,时满足题意.0a ≥0a <1x a=-()f x 1x 1ax x+1a 1a1a0a ≥0a <1x a=-()f x x a ()2ln 2x f x a x =-()a f x x x '=-2x a x-()()x a x a +-a ()f x ()f x a ()f x a a ()f x a。
导数基础练习题(2)

2导数基础练习题一选择题1函数f (x) =(2nx )的导数是(C )2 2(A) f (x) =4二x (B) f (X) =4二x (C) f (x) =8二x (D) f (x) =16二x2.函数f(x)二X €公的一个单调递增区间是( A )(A) 1-1,0 1 (B) 2,8 1 (C) 1,21 (D) 0,213 .已知对任意实数x,有f(-x)--f( ,x) g卜x)二g(且x 0时,f ( x) ,0 g (x ),则x 0 时(B )A. f (x) 0, g (x) 0B. f (x) 0, g (x) :: 0C. f (x) :: 0, g (x) 0D. f (x) ::0, g (x) :: 034.若函数f (x) = x -3bx 3b在0,1内有极小值,则(A )1(A) 0 : b :1 (B) b 1(C) b 0 (D) b :-25•若曲线y =x4的一条切线I与直线x • 4y-8 = 0垂直,则I的方程为(A )A. 4x-y-3=0 B . x 4y-5=0 C . 4x-y 3 = 0 D . x 4y 3 = 06.曲线y =e x在点(2, e2)处的切线与坐标轴所围三角形的面积为( D )A. 2 2B. 2e c. eD.7.设f (x)是函数f (x)的导函数,将y二f (x)和y二f(x)的图象画在同一个直角坐标系B. C. D.2&已知二次函数f(x)=ax bx c 的导数为f'(x) , f'(O).O ,对于任意实数 x 都有f (x) Z 0,则丄^的最小值为(C )f'(0)c5 c3A . 3B .C . 2D .-2 29. 设 p: f (x^ e x ln x • 2x 2 mx 1 在(0, •::)内单调递增,q : m > -5,则 p 是 q 的 (B )A.充分不必要条件 E.必要不充分条件C.充分必要条件D.既不充分也不必要条件10. 已知函数f (x^ax 3 bx 2 c ,其导数f (x)的图像如图所示,则函数 是( )A. a b cB. 3a 4b cC. 3a 2bD. c11. 函数y=f(x)的图象如图所示,则导函数 y = f (x)的图象可能是() 12.函数f(x)=(x-3) 的单调递增区间是( )A. (2, ::)B. (0,3)C. (1,4)D. (一::,2)13.函数f (x) =2x 3 -6x 2 m ( m 为实数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值为A -3B -27C -37D -5414三次函数 f(x)3 ..=mx — x 在(—8,+^ )上是减函数,则 m 的取值范围是()A. m<0B. m<1C. m< 0D. mC 1[答案]A[解析]f ' (x) =3mx — 1,由条件知f ' (x) <0在(—8,+8 )上恒成立,f (x)的极小值yxy = 3x 3 + x 在点(1 , 4)处的切线斜率k = y ,|3 34• k = 2,切线方程为 y — 3= 2(x — 1),即 6x — 3y — 2= 0, 2 1 112 1令 x = 0 得 y = — 3,令 y = 0 得 x =命二 S = X 3 X 2= &216.若函数f(x)的导数为.f'(x)=-2x+1,则f(x)可能是 ( D )17.已知曲线y=£-3lnx 的一条切线的斜率为J ,则切点的横坐标为(B A -2 B 3 C 118.正弦曲线y 二sinx 上一点P,以点P 为切点的切线为直线 L ,则直线是(A )21已知直线y = x + 1与曲线y = In(x + a)相切,则a 的值为(C. — 1222已知函数f (x )在R 上满足f(x)=2f (2-x)-x &-8,则曲线y= f(x)在点m<0△ = 12m<0,二 m<0,故选 A.15曲线y = ]x 3+ x 在点j 1, 4处的切线与坐标轴围成的三角形面积为3i 3 ;A. 1 1 B .9 1 C.3 2 D.3[答案][解析] ••• y '= x 2+ 1,•••曲线 x =1= 1 + 1 = 2,A.-2 x 3+1B.-X+1C.-4xD.-3x 3+xL 的倾斜角的范围A [0,-][注二)B [0,二)C4 4n [419 yx =3处的导数值为(B. -D.-20若曲线y = x 2+ ax + b 在点(0, b)处的切线方程是 x — y + 1 = 0,则()A . a = 1, b = 1 b = 1C . a = 1, b =— 1D . a =— 1, b =— 1二.填空题32 •已知函数 f(x)二x -12x 8在区间[-3, 3]上的最大值与最小值分别为 M,m ,则M -m= —32.3 23.点P 在曲线y = x —x —上移动,设在点P 处的切线的倾斜角为为 〉,则〉的取值范3围是 ------------------------------ 0/ |; ” ,|—,二 --------IL 2 _41 3 24 •已知函数y x x • ax -5(1)若函数在-:= 总是单调函数,则 a 的取值范围3是 _________ a^1 ______ .⑵若函数在[1,+处)上总是单调函数,则a 的取值范围(1,f(1))处的切线方程是 () A 『=2X — 1 B 『=x c y=3x-2 D y = -2 x + 323•函数f(x)的定义域为开区间(a,b),导函数f (x)在(a,b)内的图象如图所示, 极小值点 (f(x) 4 B.—312 D.—325.以下四图, 的序号是都是同一坐标系中三次函数及其导函数的图像, 、④1.函数f(x)=xlnx(x 0)的单调递增区间是.内有8 C.—324.如图是函数2A.—3=x 34个bx 2 cx d 的大致图象,则x其中一定不正确④① ②③ C .D . 3(3 )若函数在区间(-3 , 1 )上单调递减,则实数a的取值范围是a _ -3. _________ .5. 函数f(x)=x3—ax在[1 , +m)上是单调递增函数,则a的取值范围是__________________ 。
导数与函数的极值、最值(经典导学案及练习答案详解)

§3.3导数与函数的极值、最值学习目标1.借助函数图象,了解函数在某点取得极值的必要和充分条件.2.会用导数求函数的极大值、极小值.3.会求闭区间上函数的最大值、最小值.知识梳理1.函数的极值(1)函数的极小值函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.(3)极小值点、极大值点统称为极值点,极小值和极大值统称为极值.2.函数的最大(小)值(1)函数f(x)在区间[a,b]上有最值的条件:如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y=f(x)在区间[a,b]上的最大(小)值的步骤:①求函数y=f(x)在区间(a,b)上的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.常用结论对于可导函数f(x),“f′(x0)=0”是“函数f(x)在x=x0处有极值”的必要不充分条件.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数f(x)在区间(a,b)上不存在最值.(×)(2)函数的极小值一定是函数的最小值.(×)(3)函数的极小值一定不是函数的最大值.(√)(4)函数y=f′(x)的零点是函数y=f(x)的极值点.(×)教材改编题1.如图是f (x )的导函数f ′(x )的图象,则f (x )的极小值点的个数为( )A .1B .2C .3D .4答案 A解析 由题意知只有在x =-1处f ′(-1)=0,且其两侧导数符号为左负右正.2.函数f (x )=x 3-ax 2+2x -1有极值,则实数a 的取值范围是( )A .(-∞,-6]∪[6,+∞)B .(-∞,-6)∪(6,+∞)C .(-6,6)D .[-6,6]答案 B解析 f ′(x )=3x 2-2ax +2,由题意知f ′(x )有变号零点,∴Δ=(-2a )2-4×3×2>0, 解得a >6或a <- 6.3.若函数f (x )=13x 3-4x +m 在[0,3]上的最大值为4,则m =________. 答案 4解析 f ′(x )=x 2-4,x ∈[0,3],当x ∈[0,2)时,f ′(x )<0,当x ∈(2,3]时,f ′(x )>0,所以f (x )在[0,2)上单调递减,在(2,3]上单调递增.又f (0)=m ,f (3)=-3+m .所以在[0,3]上,f (x )max =f (0)=4,所以m =4.题型一 利用导数求函数的极值问题命题点1 根据函数图象判断极值例1 (2022·广州模拟)设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(x -1)f ′(x )的图象如图所示,则下列结论中正确的是( )A .函数f (x )有极大值f (-3)和f (3)B .函数f (x )有极小值f (-3)和f (3)C.函数f(x)有极小值f(3)和极大值f(-3)D.函数f(x)有极小值f(-3)和极大值f(3)答案 D解析由题图知,当x∈(-∞,-3)时,y>0,x-1<0⇒f′(x)<0,f(x)单调递减;当x∈(-3,1)时,y<0,x-1<0⇒f′(x)>0,f(x)单调递增;当x∈(1,3)时,y>0,x-1>0⇒f′(x)>0,f(x)单调递增;当x∈(3,+∞)时,y<0,x-1>0⇒f′(x)<0,f(x)单调递减.所以函数有极小值f(-3)和极大值f(3).命题点2求已知函数的极值例2已知函数f(x)=x-1+ae x(a∈R,e为自然对数的底数).(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;(2)求函数f(x)的极值.解(1)因为f(x)=x-1+ae x,所以f′(x)=1-ae x,又因为曲线y=f(x)在点(1,f(1))处的切线平行于x轴,所以f′(1)=0,即1-ae1=0,所以a=e.(2)由(1)知f′(x)=1-ae x,当a≤0时,f′(x)>0,所以f(x)在(-∞,+∞)上单调递增,因此f(x)无极大值与极小值;当a>0时,令f′(x)>0,则x>ln a,所以f(x)在(ln a,+∞)上单调递增,令f′(x)<0,则x<ln a,所以f(x)在(-∞,ln a)上单调递减,故f(x)在x=ln a处取得极小值,且f(ln a)=ln a,但是无极大值,综上,当a≤0时,f(x)无极大值与极小值;当a>0时,f(x)在x=ln a处取得极小值ln a,但是无极大值.命题点3已知极值(点)求参数例3(1)(2022·大庆模拟)函数f(x)=x3+ax2+bx+a2在x=1处取得极值10,则a+b等于()A .-7B .0C .-7或0D .-15或6答案 A 解析 由题意知,函数f (x )=x 3+ax 2+bx +a 2,可得f ′(x )=3x 2+2ax +b ,因为f (x )在x =1处取得极值10,可得⎩⎪⎨⎪⎧ f ′(1)=3+2a +b =0,f (1)=1+a +b +a 2=10, 解得⎩⎪⎨⎪⎧ a =4,b =-11,或⎩⎪⎨⎪⎧a =-3,b =3, 检验知,当a =-3,b =3时,可得f ′(x )=3x 2-6x +3=3(x -1)2≥0,此时函数f (x )单调递增,函数无极值点,不符合题意;当a =4,b =-11时,可得f ′(x )=3x 2+8x -11=(3x +11)(x -1),当x <-113或x >1时, f ′(x )>0,f (x )单调递增;当-113<x <1时,f ′(x )<0,f (x )单调递减, 当x =1时,函数f (x )取得极小值,符合题意.所以a +b =-7.(2)(2022·南京模拟)已知函数f (x )=x (ln x -ax )在区间(0,+∞)上有两个极值,则实数a 的取值范围为( )A .(0,e)B.⎝⎛⎭⎫0,1eC.⎝⎛⎭⎫0,12 D.⎝⎛⎭⎫0,13 答案 C解析 f ′(x )=ln x -ax +x ⎝⎛⎭⎫1x -a=ln x +1-2ax ,由题意知ln x +1-2ax =0在(0,+∞)上有两个不相等的实根,2a =ln x +1x, 设g (x )=ln x +1x, 则g ′(x )=1-(ln x +1)x 2=-ln x x 2.当0<x <1时,g ′(x )>0,g (x )单调递增;当x >1时,g ′(x )<0,g (x )单调递减,所以g (x )的极大值为g (1)=1,又当x >1时,g (x )>0,当x →+∞时,g (x )→0,当x →0时,g (x )→-∞,所以0<2a <1,即0<a <12. 教师备选 1.(2022·榆林模拟)设函数f (x )=x cos x 的一个极值点为m ,则tan ⎝⎛⎭⎫m +π4等于( ) A.m -1m +1B.m +1m -1C.1-m m +1D.m +11-m 答案 B解析 由f ′(x )=cos x -x sin x =0,得tan x =1x ,所以tan m =1m, 故tan ⎝⎛⎭⎫m +π4=1+tan m 1-tan m =m +1m -1. 2.已知a ,b ∈R ,若x =a 不是函数f (x )=(x -a )2(x -b )·(e x -1-1)的极小值点,则下列选项符合的是( )A .1≤b <aB .b <a ≤1C .a <1≤bD .a <b ≤1 答案 B解析 令f (x )=(x -a )2(x -b )(e x -1-1)=0,得x 1=a ,x 2=b ,x 3=1.下面利用数轴标根法画出f (x )的草图,借助图象对选项A ,B ,C ,D 逐一分析.对选项A ,若1≤b <a ,由图可知x =a 是f (x )的极小值点,不符合题意; 对选项B ,若b <a ≤1,由图可知x =a 不是f (x )的极小值点,符合题意; 对选项C ,若a <1≤b ,由图可知x =a 是f (x )的极小值点,不符合题意; 对选项D ,若a <b ≤1,由图可知x =a 是f (x )的极小值点,不符合题意. 思维升华 根据函数的极值(点)求参数的两个要领(1)列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解;(2)验证:求解后验证根的合理性.跟踪训练1 (1)(2022·长沙模拟)若x =1是函数f (x )=(x 2+ax -1)e x-1的极值点,则f (x )的极大值为( )A .-1B .-2e -3C .5e -3D .1 答案 C解析 因为f (x )=(x 2+ax -1)e x -1,故可得f ′(x )=(2x +a )e x -1+(x 2+ax -1)e x -1=e x -1[x 2+(a +2)x +a -1],因为x =1是函数f (x )=(x 2+ax -1)e x-1的极值点,故可得f ′(1)=0,即2a +2=0,解得a =-1.此时f ′(x )=e x -1(x 2+x -2)=e x -1(x +2)(x -1).令f ′(x )=0,解得x 1=-2,x 2=1,由f ′(x )>0可得x <-2或x >1;由f ′(x )<0可得-2<x <1,所以f (x )在区间(-∞,-2)上单调递增,在(-2,1)上单调递减,在(1,+∞)上单调递增,故f (x )的极大值点为x =-2.则f (x )的极大值为f (-2)=(4+2-1)e -3=5e -3.(2)(2022·芜湖模拟)函数f (x )=ln x +12x 2-ax (x >0)在⎣⎡⎦⎤12,3上有且仅有一个极值点,则实数a 的取值范围是( )A.⎝⎛⎭⎫52,103B.⎣⎡⎭⎫52,103C.⎝⎛⎦⎤52,103D.⎣⎡⎦⎤2,103 答案 B解析 ∵f (x )=ln x +12x 2-ax (x >0), ∴f ′(x )=1x+x -a , ∵函数f (x )=ln x +12x 2-ax (x >0)在⎣⎡⎦⎤12,3上有且仅有一个极值点, ∴y =f ′(x )在⎣⎡⎦⎤12,3上只有一个变号零点.令f ′(x )=1x +x -a =0,得a =1x+x . 设g (x )=1x +x ,则g (x )在⎣⎡⎦⎤12,1上单调递减,在[1,3]上单调递增,∴g (x )min =g (1)=2,又g ⎝⎛⎭⎫12=52,g (3)=103, ∴当52≤a <103时,y =f ′(x )在⎣⎡⎦⎤12,3上只有一个变号零点. ∴实数a 的取值范围为⎣⎡⎭⎫52,103.题型二 利用导数求函数最值例4 已知函数g (x )=a ln x +x 2-(a +2)x (a ∈R ).(1)若a =1,求g (x )在区间[1,e]上的最大值;(2)求g (x )在区间[1,e]上的最小值h (a ).解 (1)∵a =1,∴g (x )=ln x +x 2-3x ,∴g ′(x )=1x +2x -3=(2x -1)(x -1)x, ∵x ∈[1,e],∴g ′(x )≥0,∴g (x )在[1,e]上单调递增,∴g (x )max =g (e)=e 2-3e +1.(2)g (x )的定义域为(0,+∞),g ′(x )=a x +2x -(a +2)=2x 2-(a +2)x +a x=(2x -a )(x -1)x. ①当a 2≤1,即a ≤2时,g (x )在[1,e]上单调递增,h (a )=g (1)=-a -1; ②当1<a 2<e ,即2<a <2e 时,g (x )在⎣⎡⎭⎫1,a 2上单调递减,在⎝⎛⎦⎤a 2,e 上单调递增,h (a )=g ⎝⎛⎭⎫a 2=a ln a 2-14a 2-a ; ③当a 2≥e ,即a ≥2e 时,g (x )在[1,e]上单调递减,h (a )=g (e)=(1-e)a +e 2-2e. 综上,h (a )=⎩⎪⎨⎪⎧ -a -1,a ≤2,a ln a 2-14a 2-a ,2<a <2e ,(1-e )a +e 2-2e ,a ≥2e.教师备选已知函数f (x )=ln x -ax -2(a ≠0).(1)讨论函数f (x )的单调性;(2)若函数f (x )有最大值M ,且M >a -4,求实数a 的取值范围.解 (1)f (x )的定义域为(0,+∞),由f (x )=ln x -ax -2(a ≠0)可得f ′(x )=1x-a , 当a <0时,f ′(x )>0,所以f (x )在(0,+∞)上单调递增;当a >0时,令f ′(x )=0,得x =1a, 所以当x ∈⎝⎛⎭⎫0,1a 时, f ′(x )>0,f (x )单调递增;当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )<0,f (x )单调递减, 综上所述,当a <0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减. (2)由(1)知,当a <0时,f (x )在(0,+∞)上单调递增,无最大值,当a >0时,f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减, 所以当x =1a时,f (x )取得最大值, 即f (x )max =f ⎝⎛⎭⎫1a =ln 1a -a ×1a-2 =ln 1a-3=-ln a -3, 因此有-ln a -3>a -4,得ln a +a -1<0,设g (a )=ln a +a -1,则g ′(a )=1a+1>0, 所以g (a )在(0,+∞)上单调递增,又g (1)=0,所以g (a )<g (1),得0<a <1,故实数a 的取值范围是(0,1).思维升华 (1)求函数f (x )在闭区间[a ,b ]上的最值时,在得到极值的基础上,结合区间端点的函数值f (a ),f (b )与f (x )的各极值进行比较得到函数的最值.(2)若所给的闭区间[a ,b ]含参数,则需对函数f (x )求导,通过对参数分类讨论,判断函数的单调性,从而得到函数f (x )的最值.跟踪训练2 某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度),设该蓄水池的底面半径为r米,高为h 米,体积为V 立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12 000π元(π为圆周率).(1)将V 表示成r 的函数V (r ),并求该函数的定义域;(2)讨论函数V (r )的单调性,并确定r 和h 为何值时该蓄水池的体积最大.解 (1)∵蓄水池的侧面的总成本为100×2πrh =200πrh (元),底面的总成本为160πr 2元,∴蓄水池的总成本为(200πrh +160πr 2)元.由题意得200πrh +160πr 2=12 000π,∴h =15r (300-4r 2).从而V (r )=πr 2h =π5(300r -4r 3).由h >0,且r >0,可得0<r <5 3.故函数V (r )的定义域为(0,53).(2)由(1)知V (r )=π5(300r -4r 3), 故V ′(r )=π5(300-12r 2),令V ′(r )=0,解得r 1=5,r 2=-5(舍).当r ∈(0,5)时,V ′(r )>0,故V (r )在(0,5)上单调递增;当r ∈(5,53)时,V ′(r )<0,故V (r )在(5,53)上单调递减.由此可知,V (r )在r =5处取得最大值,此时h =8,即当r =5,h =8时,该蓄水池的体积最大.课时精练1.若函数f (x )=x 2+2xe x 的极大值点与极小值点分别为a ,b ,则a +b 等于() A .-4 B. 2C .0D .2答案 C解析 f ′(x )=2-x 2e x ,当-2<x <2时,f ′(x )>0;当x <-2或x >2时,f ′(x )<0.故f (x )=x 2+2x ex 的极大值点与极小值点分别为2,-2, 则a =2,b =-2,所以a +b =0.2.如图是函数y =f (x )的导函数的图象,下列结论中正确的是( )A .f (x )在[-2,-1]上单调递增B .当x =3时,f (x )取得最小值C .当x =-1时,f (x )取得极大值D .f (x )在[-1,2]上单调递增,在[2,4]上单调递减答案 D解析 根据题图知,当x ∈(-2,-1),x ∈(2,4)时,f ′(x )<0,函数y =f (x )单调递减;当x ∈(-1,2),x ∈(4,+∞)时,f ′(x )>0,函数y =f (x )单调递增.所以y =f (x )在[-2,-1]上单调递减,在(-1,2)上单调递增,在(2,4)上单调递减,在(4,+∞)上单调递增,故选项A 不正确,选项D 正确;故当x =-1时,f (x )取得极小值,选项C 不正确;当x =3时,f (x )不是取得最小值,选项B 不正确.3.已知函数f (x )=2ln x +ax 2-3x 在x =2处取得极小值,则f (x )的极大值为( )A .2B .-52C .3+ln 2D .-2+2ln 2 答案 B解析 由题意得,f ′(x )=2x+2ax -3, ∵f (x )在x =2处取得极小值,∴f ′(2)=4a -2=0,解得a =12, ∴f (x )=2ln x +12x 2-3x , f ′(x )=2x +x -3=(x -1)(x -2)x ,∴f (x )在(0,1),(2,+∞)上单调递增,在(1,2)上单调递减,∴f (x )的极大值为f (1)=12-3=-52. 4.(2022·重庆联考)函数f (x )=x +2cos x 在[0,π]上的最大值为( )A .π-2B.π6 C .2D.π6+ 3 答案 D解析 由题意得,f ′(x )=1-2sin x ,∴当0≤sin x ≤12,即x 在⎣⎡⎦⎤0,π6和⎣⎡⎦⎤5π6,π上时,f ′(x )≥0,f (x )单调递增; 当12<sin x ≤1,即x 在⎝⎛⎭⎫π6,5π6上时, f ′(x )<0,f (x )单调递减,∴f (x )有极大值f ⎝⎛⎭⎫π6=π6+3,有极小值f ⎝⎛⎭⎫5π6=5π6-3,而端点值f (0)=2,f (π)=π-2,则f ⎝⎛⎭⎫π6>f (0)>f (π)>f ⎝⎛⎭⎫5π6, ∴f (x )在[0,π]上的最大值为π6+ 3. 5.(多选)已知x =1和x =3是函数f (x )=ax 3+bx 2-3x +k (a ,b ∈R )的两个极值点,且函数f (x )有且仅有两个不同零点,则k 值为( )A .-43B.43 C .-1D .0 答案 BD解析 f ′(x )=3ax 2+2bx -3,依题意1,3是f ′(x )=0的两个根, 所以⎩⎨⎧ 1+3=-2b 3a ,1×3=-33a,解得a =-13,b =2. 故f (x )=-13x 3+2x 2-3x +k . 易求得函数f (x )的极大值为f (3)=k 和极小值为f (1)=-43+k .要使函数f (x )有两个零点,则f (x )极大值k =0或f (x )极小值-43+k =0, 所以k =0或k =43. 6.(多选)已知函数f (x )=x +sin x -x cos x 的定义域为[-2π,2π),则( )A .f (x )为奇函数B .f (x )在[0,π)上单调递增C .f (x )恰有4个极大值点D .f (x )有且仅有4个极值点答案 BD解析 因为f (x )的定义域为[-2π,2π),所以f (x )是非奇非偶函数,故A 错误;因为f (x )=x +sin x -x cos x ,所以f ′(x )=1+cos x -(cos x -x sin x )=1+x sin x ,当x ∈[0,π)时,f ′(x )>0,则f (x )在[0,π)上单调递增,故B 正确;显然f ′(0)≠0,令f ′(x )=0,得sin x =-1x, 分别作出y =sin x ,y =-1x在区间[-2π,2π)上的图象,由图可知,这两个函数的图象在区间[-2π,2π)上共有4个公共点,且两图象在这些公共点上都不相切,故f (x )在区间[-2π,2π)上的极值点的个数为4,且f (x )只有2个极大值点,故C 错误,D 正确.7.(2022· 潍坊模拟)写出一个存在极值的奇函数f (x )=________.答案 sin x (答案不唯一)解析 正弦函数f (x )=sin x 为奇函数,且存在极值.8.(2021·新高考全国Ⅰ)函数f (x )=|2x -1|-2ln x 的最小值为________.答案 1解析 函数f (x )=|2x -1|-2ln x 的定义域为(0,+∞).①当x >12时,f (x )=2x -1-2ln x , 所以f ′(x )=2-2x =2(x -1)x,当12<x <1时,f ′(x )<0, 当x >1时,f ′(x )>0,所以f (x )min =f (1)=2-1-2ln 1=1;②当0<x ≤12时,f (x )=1-2x -2ln x 在⎝⎛⎦⎤0,12上单调递减, 所以f (x )min =f ⎝⎛⎭⎫12=-2ln 12=2ln 2=ln 4>ln e =1.综上,f (x )min =1. 9.已知函数f (x )=ln x -2x -2x +1. (1)求函数f (x )的单调区间;(2)设g (x )=f (x )-4+a x +1+2(a ∈R ),若x 1,x 2是函数g (x )的两个极值点,求实数a 的取值范围. 解 (1)由题知函数f (x )的定义域为(0,+∞),f ′(x )=1x -2(x +1)-2(x -1)(x +1)2=(x -1)2x (x +1)2≥0对任意x ∈(0,+∞)恒成立, 当且仅当x =1时,f ′(x )=0,所以f (x )的单调递增区间为(0,+∞),无单调递减区间.(2)因为g (x )=f (x )-4+a x +1+2=ln x -a x +1, 所以g ′(x )=1x +a (x +1)2=x 2+(2+a )x +1x (x +1)2(x >0). 由题意知x 1,x 2是方程g ′(x )=0在(0,+∞)内的两个不同的实数解.令h (x )=x 2+(2+a )x +1,又h (0)=1>0,所以只需⎩⎪⎨⎪⎧-2-a >0,Δ=(2+a )2-4>0,解得a <-4,即实数a 的取值范围为(-∞,-4). 10.(2022·珠海模拟)已知函数f (x )=ln x -ax ,x ∈(0,e],其中e 为自然对数的底数.(1)若x =1为f (x )的极值点,求f (x )的单调区间和最大值;(2)是否存在实数a ,使得f (x )的最大值是-3?若存在,求出a 的值;若不存在,说明理由. 解 (1)∵f (x )=ln x -ax ,x ∈(0,e],∴f ′(x )=1-ax x, 由f ′(1)=0,得a =1.∴f ′(x )=1-x x, ∴x ∈(0,1),f ′(x )>0,x ∈(1,+∞),f ′(x )<0,∴f (x )的单调递增区间是(0,1),单调递减区间是(1,e];f (x )的极大值为f (1)=-1,也即f (x )的最大值为f (1)=-1.(2)∵f (x )=ln x -ax ,∴f ′(x )=1x -a =1-ax x , ①当a ≤0时,f (x )在(0,e]上单调递增,∴f (x )的最大值是f (e)=1-a e =-3,解得a =4e >0,舍去;②当a >0时,由f ′(x )=1x -a =1-axx =0,得x =1a ,当0<1a <e ,即a >1e 时,∴x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0;x ∈⎝⎛⎭⎫1a ,e 时,f ′(x )<0,∴f (x )的单调递增区间是⎝⎛⎭⎫0,1a ,单调递减区间是⎝⎛⎭⎫1a ,e ,又f (x )在(0,e]上的最大值为-3,∴f (x )max =f ⎝⎛⎭⎫1a =-1-ln a =-3,∴a =e 2;当e ≤1a ,即0<a ≤1e 时,f (x )在(0,e]上单调递增,∴f (x )max =f (e)=1-a e =-3,解得a =4e >1e ,舍去.综上,存在a 符合题意,此时a =e 2.11.若函数f (x )=(x 2-a )e x 的两个极值点之积为-3,则f (x )的极大值为() A.6e 3 B .-2eC .-2e D.4e 2答案 A解析 因为f (x )=(x 2-a )e x ,所以f ′(x )=(x 2+2x -a )e x ,由f′(x)=(x2+2x-a)e x=0,得x2+2x-a=0,由函数f(x)=(x2-a)e x的两个极值点之积为-3,则由根与系数的关系可知,-a=-3,即a=3,所以f(x)=(x2-3)e x,f′(x)=(x2+2x-3)e x,当x<-3或x>1时,f′(x)>0;当-3<x<1时,f′(x)<0,故f(x)在(-∞,-3)上单调递增,在(-3,1)上单调递减,在(1,+∞)上单调递增,所以f(x)的极大值为f(-3)=6 e3.12.函数f(x)=ax3-6ax2+b在区间[-1,2]上的最大值为3,最小值为-29(a>0),则a,b的值为()A.a=2,b=-29 B.a=3,b=2C.a=2,b=3 D.以上都不对答案 C解析函数f(x)的导数f′(x)=3ax2-12ax=3ax(x-4),因为a>0,所以由f′(x)<0,计算得出0<x<4,此时函数单调递减,由f′(x)>0,计算得出x>4或x<0,此时函数单调递增,即函数在[-1,0]上单调递增,在[0,2]上单调递减,即函数在x=0处取得极大值同时也是最大值,则f(0)=b=3,则f(x)=ax3-6ax2+3,f(-1)=-7a+3,f(2)=-16a+3,则f(-1)>f(2),即函数的最小值为f(2)=-16a+3=-29,计算得出a=2,b=3.13.(2021·全国乙卷)设a≠0,若x=a为函数f(x)=a(x-a)2(x-b)的极大值点,则() A.a<b B.a>bC.ab<a2D.ab>a2答案 D解析当a>0时,根据题意画出函数f(x)的大致图象,如图1所示,观察可知b>a.图1当a <0时,根据题意画出函数f (x )的大致图象,如图2所示,观察可知a >b .图2综上,可知必有ab >a 2成立.14.(2022·河南多校联考)已知函数f (x )=2ln x ,g (x )=x +2,若f (x 1)=g (x 2),则x 1-x 2的最小值为______.答案 4-2ln 2解析 设f (x 1)=g (x 2)=t ,即2ln x 1=t ,x 2+2=t ,解得x 1=2e t ,x 2=t -2,所以x 1-x 2=2e t -t +2,令h (t )=2e t -t +2,则h ′(t )=21e 2t -1, 令h ′(t )=0,解得t =2ln 2,当t <2ln 2时,h ′(t )<0,当t >2ln 2时,h ′(t )>0,所以h (t )在(-∞,2ln 2)上单调递减,在(2ln 2,+∞)上单调递增,所以h (t )的最小值为h (2ln 2)=e ln 2-2ln 2+2=4-2ln 2,所以x 1-x 2的最小值为4-2ln 2.15.(多选)已知函数f (x )=x ln x +x 2,x 0是函数f (x )的极值点,以下几个结论中正确的是( )A .0<x 0<1eB .x 0>1eC .f (x 0)+2x 0<0D .f (x 0)+2x 0>0答案 AD解析 函数f (x )=x ln x +x 2(x >0),∴f ′(x )=ln x +1+2x ,∵x 0是函数f (x )的极值点,∴f ′(x 0)=0,即ln x 0+1+2x 0=0,∴f ′⎝⎛⎭⎫1e =2e >0,当x >1e时,f ′(x )>0, ∵当x →0时,f ′(x )→-∞,∴0<x 0<1e,即A 正确,B 不正确; f (x 0)+2x 0=x 0ln x 0+x 20+2x 0=x 0(ln x 0+x 0+2)=x 0(1-x 0)>0,即D 正确,C 不正确.16.已知函数f (x )=x 2-2x +a ln x (a >0).(1)求函数f (x )的单调递增区间;(2)若函数f (x )有两个极值点x 1,x 2,x 1<x 2,不等式f (x 1)≥mx 2恒成立,求实数m 的取值范围.解 (1)f ′(x )=2x -2+a x =2x 2-2x +a x,x >0, 一元二次方程2x 2-2x +a =0的Δ=4(1-2a ),①当a ≥12时,f ′(x )≥0,f (x )在(0,+∞)上单调递增; ②当0<a <12时,令f ′(x )=0, 得x 1=1-1-2a 2>0,x 2=1+1-2a 2>0, 所以当0<x <1-1-2a 2时, f ′(x )>0,f (x )单调递增, 当1-1-2a 2<x <1+1-2a 2时, f ′(x )<0,f (x )单调递减,当x >1+1-2a 2时,f ′(x )>0,f (x )单调递增. 综上所述,当a ≥12时,f (x )的单调递增区间为(0,+∞),当0<a <12时,f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,1-1-2a 2,⎝ ⎛⎭⎪⎫1+1-2a 2,+∞. (2)由(1)知,0<a <12,x 1+x 2=1,x 1x 2=a 2,则0<x 1<12<x 2, 由f (x 1)≥mx 2恒成立,得x 21-2x 1+a ln x 1≥mx 2,即(1-x 2)2-2(1-x 2)+2(1-x 2)x 2ln(1-x 2)≥mx 2,即m ≤x 2-1x 2+2(1-x 2)ln(1-x 2), 记h (x )=x -1x+2(1-x )ln(1-x ), 1>x >12, 则h ′(x )=1x 2-2ln(1-x )-1>0⎝⎛⎭⎫1>x >12, 故h (x )在⎝⎛⎭⎫12,1上单调递增,h ⎝⎛⎭⎫12=-32-ln 2, 故m ≤-32-ln 2.。
专题15导数与函数的极值最值(基础训练)(原卷版)

专题15 导数与函数的极值、最值[基础题组练]1.(2020·辽宁沈阳一模)设函数f (x )=x e x +1,则( )A .x =1为f (x )的极大值点B .x =1为f (x )的极小值点C .x =-1为f (x )的极大值点D .x =-1为f (x )的极小值点2.函数y =x e x 在[0,2]上的最大值是( ) A.1eB .2e 2C .0D .12e 3.(2020·广东惠州4月模拟)设函数f (x )在R 上可导,其导函数为f ′(x ),且函数f (x )在x =-2处取得极小值,则函数y =x ·f ′(x )的图象可能是( )4.(2020·河北石家庄二中期末)若函数f (x )=(1-x )(x 2+ax +b )的图象关于点(-2,0)对称,x 1,x 2分别是f (x )的极大值点与极小值点,则x 2-x 1=( )A .- 3B .2 3C .-2 3D . 35.已知函数f (x )=x 3+3x 2-9x +1,若f (x )在区间[k ,2]上的最大值为28,则实数k 的取值范围为( )A .[-3,+∞)B .(-3,+∞)C .(-∞,-3)D .(-∞,-3]6.函数f (x )=x 3+bx 2+cx +d 的大致图象如图所示,则x 21+x 22=________.7.若函数f (x )=x 3-3ax 在区间(-1,2)上仅有一个极值点,则实数a 的取值范围为________.8.函数f (x )=x 3-3a 2x +a (a >0)的极大值是正数,极小值是负数,则a 的取值范围是________.9.已知函数f (x )=13x 3-12(a 2+a +2)x 2+a 2(a +2)x ,a ∈R .(1)当a =-1时,求函数y =f (x )的单调区间;(2)求函数y =f (x )的极值点.10.已知函数f (x )=ln x x -1.(1)求函数f (x )的单调区间;(2)设m >0,求函数f (x )在区间[m ,2m ]上的最大值.[综合题组练]1.(2020·重庆模拟)已知函数f (x )=2e f ′(e)ln x -x e (e 是自然对数的底数),则f (x )的极大值为() A .2e -1 B .-1eC .1D .2ln 22.若函数f (x )=13x 3+x 2-23在区间(a ,a +5)上存在最小值,则实数a 的取值范围是( )A .[-5,0)B .(-5,0)C .[-3,0)D .(-3,0)3.(2020·河南驻马店模拟)已知函数f (x )=⎩⎪⎨⎪⎧2x 3+3x 2+2,x ≤0,e ax ,x >0在[-2,2]上的最大值为3,则实数a 的取值范围是( )A .(ln 3,+∞)B .⎣⎡⎦⎤0,12ln 3 C.⎝⎛⎦⎤-∞,12ln 3 D .(-∞,ln 3]4.若x =-2是函数f (x )=(x 2+ax -1)e x -1的极值点,则a =________,f (x )的极小值为________.5.(2020·石家庄市质量检测)已知函数f (x )=a e x -sin x ,其中a ∈R ,e 为自然对数的底数.(1)当a =1时,证明:∀x ∈[0,+∞),f (x )≥1;(2)若函数f (x )在⎝⎛⎭⎫0,π2上存在极值,求实数a 的取值范围. 6.已知函数f (x )=a ln x +1x(a >0). (1)求函数f (x )的单调区间和极值;(2)是否存在实数a ,使得函数f (x )在[1,e]上的最小值为0?若存在,求出a 的值;若不存在,请说明理由.。
高中数学人教A版选修1-1习题:第三章3.3-3.3.2函数的极值与导数 Word版含答案

第三章导数及其应用3.3 导数在研究函数中的应用3.3.2 函数的极值与导数A级基础巩固一、选择题1.可导“函数y=f(x)在一点的导数值为0”是“函数y=f(x)在这点取得极值”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:对于f(x)=x3,f′(x)=3x2,f′(0)=0,不能推出f(x)在x=0处取极值,反之成立.答案:B2.已知可导函数f(x),x∈R,且仅在x=1处,f(x)存在极小值,则( )A.当x∈(-∞,1)时,f′(x)>0;当x∈(1,+∞)时,f′(x)<0B.当x∈(-∞,1)时,f′(x)>0;当x∈(1,+∞)时,f′(x)>0C.当x∈(-∞,1)时,f′(x)<0;当x∈(1,+∞)时,f′(x)>0D.当x∈(-∞,1)时,f′(x)<0;当x∈(1,+∞)时,f′(x)<0解析:因为f(x)在x=1处存在极小值,所以x<1时,f′(x)<0,x>1时,f′(x)>0.答案:C3.函数y=x3-3x2-9x(-2<x<2)有( )A.极大值5,极小值-27B.极大值5,极小值-11C.极大值5,无极小值D.极小值-27,无极大值解析:由y′=3x2-6x-9=0,得x=-1或x=3,当x<-1或x>3时,y′>0;当-1<x<3时,y′<0.故当x=-1时,函数有极大值5;x取不到3,故无极小值.答案:C4.已知f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则a的取值范围为( ) A.-1<a<2 B.-3<a<6C.a<-1或a>2 D.a<-3或a>6解析:f′(x)=3x2+2ax+(a+6),因为f(x)既有极大值又有极小值,那么Δ=(2a)2-4×3×(a+6)>0,解得a>6或a<-3.答案:D5.设a∈R,若函数y=e x+ax,x∈R有大于零的极值点,则( )A.a<-1 B.a>-1C.a>-1eD.a<-1e解析:y′=e x+a=0,e x=-a,因为x>0,所以 e x>1,即-a>1,所以a<-1.答案:A二、填空题6.函数f(x)=x3-6x+a的极大值为________,极小值为________.解析:f′(x)=x2-6令f′(x)=0,得x=-2或x=2,所以f(x)极大值=f(-2)=a+42,f(x)极小值=f(2)=a-4 2.答案:a+42,a-4 2.7.已知函数y=x3+ax2+bx+27在x=-1处取极大值,在x=3处取极小值,则a=________,b=________.解析:y′=3x2+2ax+b,根据题意知,-1和3是方程3x2+2ax+b=0的两根,由根与系数的关系可求得a=-3,b=-9.经检验,符合题意.答案:-3 -98.已知函数f(x)=ax3+bx2+cx,其导函数y=f′(x)的图象经过点(1,0),(2,0),如图所示.则下列说法中不正确的是________.①当x =32时,函数取得极小值;②f (x )有两个极值点;③当x =2时,函数取得极小值; ④当x =1时,函数取得极大值.解析:由图象可知当x ∈(-∞,1)时,f ′(x )>0;当x ∈(1,2)时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0,所以f (x )有两个极值点1和2,且当x =2时,函数取得极小值,当x =1时,函数取得极大值.故只有①不正确.答案:① 三、解答题9.已知f (x )=13x 3-12x 2-2x ,求f (x )的极大值与极小值.解:由已知得f (x )的定义域为R.f ′(x )=x 2-x -2=(x +1)(x -2).令f ′(x )=0,得x =-1或x =2.当x 变化时,f ′(x )与f (x )的变化情况如下表:↗↘↗因此,当x =-1时,f (x )取得极大值,且极大值为f (-1)=3×(-1)3-2×(-1)2-2×(-1)=76;当x =2时,f (x )取得极小值,且极小值为f (2)=13×23-12×22-2×2=-103.从而f (x )的极大值为76,极小值为-103.10.已知函数f (x )=x 3+ax 2+bx +a 2在x =1处取极值10,求f (2)的值. 解:f ′(x )=3x 2+2ax +b .由题意得⎩⎪⎨⎪⎧f (1)=10,f ′(1)=0,即⎩⎪⎨⎪⎧a 2+a +b +1=10,2a +b +3=0, 解得⎩⎪⎨⎪⎧a =4,b =-11或⎩⎪⎨⎪⎧a =-3,b =3. 当a =4,b =-11时,令f ′(x )=0,得x 1=1,x 2=-113.当x 变化时,f ′(x ),f (x )的变化情况如下表:↗↘↗当a =-3,b =3时,f ′(x )=3x 2-6x +3=3(x -1)2≥0, 所以 f (x )在x =1处没有极值,不合题意. 综上可知f (2)=18.B 级 能力提升1.等差数列{a n }中的a 1,a 4 031是函数f (x )=13x 3-4x 2+6x -1的极值点,则log 2a 2 016的值为( )A .2B .3C .4D .5解析:因为f ′(x )=x 2-8x +6,且a 1,a 4 031是函数f (x )=13x 3-4x 2+6x -1的极值点,所以a 1,a 4 031是方程x 2-8x +6=0的两个实数根,则a 1+a 4 031=8.而{a n }为等差数列,所以a 1+a 4 031=2a 2 016,即a 2 016=4,从而log 2a 2 016=log 24=2.故选A.答案:A2.若函数f (x )=x 3+3ax 2+3(a +2)x +1有极大值和极小值,则实数a 的取值范围是________.解析:函数f (x )为三次函数,其导函数f ′(x )=3x 2+6ax +3(a +2)为二次函数,要使函数f (x )既有极大值又有极小值,需f ′(x )=0有两个不等的实数根,所以Δ=(6a )2-4×3×3(a +2)>0,解得a <-1或a >2.答案:(-∞,-1)∪(2,+∞)3.设a 为实数,函数f (x )=x 3-x 2-x +a . (1)求f (x )的极值;(2)当a 在什么范围内取值时,曲线y =f (x )与x 轴仅有一个交点? 解:(1)f ′(x )=3x 2-2x -1. 令f ′(x )=0,则x =-13或x =1.当x 变化时,f ′(x ),f (x )的变化情况如下表:↗↘↗所以f (x )的极大值是f ⎝ ⎛⎭⎪⎫-3=27+a ,极小值是f (1)=a -1.(2)函数f (x )=x 3-x 2-x +a =(x -1)2(x +1)+a -1, 由此可知,x 取足够大的正数时, 有f (x )>0,x 取足够小的负数时, 有f (x )<0,所以曲线y =f (x )与x 轴至少有一个定点.由(1)知f (x )最大值=f ⎝ ⎛⎭⎪⎫-13=527+a ,f (x )极小值=f (1)=a -1.因为曲线y =f (x )与x 轴仅有一个交点, 所以f (x )极大值<0或f (x )极小值>0, 即527+a <0或a -1>0,所以a <-527或a >1, 所以当a ∈⎝ ⎛⎭⎪⎫-∞,-527∪(1,+∞)时,曲线y =f (x )与x 轴仅有一个交点.。
(完整版)导数--函数的极值练习题

导数--函数的极值练习题一、选择题1.下列说法正确的是( )A.当f ′(x 0)=0时,则f (x 0)为f (x )的极大值B.当f ′(x 0)=0时,则f (x 0)为f (x )的极小值C.当f ′(x 0)=0时,则f (x 0)为f (x )的极值D.当f (x 0)为函数f (x )的极值且f ′(x 0)存在时,则有f ′(x 0)=0 2.下列四个函数,在x =0处取得极值的函数是 ( )①y =x 3 ②y =x 2+1 ③y =|x | ④y =2x A.①② B.②③ C.③④ D.①③ 3.函数y =216x x+的极大值为( ) A.3 B.4 C.2 D.54.函数y =x 3-3x 的极大值为m ,极小值为n ,则m +n 为( )A.0 B.1 C.2 D.45.y =ln 2x +2ln x +2的极小值为( ) A.e -1 B.0 C.-1 D.1 6.y =2x 3-3x 2+a 的极大值为6,那么a 等于( )A.6B.0C.5D.17.对可导函数,在一点两侧的导数异号是这点为极值点的A.充分条件B.必要条件C.充要条件D.既不充分又不必要条件 8.下列函数中, 0=x 是极值点的函数是( )A.3x y -= B.x y 2cos = C.x x y -=tan D.x y 1=9.下列说法正确的是( )A. 函数在闭区间上的极大值一定比极小值大;B. 函数在闭区间上的最大值一定是极大值;C. 对于12)(23+++=x px x x f ,若6||<p ,则)(x f 无极值;D.函数)(x f 在区间),(b a 上一定存在最值.10.函数223)(a bx ax x x f +--=在1=x 处有极值10, 则点),(b a 为( ) A.)3,3(- B.)11,4(- C. )3,3(-或)11,4(- D.不存在 11.函数|6|)(2--=x x x f 的极值点的个数是( )A. 0个B. 1个C. 2个D.3个 12.函数xxx f ln )(=( ) A.没有极值 B.有极小值 C. 有极大值 D.有极大值和极小值二.填空题:13.函数x x x f ln )(2=的极小值是 14.定义在]2,0[π上的函数4cos 2)(2-+=x ex f x的极值情况是15.函数)0(3)(3>+-=a b ax x x f 的极大值为6,极小值为2,则)(x f 的减区间是16.下列函数①32x y =,②x y tan =,③|1|3++=x x y ,④xxe y =,其中在其定义区间上存在极值点的函数序号是17.函数f (x )=x 3-3x 2+7的极大值为___________. 18.曲线y =3x 5-5x 3共有___________个极值.19.函数y =-x 3+48x -3的极大值为___________;极小值为___________. 20.若函数y =x 3+ax 2+bx +27在x =-1时有极大值,在x =3时有极小值,则a =___________,b =___________.三.解答题21.已知函数f (x )=x 3+ax 2+bx +c ,当x =-1时,取得极大值7;当x =3时,取得极小值.求这个极小值及a 、b 、c 的值.22.函数f (x )=x +xa+b 有极小值2,求a 、b 应满足的条件.23.已知函数f(x)=x 3+ax 2+bx+c 在x =2处有极值,其图象在x =1处的切线垂直于直线y =31x -2 (1)设f(x)的极大值为p ,极小值为q ,求p-q 的值;(2)若c 为正常数,且不等式f(x)>mx 2在区间(0,2)内恒成立,求实数m 的取值范围。
人教a版数学【选修2-2】练习:1.3.2函数的极值与导数(含答案)

选修2-2 第一章 1.3 1.3.2一、选择题1.已知函数f (x )在点x 0处连续,下列命题中,正确的是( ) A .导数为零的点一定是极值点B .如果在点x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极小值C .如果在点x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值D .如果在点x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是极大值 [答案] C[解析] 导数为0的点不一定是极值点,例如f (x )=x 3,f ′(x )=3x 2,f ′(0)=0,但x =0不是f (x )的极值点,故A 错;由极值的定义可知C 正确,故应选C.2.(2013·北师大附中高二期中)函数y =14x 4-13x 3的极值点的个数为( )A .0B .1C .2D .3[答案] B[解析] y ′=x 3-x 2=x 2(x -1),由y ′=0得x 1=0,x 2=1. 当x 变化时,y ′、y 的变化情况如下表3.函数y =ax 3+bx 2取得极大值和极小值时的x 的值分别为0和13,则( )A .a -2b =0B .2a -b =0C .2a +b =0D .a +2b =0[答案] D[解析] y ′=3ax 2+2bx 由题设0和13是方程3ax 2+2bx =0的两根,∴a +2b =0.4.若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,则ab 的最大值等于( )A .2B .3C .6D .9[答案] D[解析] f ′(x )=12x 2-2ax -2b =0的一根为x =1,即12-2a -2b =0. ∴a +b =6,∴ab ≤(a +b 2)2=9,当且仅当a =b =3时“=”号成立.5.已知实数a 、b 、c 、d 成等比数列,且曲线y =3x -x 3的极大值点坐标为(b ,c ),则ad 等于( )A .2B .1C .-1D .-2[答案] A[解析] ∵a 、b 、c 、d 成等比数列,∴ad =bc , 又(b ,c )为函数y =3x -x 3的极大值点, ∴c =3b -b 3,且0=3-3b 2,∴⎩⎪⎨⎪⎧ b =1,c =2,或⎩⎪⎨⎪⎧b =-1,c =-2.∴ad =2. 6.(2013·辽宁实验中学期中)函数f (x )=-x e x (a <b <1),则( )A .f (a )=f (b )B .f (a )<f (b )C .f (a )>f (b )D .f (a ),f (b )的大小关系不能确定[答案] C[解析] f ′(x )=(-x e x )′=(-x )′·e x -(-x )·(e x )′(e x )2=x -1e x. 当x <1时,f ′(x )<0,∴f (x )为减函数, ∵a <b <1,∴f (a )>f (b ). 二、填空题7.(2014·福建安溪一中、养正中学联考)曲线y =x (3ln x +1)在点(1,1)处的切线方程为________.[答案] 4x -y -3=0[解析] y ′|x =1=(3ln x +4)|x =1=4,∴切线方程为y -1=4(x -1),即4x -y -3=0. 8.(2014·河北冀州中学期中)若函数f (x )=x +a sin x 在R 上递增,则实数a 的取值范围为________.[答案] [-1,1][解析] f ′(x )=1+a cos x ,由条件知f ′(x )≥0在R 上恒成立,∴1+a cos x ≥0,a =0时显然成立;a >0时,∵-1a ≤cos x 恒成立,∴-1a ≤-1,∴a ≤1,∴0<a ≤1;a <0时,∵-1a≥cos x 恒成立,∴-1a≥1,∴a ≥-1,即-1≤a <0,综上知-1≤a ≤1.9.设x =1与x =2是函数f (x )=a ln x +bx 2+x 的两个极值点,则常数a =________. [答案] -23[解析] f ′(x )=ax +2bx +1,由题意得⎩⎪⎨⎪⎧a +2b +1=0,a 2+4b +1=0.∴a =-23.三、解答题10.已知f (x )=ax 3+bx 2+cx (a ≠0)在x =±1时取得极值,且f (1)=-1. (1)试求常数a 、b 、c 的值;(2)试判断x =±1时函数取得极小值还是极大值,并说明理由. [解析] (1)由f ′(-1)=f ′(1)=0,得3a +2b +c =0,3a -2b +c =0. 又f (1)=-1,∴a +b +c =-1. ∴a =12,b =0,c =-32.(2)f (x )=12x 3-32x ,∴f ′(x )=32x 2-32=32(x -1)(x +1).当x <-1或x >1时,f ′(x )>0;当-1<x <1时,f ′(x )<0,∴函数f (x )在(-∞,-1)和(1,+∞)上是增函数,在(-1,1)上为减函数.∴当x =-1时,函数取得极大值f (-1)=1;当x =1时,函数取得极小值f (1)=-1. [点评] 若函数f (x )在x 0处取得极值,则一定有f ′(x 0)=0,因此我们可根据极值得到两个方程,再由f (1)=-1得到一个方程,解上述方程组成的方程组可求出参数.一、选择题11.(2014·山东省德州市期中)已知函数f (x )=e x (sin x -cos x ),x ∈(0,2013π),则函数f (x )的极大值之和为( )A .e 2π(1-e 2012π)e 2π-1B .e π(1-e 2012π)1-e 2πC .e π(1-e 1006π)1-e 2πD .e π(1-e 1006π)1-e π[答案] B[解析] f ′(x )=2e x sin x ,令f ′(x )=0得sin x =0,∴x =k π,k ∈Z ,当2k π<x <2k π+π时,f ′(x )>0,f (x )单调递增,当(2k -1)π<x <2k π时,f ′(x )<0,f (x )单调递减,∴当x =(2k +1)π时,f (x )取到极大值,∵x ∈(0,2013π),∴0<(2k +1)π<2013π,∴0≤k <1006,k ∈Z .∴f (x )的极大值之和为S =f (π)+f (3π)+f (5π)+…+f (2011π)=e π+e 3π+e 5π+…+e 2011π=e π[1-(e 2π)1006]1-e 2π=e π(1-e 2012π)1-e 2π,故选B.12.已知函数f (x )=x 3-px 2-qx 的图象与x 轴切于(1,0)点,则f (x )的极大值、极小值分别为( )A .427,0B .0,427C .-427,0D .0,-427[答案] A[解析] f ′(x )=3x 2-2px -q , 由f ′(1)=0,f (1)=0得,⎩⎪⎨⎪⎧ 3-2p -q =0,1-p -q =0,解得⎩⎪⎨⎪⎧p =2,q =-1,∴f (x )=x 3-2x 2+x . 由f ′(x )=3x 2-4x +1=0得x =13或x =1,易得当x =13时f (x )取极大值427.当x =1时f (x )取极小值0.13.(2014·西川中学高二期中)已知f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则a 的取值范围是( )A .-1<a <2B .-3<a <6C .a <-3或a >6D .a <-1或a >2[答案] C[解析] f ′(x )=3x 2+2ax +a +6, ∵f (x )有极大值与极小值, ∴f ′(x )=0有两不等实根,∴Δ=4a 2-12(a +6)>0,∴a <-3或a >6. 二、填空题14.已知函数y =x 3+ax 2+bx +27在x =-1处有极大值,在x =3处有极小值,则a =________________,b =________.[答案] -3 -9[解析] y ′=3x 2+2ax +b ,方程y ′=0有根-1及3,由韦达定理应有⎩⎨⎧-1+3=-2a3,-3=b 3.∴⎩⎪⎨⎪⎧a =-3,b =-9.经检验a =-3,b =-9符合题意. 三、解答题15.(2013·新课标Ⅰ文,20)已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4.(1)求a ,b 的值;(2)讨论f (x )的单调性,并求f (x )的极大值. [解析] (1)f ′(x )=e x (ax +a +b )-2x -4. 由已知得f (0)=4,f ′(0)=4,故b =4,a +b =8. 从而a =4,b =4.(2)由(1)知,f (x )=4e x (x +1)-x 2-4x , f ′(x )=4e x (x +2)-2x -4=4(x +2)(e x -12).令f ′(x )=0得,x =-ln2或x =-2.从而当x ∈(-∞,-2)∪(-ln2,+∞)时,f ′(x )>0;当x ∈(-2,-ln2)时,f ′(x )<0. 故f (x )在(-∞,-2),(-ln2,+∞)上单调递增,在(-2,-ln2)上单调递减. 当x =-2时,函数f (x )取得极大值,极大值为f (-2)=4(1-e -2).16.(2014·三峡名校联盟联考)已知函数f (x )=ln x +x 2+ax . (1)当a =-3时,求函数y =f (x )的极值点;(2)当a =-4时,求方程f (x )+x 2=0在(1,+∞)上的根的个数. [解析] (1)f (x )=ln x +x 2-3x ,f ′(x )=1x +2x -3,令f ′(x )=0,则x =1或x =12,由f ′(x )>0得0<x <12,或x >1,∴f (x )在(0,12)和(1,+∞)上单调递增,在(12,1)上单调递减,∴f (x )的极大值点x =12,极小值点x =1.(2)当a =-4时,f (x )+x 2=0,即ln x +2x 2-4x =0, 设g (x )=ln x +2x 2-4x ,则g ′(x )=1x +4x -4=4x 2-4x +1x ≥0,则g (x )在(0,+∞)上单调递增,又g (1)=-2<0,g (2)=ln2>0, 所以g (x )在(1,+∞)上有唯一实数根.17.(2014·温州八校联考)已知函数f (x )=-x 3+ax 2+b (a 、b ∈R ). (1)求函数f (x )的单调递增区间;(2)若对任意a ∈[3,4],函数f (x )在R 上都有三个零点,求实数b 的取值范围. [解析] (1)∵f (x )=-x 3+ax 2+b , ∴f ′(x )=-3x 2+2ax =-3x (x -2a 3).当a =0时,f ′(x )≤0函数f (x )没有单调递增区间; 当a >0时,令f ′(x )>0,得0<x <2a3,函数f (x )的单调递增区间为(0,23a );当a <0时,令f ′(x )>0,得2a3<x <0, 函数f (x )的单调递增区间为(23a,0).(2)由(1)知,a ∈[3,4]时,x 、f ′(x )、f (x )的取值变化情况如下:∴f (x )极小值=f (0)=b ,f (x )极大值=f (2a 3)=4a 327+b ,∵对任意a ∈[3,4],f (x )在R 上都有三个零点, ∴⎩⎪⎨⎪⎧ f (0)<0,f (2a 3)>0,即⎩⎪⎨⎪⎧b <0,4a 327+b >0.得-4a 327<b <0.∵对任意a ∈[3,4],b >-4a 327恒成立,∴b >(-4a 327)max =-4×3327=-4.∴实数b 的取值范围是(-4,0).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数极值与导数(基础)
1.下列说法正确的是
A.当f ′(x 0)=0时,则f (x 0)为f (x )的极大值
B.当f ′(x 0)=0时,则f (x 0)为f (x )的极小值
C.当f ′(x 0)=0时,则f (x 0)为f (x )的极值
D.当f (x 0)为函数f (x )的极值且f ′(x 0)存在时,则有f ′(x 0)=0 2、函数()f x 的定义域为开区间()a b ,,导函数()f x '在()a b ,内的图象如图所示,则函数()f x 在开区间()a b ,内有极小值点( ) A .1个 B .2个 C .3个 D .4个 3、函数3()13f x x x =+-有( )
A .极小值-1,极大值1
B .极小值-2,极大值3
C .极小值-2,极大值2
D .极小值-1,极大值3 4、如果函数()y f x =的导函数的图象如图所示,给出下列判断:
①函数()y f x =在区间13,2⎛⎫
-- ⎪⎝
⎭内单调递增; ②函数()y f x =在区间1,32⎛⎫
- ⎪⎝⎭
内单调递减;
③函数()y f x =在区间(4,5)内单调递增;
④当4x =时,函数()y f x =有极小值; ⑤当12
x =-时,函数()y f x =有极大值; 则上述判断中正确的是___________.
5、函数3223y x x a =-+的极大值是6,那么实数a 等于_______
6、函数x x
x f ln 1
)(+=
的极小值等于_______. 7、求下列函数的极值:
(1).x x x f 12)(3-=;(2).2()x f x x e =;(3)..21
2)(2-+=
x x
x f 8、已知)0()(23≠++=a cx bx ax x f 在1±=x 时取得极值,且1)1(-=f .
(1).试求常数a 、b 、c 的值;
(2).试判断1±=x 是函数的极小值还是极大值,并说明理由.
9、已知函数()()3220f x x ax x a =+++>的极大值点和极小值点都在区间()1,1-内, 则实数a 的取值范围是.
参考答案
DAD ③④ 6 1
7解:(1).函数定义域为R .).2)(2(3123)(2-+=-='x x x x f
令0)(='x f ,得2±=x .
当2>x 或2-<x 时,0)(>'x f ,∴函数在()2,-∞-和()+∞,2上是增函数; 当22<<-x 时,0)(<'x f ,∴函数在(-2,2)上是减函数.
∴当2-=x 时,函数有极大值16)2(=-f ,当2=x 时,函数有极小值
.16)2(-=f
(2).函数定义域为R .2()2+(2+)x x x f x xe x e x x e '== 令0)(='x f ,得0=x 或2x =-.
当2x <-或0x >时,()0f x '>,∴函数)(x f 在(),2-∞-和()0,+∞上是增函数; 当20x -<<时,()0f x '<,∴函数)(x f 在(-2,0)上是减函数. ∴当0=x 时,函数取得极小值0)0(=f ,当2x =-时,函数取得极大值
24)2(-=e f .
(3).函数的定义域为R .
.)
1()1)(1(2)1(22)1(2)(2
2222++-=+⋅-+='x x x x x x x x f 令0)(='x f ,得1±=x . 当1-<x 或1>x 时,0)(<'x f ,∴函数)(x f 在()1,-∞-和()+∞,1上是减函数; 当11<<-x 时,0)(>'x f ,∴函数)(x f 在(-1,1)上是增函数. ∴当1-=x 时,函数取得极小值3)1(-=-f ,当1=x 时,函数取得极大值
.1)1(-=f
8解:(1)c bx ax x f ++='23)(2.1±=x Θ是函数)(x f 的极值点, ∴1±=x 是方程0)(='x f ,即0232=++c bx ax 的两根, 由根与系数的关系,得
20, 31,
3b a
c a
⎧-=⎪⎪⎨
⎪=-⎪⎩又1)1(-=f ,∴1-=++c b a , 解得23,0,21-===c b a . (2).x x x f 2321)(3-=
,∴).1)(1(2
3
2323)(2+-=-='x x x x f 当1-<x 或1>x 时,0)(>'x f ,当11<<-x 时,.0)(<'x f
∴函数)(x f 在()1,-∞-和()+∞,1上是增函数,在(-1,1)上是减函数. ∴当1-=x 时,函数取得极大值1)1(=-f , 当1=x 时,函数取得极小值1)1(-=f . 9解:。