材料力学(I)第三章(配孙训方版)(第五版)

合集下载

材料力学1第五版第三章习题答案

材料力学1第五版第三章习题答案

1 习题1答案
2 习题2答案
详细解答第一章的习题,从理论到实际应用。
解答第二章的习题,强化弹性力学的概念和 计算能力。
3 习题3答案
全面解答第三章的习题,巩固弹案
提供实用的解答方法和策略,帮助学生更好 地理解弹性材料力学。
材料力学1第五版第三章 习题答案
第三章概述
弹性材料力学基础
学习材料弹性力学的基本概念和原理。
线弹性材料理论
研究材料在弹性范围内的变形行为和力学性质。
弹性常数和应力应变关系
探讨材料弹性属性与应力应变关系的数学描述。
弹性体在轴对称应力状态下的应变计算
计算轴对称应力状态下材料的应变情况。
第三章习题答案

材料力学第五版课后题答案孙训芳

材料力学第五版课后题答案孙训芳

材料力学第五版课后题答案孙训芳材料力学第五版课后答案(孙训芳编)[习题2-2]一打入基地内的木桩如图所示,杆轴单位长度的摩擦力f=kx**2,试做木桩的后力图。

解:由题意可得:[习题2-3]石砌桥墩的墩身高,其横截面面尺寸如图所示。

荷载,材料的密度,试求墩身底部横截面上的压应力。

解:墩身底面的轴力为:2-3图墩身底面积:因为墩为轴向压缩构,所以其底面上的正应力均匀分布。

[习题2-7]图示圆锥形杆受轴向拉力作用,试求杆的伸长。

2-7图解:取长度为截离体(微元体)。

则微元体的伸长量为:,,,,,因此,[习题2-10]受轴向拉力F作用的箱形薄壁杆如图所示。

已知该材料的弹性常数为,试求C与D两点间的距离改变量。

解:式中,,故:,,[习题2-11]图示结构中,AB为水平放置的刚性杆,杆1,2,3材料相同,其弹性模量,已知,,,。

试求C点的水平位移和铅垂位移。

变形协调图受力图2-11图解:(1)求各杆的轴力以AB杆为研究对象,其受力图如图所示。

因为AB平衡,所以,,由对称性可知,,(2)求C点的水平位移与铅垂位移。

A点的铅垂位移:B点的铅垂位移:1、2、3杆的变形协(谐)调的情况如图所示。

由1、2、3杆的变形协(谐)调条,并且考虑到AB为刚性杆,可以得到C点的水平位移:C点的铅垂位移:[习题2-12]图示实心圆杆AB和AC在A点以铰相连接,在A点作用有铅垂向下的力。

已知杆AB和AC的直径分别为和,钢的弹性模量。

试求A点在铅垂方向的位移。

解:(1)求AB、AC杆的轴力以节点A为研究对象,其受力图如图所示。

由平衡条得出::………………………(a):………………(b)(a)(b)联立解得:;(2)由变形能原理求A点的铅垂方向的位移式中,;;故:[习题2-13]图示A和B两点之间原有水平方向的一根直径的钢丝,在钢丝的中点C加一竖向荷载F。

已知钢丝产生的线应变为,其材料的弹性模量,钢丝的自重不计。

试求:(1)钢丝横截面上的应力(假设钢丝经过冷拉,在断裂前可认为符合胡克定律);(2)钢丝在C点下降的距离;(3)荷载F的值。

材料力学(I)第三章 材料力学 孙训方

材料力学(I)第三章 材料力学 孙训方

例题3例题 -1 一传动轴如图,转速 n = 300 r
18
材 料 力 学 Ⅰ 电 子 教 案
第三章 扭转
解:1. 计算作用在各轮上的外力偶矩
500 M 1 = (9.55 × 10 × ) N ⋅ m = 15.9 ×103 N ⋅ m = 15.9 kN ⋅ m 300 150 3 M 2 = M 3 = (9.55 × 10 × ) N ⋅ m = 4.78 ×103 N ⋅ m = 4.78 kN ⋅ m 300 200 3 M 4 = (9.55 ×10 × ) N ⋅ m = 6.37 × 103 N ⋅ m = 6.37 kN ⋅ m 300
= {M e }N⋅m × ωrad ×10 −3
s
60 因此,在已知传动轴的转速n(亦即传动轴上每个轮的
转速)和主动轮或从动轮所传递的功率P之后,即可由下式 计算作用于每一轮上的外力偶矩:
{M e }N⋅m
14
= {M e }N⋅m × 2π ×
{n} r
min
×10 −3
{P}kw × 103 × 60 3 {P}kw = = 9.55 × 10 2 π{n} r {n} r
33
(τ d y d z )d x = (τ ′ d x d z ) d y
可得: τ = τ '
∑M
z
=0
材 料 力 学 Ⅰ 电 子 教 案
第三章 扭转
即单元体的两个相互垂直的面上,与该两个面的交线 垂直的切应力τ 和τ′ 数值相等,且均指向(或背离)该两个 面的交线——切应力互等定理 切应力互等定理。 切应力互等定理
第三章 扭转
4.78
6.37
15.9
4.78

材料力学第五版第三章PPT课件

材料力学第五版第三章PPT课件
画图方法:
取一直角坐标系,令横坐标平 行于轴的轴线,表示横截面的位置, 纵坐标表示扭矩的代数值,然后将 各横截面的扭矩按代数值标注于坐 标上,即得此轴的扭矩图。
由图可以看出:在集中力偶的作用面,扭矩发生突变,其突变值
等于集中力偶值的大小。
最新课件
19
第3节 扭转的内力——扭矩与扭矩图
扭矩图的画法步骤:
1.画一条与杆的轴线平行且与杆等长的直线作为基线 2.将杆分段,凡集中力偶作用点处均应取作分段点
3.用截面法,通过平衡方程求出每段杆的扭矩;画受 力图时,截面的扭矩一定要按正的规定来画
4.按大小比例和正负号,将各段杆的扭矩画在基线两 侧,并在图上标出数值和正负号
最新课件
20
附例:一传动轴如图,转速 n300rmin;主动轮输
一、等直圆杆扭转实验观察
1 横截面变形后仍为平面,满足平面截面假设
2 轴向无伸缩,横截面上没有正应力
3 纵向线变形后仍为平行线
最新课件
30
第四节 等直圆杆扭转时的应力·强度条件
二、等直圆杆扭转横截面上的切应力 O1
O2
O1
O2
A B
B’
D
C
C’
dx
a
b
d
b’ c
d
A
B
c’
B’
D
C
C’
dx
1 变形的几何条件
电机传递扭矩 转动机器
匀速转速—n转/分钟
输出功率—Pk千瓦
m
求外力偶矩m
解:
《出发点 —— 计算一分钟的功 W 》
从电机看 WPk(千瓦 6( ) 0 秒 )
从扭矩看
Pk(10牛 00顿/秒 米 ) 6( 0 秒) Wm(牛顿米 ) (弧度)

材料力学的第五版(孙训方)课后题答案及解析

材料力学的第五版(孙训方)课后题答案及解析

材料力学第五版课后答案[习题2-2]一打入基地内的木桩如图所示,杆轴单位长度的摩擦力f=kx**2,试做木桩的后力图。

解:由题意可得:33233110,,3/()3/(/)ll N fdx F kl F k F l F x Fx l dx F x l =====⎰⎰1有3[习题2-3] 石砌桥墩的墩身高m l10=,其横截面面尺寸如图所示。

荷载kN F 1000=,材料的密度3/35.2m kg =ρ,试求墩身底部横截面上的压应力。

解:墩身底面的轴力为:g Al F G F N ρ--=+-=)( 2-3图 )(942.31048.935.210)114.323(10002kN -=⨯⨯⨯⨯+⨯--=墩身底面积:)(14.9)114.323(22m A =⨯+⨯=因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。

MPa kPa m kNA N 34.071.33914.9942.31042-≈-=-==σ[习题2-7] 图示圆锥形杆受轴向拉力作用,试求杆的伸长。

2-7图解:取长度为dx 截离体(微元体)。

则微元体的伸长量为:)()(x EA Fdx l d =∆ ,⎰⎰==∆l l x A dxE F dx x EA F l 00)()(l xr r r r =--121,22112112d x l d d r x l r r r +-=+⋅-=,2211222)(u d x l d d x A ⋅=⎪⎭⎫ ⎝⎛+-=ππ,dx l d d du d x l d d d 2)22(12112-==+-du d d ldx 122-=,)()(22)(221212udu d d l du u d d l x A dx -⋅-=⋅-=ππ 因此,)()(2)()(202100udu d d E Fl x A dx E F dx x EA F l l l l⎰⎰⎰--===∆π lld x l d d d d E Fl u d d E Fl 011221021221)(21)(2⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+--=⎥⎦⎤⎢⎣⎡-=ππ ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+--=21221)(2111221d d l l d d d d E Fl π⎥⎦⎤⎢⎣⎡--=122122)(2d d d d E Fl π214dEd Fl π=[习题2-10] 受轴向拉力F 作用的箱形薄壁杆如图所示。

孙训方材料力学第五版课后习题目答案

孙训方材料力学第五版课后习题目答案

孙训方材料力学第五版课后习题目答案第二章 轴向拉伸和压缩2-1 试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。

(a )解:;; (b )解:;;(c )解: ; 。

(d) 解: 。

[习题2-3] 石砌桥墩的墩身高m l 10=,其横截面面尺寸如图所示。

荷载kN F 1000=,材料的密度3/35.2m kg =ρ,试求墩身底部横截面上的压应力。

解:墩身底面的轴力为:gAl F G F N ρ--=+-=)( 2-3图)(942.31048.935.210)114.323(10002kN -=⨯⨯⨯⨯+⨯--=墩身底面积:)(14.9)114.323(22m A =⨯+⨯=因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。

MPa kPa m kN A N 34.071.33914.9942.31042-≈-=-==σ2-4 图示一混合屋架结构的计算简图。

屋架的上弦用钢筋混凝土制成。

下面的拉杆和中间竖向撑杆用角钢构成,其截面均为两个75mm ×8mm 的等边角钢。

已知屋面承受集度为的竖直均布荷载。

试求拉杆AE 和EG 横截面上的应力。

解:=1) 求内力 取I-I 分离体得(拉)取节点E为分离体,故(拉)2)求应力75×8等边角钢的面积A=11.5 cm2(拉)(拉)2-5图示拉杆承受轴向拉力,杆的横截面面积。

如以表示斜截面与横截面的夹角,试求当,30,45,60,90时各斜截面上的正应力和切应力,并用图表示其方向。

解:2-6 一木桩柱受力如图所示。

柱的横截面为边长200mm的正方形,材料可认为符合胡克定律,其弹性模量E=10 GPa。

如不计柱的自重,试求:(1)作轴力图;(2)各段柱横截面上的应力;(3)各段柱的纵向线应变;(4)柱的总变形。

解:(压)(压)[习题2-7] 图示圆锥形杆受轴向拉力作用,试求杆的伸长。

解:取长度为dx 截离体(微元体)。

则微元体的伸长量为:)()(x EA Fdxl d =∆,⎰=∆lx EA F l 0)(lxr r r r =--121,22112112dx l d d r x l r rr +-=+⋅-=,2211222)(u d x ld d x A ⋅=⎪⎭⎫ ⎝⎛+-=ππ,dx ld d du d x l d dd 2)22(12112-==+-dud d ldx 122-=,)()(22)(221212udu d d l du u dd l x Adx -⋅-=⋅-=ππ因此,)()(2)()(202100u dud d E Fl x A dx E F dx x EA F l l l l⎰⎰⎰--===∆π lld x l d d d d E Fl u d d E Fl 011221021221)(21)(2⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+--=⎥⎦⎤⎢⎣⎡-=ππ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+--=21221)(2111221d d l l d d d d E Fl π2-10 受轴向拉力F 作用的箱形薄壁杆如图所示。

材料力学第五课后题答案(孙训芳)

材料力学第五课后题答案(孙训芳)

材料力学(I)第五版(孙训芳编)甘肃建筑职业技术学院长安大学土木工程材料力学温习材料材料力学第五版课后答案(孙训芳编)4-1试求图示各梁中指定截面上的剪力和弯矩 a (5)=h (4)001100110002222200022132241111223121140,222233RA RB S S q F F a q a q F q a a q aa M q a q a q aF M q a a q a a q a ----==⨯==-⨯==-⨯⨯⨯===⨯-⨯⨯⨯=b (5)=f (4)4-2试写出以下各梁的剪力方程和弯矩方程,并作剪力图和弯矩图 a (5)=a (4)b(5)=b(4)f(5)=f(4)4-3试利用载荷集度,剪力和弯矩间的微分关系做以下各梁的弯矩图和剪力e和f题)(e)(f)(h)4-4试做以下具有中间铰的梁的剪力图和弯矩图。

4-4 (b) 4-5 (b)4-5.依照弯矩、剪力与荷载集度之间的关系指出以下玩具和剪力图的错误的地方,并更正。

4-6.已知简支梁的剪力图如下图,试做梁的弯矩图和荷载图,梁上五集中力偶作用。

4-6(a) 4-7(a)4-7.依照图示梁的弯矩图做出剪力图和荷载图。

4-8用叠加法做梁的弯矩图。

4-8(b) 4-8(c)4-9.选择适合的方式,做弯矩图和剪力图。

4-9(b) 4-9(c)4-104-14.长度l=2m的均匀圆木,欲锯做Fa=的一段,为使锯口处两头面开裂最小,硬是锯口处弯矩为零,现将圆木放在两只锯木架上,一只锯木架放在圆木一段,试求另一只锯木架应放位置。

x=4-184-19M=30KN 4-214-234-254-284-294-334-364-355-25-35-75-155-225-23 选22a工字钢5-246-4 6/((233))A l Fl EA ∆=+6-127-3-55mpa 。

-55mpa7-4[习题7-3] 一拉杆由两段沿n m -面胶合而成。

宁波大学材料力学第五版孙训芳课后习题答案(较全)

宁波大学材料力学第五版孙训芳课后习题答案(较全)

材料力学第五版课后答案孙训芳[习题2-2]一打入基地内的木桩如图所示,杆轴单位长度的摩擦力f=kx**2,试做木桩的后力图。

解:由题意可得:33233110,,3/()3/(/)ll N fdx Fkl F k F l F x Fx l dx F x l =====⎰⎰1有3[习题2-3] 石砌桥墩的墩身高m l 10=,其横截面面尺寸如图所示。

荷载kN F 1000=,材料的密度3/35.2m kg =ρ,试求墩身底部横截面上的压应力。

解:墩身底面的轴力为:g Al F G F N ρ--=+-=)( 2-3图 )(942.31048.935.210)114.323(10002kN -=⨯⨯⨯⨯+⨯--=墩身底面积:)(14.9)114.323(22m A =⨯+⨯=因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。

MPa kPa mkNA N 34.071.33914.9942.31042-≈-=-==σ[习题2-7] 图示圆锥形杆受轴向拉力作用,试求杆的伸长。

2-7图解:取长度为dx 截离体(微元体)。

则微元体的伸长量为:)()(x EA Fdx l d =∆ ,⎰⎰==∆l l x A dxE F dx x EA F l 00)()(lxr r r r =--121,22112112d x l d d r x l r r r +-=+⋅-=, 2211222)(u d x ld d x A ⋅=⎪⎭⎫ ⎝⎛+-=ππ,dx l d d du d x l d d d 2)22(12112-==+- du d d l dx 122-=,)()(22)(221212udud d l du u d d lx A dx -⋅-=⋅-=ππ因此,)()(2)()(202100u dud d E Fl x A dx E F dx x EA F l l l l⎰⎰⎰--===∆π lld x l d d d d E Fl u d d E Fl 011221021221)(21)(2⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+--=⎥⎦⎤⎢⎣⎡-=ππ ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+--=21221)(2111221d d l l d d d d E Fl π ⎥⎦⎤⎢⎣⎡--=122122)(2d d d d E Fl π214d Ed Fl π=[习题2-10] 受轴向拉力F 作用的箱形薄壁杆如图所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

m3
m1
m4
A
B
C
T
– –
4.78 kN m
9.56 kNm
D
6.37 kN m
x
练习1 已知: m1 3 kN m, m2 2kN m, m3
7kN m,求 : 各段扭矩及画扭矩图。
m3
m2
m1
D
解:
C
5
2
B
A
3
单位: kN m
[练习2]
D
C
B
A
2m 4m
m
m
2m
m
解:
AB : M T1 m BC : M T2 m m 2m 2m 4m CD : M T3 2m
§3–1 概 述
轴:工程中以扭转为主要变形的构件。如:机器中的传动轴、 石油钻机中的钻杆等。
扭转:外力的合力为一力偶,且力偶的作用面与直杆的轴线 垂直,杆横截面绕轴线发生相对转动,这样的变形为 扭转变形。
A
B O
A
BO
m
m
扭转角():任意两截面绕轴线相对转动而发生的角位移。 剪应变():纵向线倾斜的角度(直角的改变量)。
①变形几何方面
等直圆杆横截面应力
②物理关系方面
一、等直圆杆扭转实验观察:
各圆周线的形状、大小和间 距均未改变,仅绕轴线作相对转 动;各纵向线均倾斜了同一微小
角度 。
可假设: 1. 横截面变形后仍为平面; 只是刚性地绕杆轴线转动; 2. 轴向无伸缩;
可认为: 圆周扭转时可视为
许多薄壁筒镶套而成。
③静力学方面
m
7.024
P n
(kN
m)
其中:P — 功率,马力(PS) n — 转速,转/分(rpm)
1PS=735.5N·m/s , 1kW=1.36PS
二、扭矩及扭矩图 1 扭矩:构件受扭时,横截面上的内力偶矩,记作“T”。 2 截面法求扭矩
mx 0 T m0
m
m
T m
3 扭矩的符号规定:
x
m
T
“T”的转向与截面外法线方向满足右手螺旋法则为正, 反之为负。
量纲,故G的量纲与 相同,不同材料的G值可通过实验确定,钢
材的G值约为80GPa。
剪切弹性模量、弹性模量和泊松比是表明材料弹性性质的三
个常数。对各向同性材料,这三个弹性常数之间存在下列关系
(推导详见后面章节):
G
E 2(1
)
可见,在三个弹性常数中,只要知道任意两个,第三个量 就可以推算出来。
§3–4 等直圆杆在扭转时的应力 ·强度条件
③所有矩形网格均歪斜成同样大小的平行四边形。
微小矩形单元体如图所示:
①无正应力 ②横截面上各点处,只产 dy 生垂直于半径的均匀分布的剪
应力 ,沿周向大小不变,方
向与该截面的扭矩方向一致。
4. 与 的关系:
LR RL
´
a
b
´
c
d
dx
二、薄壁圆筒剪应力 大小:
A dA r0 T
2m
§3–3 薄壁圆筒的扭转
薄壁圆筒:壁厚
1 10
r0
(r0:为平均半径)
一、实验:
1.实验前: ①绘纵向线,圆周线; ②施加一对外力偶 m。
2.实验后:
①圆周线不变;
②纵向线变成斜直线。
3.结论:①圆筒表面的各圆周线的形状、大小和间距均未改 变,只是绕轴线作了相对转动。
②各纵向线均倾斜了同一微小角度 。
第三章 扭 转 (Torsion)
§3–1 概述 §3–2 传动轴的外力偶矩 ·扭矩及扭矩图 §3–3 薄壁圆筒的扭转 §3–4 等直圆杆在扭转时的应力 ·强度分析 §3–5 等直圆杆在扭转时的变形 ·刚度条件 ·超静定问题 §3–6 等直圆杆在扭转时的应变能 §3–7 等直非圆杆在自由扭转时的应力和变形 §3–8 开口和闭合薄壁截面杆在自由扭转时的应力和变形
m3 2
m1
3 m4
1——1:
A 1 B2 C 3 D
T1 m2 4.78kN m m4 m1 m3
2——2:
T2 m2 m3 9.56kN m m4 - m1
3——3: T3 m4 6.36kN m
③绘制扭矩图 T 9.56 kN m BC段为危险截面。 max
m2
d
dx
dA
G
d
dx
A
2dA
T
GI p
d
dx
令 Ip A 2dA
d
dx
T GI p
代入物理关系式
G
d
dx
4 扭矩图:表示沿杆件轴线各横截面上扭矩变化规律的图线。
目 ①扭矩变化规律; 的 ②|T|max值及其截面位置
强度计算(危险截面)。
T
x
[例3-2-1]已知:一传动轴, n =300r/min,主动轮输P1=500kW,
从动轮输出 P2=150kW,P3=150kW,P4=200kW,试绘制扭矩图。
A
BO
m
m
工 程 实 例
§3–2 传动轴的外力偶矩 ·扭矩及扭矩图
一、传动轴的外力偶矩 功率为力偶在单位时间内作的功,即:P m m 2n
60
所以传递轴的传递功率、转速与外力偶矩的关系为:
m 9.549 P (kN m) n
其中:P — 功率,千瓦(kW) n — 转速,转/分(rpm)
二、等直圆杆扭转时横截面上的应力:
1. 变形几何关系:
tg
G1G dx
d
dx
d
dx
距圆心为 任一点处的与到圆心的距离成正比。
d
dx
—— 扭转角沿长度方向变化率。
2. 物理关系:
胡克定律:
G
代入上式得:
G
G
d
dx
G
d
dx
G
d
dx
3. 静力学关系: dA
T A dA
O
A
G 2
单元体的四个侧面上只有剪应力而无正应力作用,这 种应力状态称为纯剪切应力状态。 四、剪切虎克定律:
T=m
T ( 2A 0t) ( LR)
剪切虎克定律:当剪应力不超过材料的剪切比例极限
时(τ ≤τp),剪应力与剪应变成正比关系。
G
式中:G是材料的一个弹性常数,称为剪切弹性模量,因 无
m2
m3
m1
m4
解:①计算外力偶矩
m1
9.55 P1 n
9.55 500 300
A
15.9(kN m)
B
C
D
m2
m3
9.55 P2 n
9.55 150 300
4.78 (kN m)
m4
9.55 P4 n
9.55 200 300
6.37 (kN m)
②求扭矩(截面法)
m2 1
r0 AdA r0 2 r0 T
T
2 r02

T
2A0
A0:平均半径所作圆的面积。
三、剪应力互等定理:
mz 0
t dxdy t dxdy 故
a
dy
´
c
z
dx
´
b
d t
上式称为剪应力互等定理。
该定理表明:在单元体相互垂直的两个平面上,剪应 力必然成对出现,且数值相等,两者都垂直于两平面的交 线,其方向则共同指向或共同背离该交线。
相关文档
最新文档