材料力学第五版孙训方课后题答案
孙训方材料力学(I)第五版课后习题答案完整版

解: (1)
1 fdx F , 有 kl 3 F 3 3 k 3F / l
l
0
FN ( x1 ) 3Fx 2 / l 3dx F ( x1 / l )3
0
l
FN 3 cos 45 0 FN 1 F2 FN 3 sin 45 F 0 F 0.45 F 0.15 0 N1 F1 60 KN , F1 401KN , F1 0 KN , 由胡克定理, FN 1l 60 107 0.15 l1 3.87 EA1 210 109 12 10 6 l2 FN 2l 40 107 0.15 4.76 EA2 210 109 12 10 6
从而得,Ax l2 4.76, Ay l2 2 l1 3 20.23 ( )
(2)
V F Ay F1 l1 +F2 l2 0 Ay 20.33 ()
2-16 简易起重设备的计算简图如图所示。已知斜杆 AB 用两根 63mm×40mm×4mm 不等边角钢 组成,钢的许用应力[σ]=170MPa。试问在提起重量为 P=l5kN 的重物时,斜杆 AB 是否满足强度 条件? 解:1.对滑轮 A 进行受力分析如图: ∑FY=0; FNABsin300=2F,得,FNAB=4F=60kN 2.查附录的 63mm×40mm×4mm 不等边角钢的面积 A=4.058×2=8.116cm² 由正应力公式: σ=FNAB /A=60×10³/(8.116×10-4)=73.9×106 Pa=73.9MPa<[σ] 所以斜杆 AB 满足强度条件。 2-17 简单桁架及其受力如图所示,水平杆 BC 的长度 l 保持不变,斜杆 AB 的长度可随夹角 的变 化而改变。两杆由同一种材料制造,且材料的许用拉应力和许用压应力相等。要求两杆内的应力 同时达到许用应力,且结构的总重量为最小时,试求: (1)两杆的夹角; (2)两杆横截面面积的比值。
孙训方材料力学(I)第五版课后习题答案完整版

2-4
图示一混合屋架结构的计算简图。屋架的上弦用钢筋混凝土制成。下面的拉杆和中间竖向 的竖
撑杆用角钢构成,其截面均为两个 75mm×8mm 的等边角钢。已知屋面承受集度为 直均布荷载。试求拉杆 AE 和 EG 横截面上的应力。
解: 1) 求内力
=
取 I-I 分离体
得 取节点 E 为分离体
(拉)
,
故 2) 求应力
解: (1)求轴力 取节点 B 为研究对象,由其平衡条件得:
Y 0
N AB sin F 0 N AB F sin
X 0
N AB cos N BC 0
N BC N AB cos
(2)求工作应力
F cos F cot sin
2-11 图示结构中,AB 为水平放置的刚性杆,杆 1,2,3 材料相同,其弹性模量 E 210GPa ,已 知 l 1m , A1 A2 100mm 2 , A3 150mm 2 , F 20kN 。试求 C 点的水平位移和铅垂位移。
受力图 2-11 图 解: (1)求各杆的轴力 以 AB 杆为研究对象,其受力图如图所示。 因为 AB 平衡,所以
因此,
2
l
l
0
l F F l dx 2 Fl du dx ( 2 ) 0 0 EA( x) E A( x) E (d 1 d 2 ) u l
l 2 Fl 2 Fl 1 1 E (d1 d 2 ) u 0 E (d 1 d 2 ) d 2 d 1 x d 1 2l 2 0
2-13 图示 A 和 B 两点之间原有水平方向的一根直径 d 1mm 的钢丝, 在钢丝的中点 C 加一竖向荷 载 F。已知钢丝产生的线应变为 0.0035 ,其材料的弹性模量 E 210GPa , 钢丝的自重不计。试求: (1)钢丝横截面上的应力(假设钢丝经过冷拉,在断裂前可认为符合胡克定律) ; (2)钢丝在 C 点下降的距75×8 等边角钢的面积 A=11.5 cm
材料力学第五版课后题答案孙训芳

材料力学第五版课后题答案孙训芳材料力学第五版课后答案(孙训芳编)[习题2-2]一打入基地内的木桩如图所示,杆轴单位长度的摩擦力f=kx**2,试做木桩的后力图。
解:由题意可得:[习题2-3]石砌桥墩的墩身高,其横截面面尺寸如图所示。
荷载,材料的密度,试求墩身底部横截面上的压应力。
解:墩身底面的轴力为:2-3图墩身底面积:因为墩为轴向压缩构,所以其底面上的正应力均匀分布。
[习题2-7]图示圆锥形杆受轴向拉力作用,试求杆的伸长。
2-7图解:取长度为截离体(微元体)。
则微元体的伸长量为:,,,,,因此,[习题2-10]受轴向拉力F作用的箱形薄壁杆如图所示。
已知该材料的弹性常数为,试求C与D两点间的距离改变量。
解:式中,,故:,,[习题2-11]图示结构中,AB为水平放置的刚性杆,杆1,2,3材料相同,其弹性模量,已知,,,。
试求C点的水平位移和铅垂位移。
变形协调图受力图2-11图解:(1)求各杆的轴力以AB杆为研究对象,其受力图如图所示。
因为AB平衡,所以,,由对称性可知,,(2)求C点的水平位移与铅垂位移。
A点的铅垂位移:B点的铅垂位移:1、2、3杆的变形协(谐)调的情况如图所示。
由1、2、3杆的变形协(谐)调条,并且考虑到AB为刚性杆,可以得到C点的水平位移:C点的铅垂位移:[习题2-12]图示实心圆杆AB和AC在A点以铰相连接,在A点作用有铅垂向下的力。
已知杆AB和AC的直径分别为和,钢的弹性模量。
试求A点在铅垂方向的位移。
解:(1)求AB、AC杆的轴力以节点A为研究对象,其受力图如图所示。
由平衡条得出::………………………(a):………………(b)(a)(b)联立解得:;(2)由变形能原理求A点的铅垂方向的位移式中,;;故:[习题2-13]图示A和B两点之间原有水平方向的一根直径的钢丝,在钢丝的中点C加一竖向荷载F。
已知钢丝产生的线应变为,其材料的弹性模量,钢丝的自重不计。
试求:(1)钢丝横截面上的应力(假设钢丝经过冷拉,在断裂前可认为符合胡克定律);(2)钢丝在C点下降的距离;(3)荷载F的值。
孙训方材料力学(I)第五版课后习题答案完整版

第二章 轴向拉伸和压缩2-1 试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。
(a )解:;; (b )解:;;(c )解: ; 。
(d) 解: 。
2-2 一打入地基内的木桩如图所示,沿杆轴单位长度的摩擦力为f=kx ²(k 为常数),试作木桩的轴力图。
解:由题意可得:⎰0lFdx=F,有1/3kl ³=F,k=3F/l ³F N (x 1)=⎰1x 3Fx ²/l ³dx=F(x 1 /l) ³2-3 石砌桥墩的墩身高l=10m ,其横截面面尺寸如图所示。
荷载F=1000KN ,材料的密度ρ=2.35×10³kg/m ³,试求墩身底部横截面上的压应力。
解:墩身底面的轴力为:g Al F G F N ρ--=+-=)( 2-3图 )(942.31048.935.210)114.323(10002kN -=⨯⨯⨯⨯+⨯--=墩身底面积:)(14.9)114.323(22m A =⨯+⨯=因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。
MPa kPa mkN A N 34.071.33914.9942.31042-≈-=-==σ2-4 图示一混合屋架结构的计算简图。
屋架的上弦用钢筋混凝土制成。
下面的拉杆和中间竖向撑杆用角钢构成,其截面均为两个75mm ×8mm 的等边角钢。
已知屋面承受集度为的竖直均布荷载。
试求拉杆AE 和EG 横截面上的应力。
解:=1) 求内力 取I-I 分离体得(拉)取节点E 为分离体,故(拉)2)求应力75×8等边角钢的面积A=11.5 cm2(拉)(拉)2-5图示拉杆承受轴向拉力,杆的横截面面积。
如以表示斜截面与横截面的夹角,试求当,30,45,60,90时各斜截面上的正应力和切应力,并用图表示其方向。
解:2-6 一木桩柱受力如图所示。
柱的横截面为边长200mm的正方形,材料可认为符合胡克定律,其弹性模量E=10 GPa。
孙训方材料力学(I)第五版课后习题答案完整版

第二章轴向拉伸和压缩2-1 试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。
(a)解:;;(b)解:;;(c)解:;。
(d) 解:。
2-2 一打入地基内的木桩如图所示,沿杆轴单位长度的摩擦力为f=kx²(k为常数),试作木桩的轴力图。
解:由题意可得:⎰0lFdx=F,有1/3kl ³=F,k=3F/l ³F N (x 1)=⎰1x 3Fx ²/l ³dx=F(x 1 /l) ³2-3 石砌桥墩的墩身高l=10m ,其横截面面尺寸如图所示。
荷载F=1000KN ,材料的密度ρ=2.35×10³kg/m ³,试求墩身底部横截面上的压应力。
解:墩身底面的轴力为:g Al F G F N ρ--=+-=)( 2-3图 )(942.31048.935.210)114.323(10002kN -=⨯⨯⨯⨯+⨯--=墩身底面积:)(14.9)114.323(22m A =⨯+⨯=因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。
MPa kPa m kN A N 34.071.33914.9942.31042-≈-=-==σ2-4 图示一混合屋架结构的计算简图。
屋架的上弦用钢筋混凝土制成。
下面的拉杆和中间竖向撑杆用角钢构成,其截面均为两个75mm ×8mm 的等边角钢。
已知屋面承受集度为 的竖直均布荷载。
试求拉杆AE 和EG 横截面上的应力。
解:=1)求内力取I-I分离体得(拉)取节点E为分离体,故(拉)2)求应力75×8等边角钢的面积A=11.5 cm2(拉)(拉)2-5 图示拉杆承受轴向拉力,杆的横截面面积。
如以表示斜截面与横截面的夹角,试求当,30,45,60,90时各斜截面上的正应力和切应力,并用图表示其方向。
解:2-6 一木桩柱受力如图所示。
柱的横截面为边长200mm的正方形,材料可认为符合胡克定律,其弹性模量E=10 GPa。
材料力学第五课后题答案(孙训芳)

材料力学(I)第五版(孙训芳编)甘肃建筑职业技术学院长安大学土木工程材料力学温习材料材料力学第五版课后答案(孙训芳编)4-1试求图示各梁中指定截面上的剪力和弯矩 a (5)=h (4)001100110002222200022132241111223121140,222233RA RB S S q F F a q a q F q a a q aa M q a q a q aF M q a a q a a q a ----==⨯==-⨯==-⨯⨯⨯===⨯-⨯⨯⨯=b (5)=f (4)4-2试写出以下各梁的剪力方程和弯矩方程,并作剪力图和弯矩图 a (5)=a (4)b(5)=b(4)f(5)=f(4)4-3试利用载荷集度,剪力和弯矩间的微分关系做以下各梁的弯矩图和剪力e和f题)(e)(f)(h)4-4试做以下具有中间铰的梁的剪力图和弯矩图。
4-4 (b) 4-5 (b)4-5.依照弯矩、剪力与荷载集度之间的关系指出以下玩具和剪力图的错误的地方,并更正。
4-6.已知简支梁的剪力图如下图,试做梁的弯矩图和荷载图,梁上五集中力偶作用。
4-6(a) 4-7(a)4-7.依照图示梁的弯矩图做出剪力图和荷载图。
4-8用叠加法做梁的弯矩图。
4-8(b) 4-8(c)4-9.选择适合的方式,做弯矩图和剪力图。
4-9(b) 4-9(c)4-104-14.长度l=2m的均匀圆木,欲锯做Fa=的一段,为使锯口处两头面开裂最小,硬是锯口处弯矩为零,现将圆木放在两只锯木架上,一只锯木架放在圆木一段,试求另一只锯木架应放位置。
x=4-184-19M=30KN 4-214-234-254-284-294-334-364-355-25-35-75-155-225-23 选22a工字钢5-246-4 6/((233))A l Fl EA ∆=+6-127-3-55mpa 。
-55mpa7-4[习题7-3] 一拉杆由两段沿n m -面胶合而成。
材料力学答案

材料力学第五版孙训方版课后习题答案[习题2-2]一打入基地内的木桩如图所示,杆轴单位长度的摩擦力f=kx**2,试做木桩的后力图。
解:由题意可得:33233110,,3/()3/(/)ll N fdx F kl F k F l F x Fx l dx F x l =====⎰⎰1有3[习题2-3] 石砌桥墩的墩身高m l 10=,其横截面面尺寸如图所示。
荷载kN F 1000=,材料的密度3/35.2m kg =ρ,试求墩身底部横截面上的压应力。
解:墩身底面的轴力为:g Al F G F N ρ--=+-=)( 2-3图 )(942.31048.935.210)114.323(10002kN -=⨯⨯⨯⨯+⨯--=墩身底面积:)(14.9)114.323(22m A =⨯+⨯=因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。
MPa kPa mkNA N 34.071.33914.9942.31042-≈-=-==σ[习题2-7] 图示圆锥形杆受轴向拉力作用,试求杆的伸长。
2-7图解:取长度为dx 截离体(微元体)。
则微元体的伸长量为:)()(x EA Fdx l d =∆ ,⎰⎰==∆l l x A dxE F dx x EA F l 00)()(l xr r r r =--121,22112112d x l d d r x l r r r +-=+⋅-=,2211222)(u d x ld d x A ⋅=⎪⎭⎫ ⎝⎛+-=ππ,dx l d d du d x l d d d 2)22(12112-==+- du d d l dx 122-=,)()(22)(221212udud d l du u d d lx A dx -⋅-=⋅-=ππ因此,)()(2)()(202100u dud d E Fl x A dx E F dx x EA F l l l l⎰⎰⎰--===∆π lld x l d d d d E Fl u d d E Fl 011221021221)(21)(2⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+--=⎥⎦⎤⎢⎣⎡-=ππ ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+--=21221)(2111221d d l l d d d d E Fl π ⎥⎦⎤⎢⎣⎡--=122122)(2d d d d E Fl π214d Ed Fl π=[习题2-10] 受轴向拉力F 作用的箱形薄壁杆如图所示。
孙训方材料力学(I)第五版课后习题答案完整版

第二章 轴向拉伸和压缩2-1 试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。
(a )解:;; (b )解:;;(c )解: ; 。
(d) 解: 。
2-2 一打入地基内的木桩如图所示,沿杆轴单位长度的摩擦力为f=kx ²(k 为常数),试作木桩的轴力图。
解:由题意可得:⎰0lFdx=F,有1/3kl ³=F,k=3F/l ³F N (x 1)=⎰01x 3Fx ²/l ³dx=F(x 1 /l) ³2-3 石砌桥墩的墩身高l=10m ,其横截面面尺寸如图所示。
荷载F=1000KN ,材料的密度ρ=2.35×10³kg/m ³,试求墩身底部横截面上的压应力。
解:墩身底面的轴力为:g Al F G F N ρ--=+-=)( 2-3图)(942.31048.935.210)114.323(10002kN -=⨯⨯⨯⨯+⨯--=墩身底面积:)(14.9)114.323(22m A =⨯+⨯=因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。
MPa kPa mkNA N 34.071.33914.9942.31042-≈-=-==σ2-4 图示一混合屋架结构的计算简图。
屋架的上弦用钢筋混凝土制成。
下面的拉杆和中间竖向撑杆用角钢构成,其截面均为两个75mm ×8mm 的等边角钢。
已知屋面承受集度为的竖直均布荷载。
试求拉杆AE 和EG 横截面上的应力。
解:=1) 求内力取I-I 分离体得(拉)取节点E 为分离体,故(拉)2)求应力75×8等边角钢的面积A=11.5 cm2(拉)(拉)2-5图示拉杆承受轴向拉力,杆的横截面面积。
如以表示斜截面与横截面的夹角,试求当,30,45,60,90时各斜截面上的正应力和切应力,并用图表示其方向。
解:2-6 一木桩柱受力如图所示。
柱的横截面为边长200mm的正方形,材料可认为符合胡克定律,其弹性模量E=10 GPa。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料力学第五版课后答案[习题2-2]一打入基地内的木桩如图所示,杆轴单位长度的摩擦力f=kx**2,试做木桩的后力图。
解:由题意可得:33233110,,3/()3/(/)ll N fdx F kl F kF l F x Fx l dx F x l =====⎰⎰1有3[习题2-3] 石砌桥墩的墩身高m l10=,其横截面面尺寸如图所示。
荷载kN F 1000=,材料的密度3/35.2m kg =ρ,试求墩身底部横截面上的压应力。
解:墩身底面的轴力为:g Al F G F N ρ--=+-=)( 2-3图)(942.31048.935.210)114.323(10002kN -=⨯⨯⨯⨯+⨯--=墩身底面积:)(14.9)114.323(22m A =⨯+⨯=因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。
MPa kPa m kNA N 34.071.33914.9942.31042-≈-=-==σ[习题2-7] 图示圆锥形杆受轴向拉力作用,试求杆的伸长。
2-7图解:取长度为dx 截离体(微元体)。
则微元体的伸长量为:)()(x EA Fdx l d =∆ ,⎰⎰==∆l l x A dxE F dx x EA F l 00)()(lxr r r r =--121,22112112d x l d d r x l r r r +-=+⋅-=,2211222)(u d x ld d x A ⋅=⎪⎭⎫ ⎝⎛+-=ππ,dx l d d du d x l d d d 2)22(12112-==+-du d d ldx 122-=,)()(22)(221212udu d d l du u d d l x A dx -⋅-=⋅-=ππ 因此,)()(2)()(202100udu d d E Fl x A dx E F dx x EA F l l l l⎰⎰⎰--===∆π lld x l d d d d E Fl u d d E Fl 011221021221)(21)(2⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+--=⎥⎦⎤⎢⎣⎡-=ππ ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+--=21221)(2111221d d l l d d d d E Fl π⎥⎦⎤⎢⎣⎡--=122122)(2d d d d E Fl π214dEd Fl π=[习题2-10] 受轴向拉力F 作用的箱形薄壁杆如图所示。
已知该材料的弹性常数为ν,E ,试求C 与D 两点间的距离改变量CD ∆。
解:EAFE AF νννεε-=-=-=/'式中,δδδa a a A 4)()(22=--+=,故:δνεEa F 4'-=δνεEa F a a 4'-==∆,δνE F a a a 4'-=-=∆δνE F a a 4'-=,a a a CD12145)()(243232=+= '12145)'()'(243232''a a a D C =+=δνδνEFEFaaCDDCCD4003.1412145)(12145)('''⋅-=⋅-=-=-=∆[习题2-11] 图示结构中,AB为水平放置的刚性杆,杆1,2,3材料相同,其弹性模量GPaE210=,已知ml1=,221100mmAA==,23150mmA=,kNF20=。
试求C点的水平位移和铅垂位移。
2-11图解:(1)求各杆的轴力以AB杆为研究对象,其受力图如图所示。
因为AB平衡,所以=∑X,045cos3=oN,03=N由对称性可知,0=∆CH,)(10205.05.021kNFNN=⨯===(2)求C点的水平位移与铅垂位移。
A点的铅垂位移:mmmmmmNmmNEAlNl476.0100/21000010001000022111=⨯⨯==∆B点的铅垂位移:mmmmmmNmmNEAlNl476.0100/21000010001000022222=⨯⨯==∆1、2、3杆的变形协(谐)调的情况如图所示。
由1、2、3杆的变形协(谐)调条件,并且考虑到AB为刚性杆,可以得到C点的水平位移:)(476.045tan1mml oBHAHCH=⋅∆=∆=∆=∆C点的铅垂位移:)(476.01mmlC=∆=∆[习题2-12] 图示实心圆杆AB和AC在A点以铰相连接,在A点作用有铅垂向下的力kNF35=。
已知杆AB和AC的直径分别为mmd121=和mmd152=,钢的弹性模量GPaE210=。
试求A点在铅垂方向的位移。
解:(1)求AB、AC杆的轴力以节点A为研究对象,其受力图如图所示。
受力图变形协调图由平衡条件得出:0=∑X :045sin 30sin =-o AB o ACN NAB AC N N 2=………………………(a)0=∑Y :03545cos 30cos =-+o AB o ACN N7023=+AB AC N N ………………(b)(a) (b)联立解得:kN N N AB 117.181==;kN N N AC 621.252==(2)由变形能原理求A 点的铅垂方向的位移222211212221EA l N EA l N F A +=∆)(122221121EA l N EA l N F A +=∆式中,)(141445sin /10001mm l o ==;)(160030sin /8002mm l o ==2211131214.325.0mm A =⨯⨯=;2221771514.325.0mm A =⨯⨯=故:)(366.1)177210000160025621113210000141418117(35000122mm A =⨯⨯+⨯⨯=∆ [习题2-13] 图示A 和B 两点之间原有水平方向的一根直径mm d 1=的钢丝,在钢丝的中点C 加一竖向荷载F 。
已知钢丝产生的线应变为0035.0=ε,其材料的弹性模量GPa E 210=,钢丝的自重不计。
试求:(1)钢丝横截面上的应力(假设钢丝经过冷拉,在断裂前可认为符合胡克定律); (2)钢丝在C 点下降的距离∆; (3)荷载F 的值。
解:(1)求钢丝横截面上的应力)(7350035.0210000MPa E =⨯==εσ(2)求钢丝在C 点下降的距离∆)(72100002000735mm E l EA Nl l =⨯=⋅==∆σ。
其中,AC 和BC 各mm 5.3。
996512207.05.10031000cos ==α o 7867339.4)5.10031000arccos(==α)(7.837867339.4tan 1000mm o==∆(3)求荷载F 的值以C 结点为研究对象,由其平稀衡条件可得:0=∑Y :0sin 2=-P a Nασsin 2sin 2A a N P ==)(239.96787.4sin 114.325.0735202N =⨯⨯⨯⨯⨯=[习题2-15]水平刚性杆AB 由三根BC,BD 和ED 支撑,如图,在杆的A 端承受铅垂荷载F=20KN,三根钢杆的横截面积分别为A1=12平方毫米,A2=6平方毫米,A,3=9平方毫米,杆的弹性模量E=210Gpa ,求: (1) 端点A 的水平和铅垂位移。
(2) 应用功能原理即(2-8)求端点A 的铅垂位移。
解:(1)3323311031231111711961222,3/()3/(/)cos 450sin 4500.450.15060,401,0,60100.15 3.87210101210401llN N N N N N N fdx F kl F k F l F x Fx l dx F x l F F F F F F F F KN F KN F KN F l l EA F l l EA -=====⎧=⎪-+-+=⎨⎪-⨯+⨯=⎩∴=-=-=-⨯⨯∆===⨯⨯⨯⨯∆==⎰⎰o o1有3由胡克定理,796x 2y 2100.15 4.762101012104.762320.23A l A l l -⨯=⨯⨯⨯∆=∆=∆=∆⨯+∆⨯=↓从而得,,()(2)y 1122y +020.33V F A F l F l A ε=⨯∆-⨯∆⨯∆=∆=↓()[习题2-17] 简单桁架及其受力如图所示,水平杆BC 的长度l 保持不变,斜杆AB 的长度可随夹角θ的变化而改变。
两杆由同一种材料制造,且材料的许用拉应力和许用压应力相等。
要求两杆内的应力同时达到许用应力,且结构的总重量为最小时,试求: (1)两杆的夹角;(2)两杆横截面面积的比值。
解:(1)求轴力取节点B 为研究对象,由其平衡条件得: ∑=0Y0sin =-F N AB θθsin FN AB =∑=0X0cos =--BC AB N N θθθθθcot cos sin cos F FN N AB BC =⋅=-= 2-17 (2)求工作应力θσsin AB AB AB AB A FA N ==BCBC BC BC A F A N θσcot ==(3)求杆系的总重量)(BC BC AB AB l A l A V W +=⋅=γγ 。
γ是重力密度(简称重度,单位:3/m kN )。
)cos (l A lA BC AB+=θγ)cos 1(BC AB A A l +⋅=θγ(4)代入题设条件求两杆的夹角 条件①:][sin σθσ===AB AB AB AB A F A N ,θσsin ][FA AB =][cot σθσ===BC BC BC BC A F A N , ][cot σθF A BC =条件⑵:W 的总重量为最小。
)cos 1(BC ABA A l W +⋅=θγ)cos 1(BC AB A A l +⋅=θγ)][cot cos 1sin ][(σθθθσγF F l +⋅⋅=)sin cos cos sin 1(][θθθθσγ+=Fl[]⎪⎪⎭⎫ ⎝⎛+=θθθσγcos sin cos 12Fl []⎪⎪⎭⎫ ⎝⎛+=θθσγ2sin cos 122Fl 从W 的表达式可知,W 是θ角的一元函数。
当W 的一阶导数等于零时,W 取得最小值。
[]02sin 22cos )cos 1(2sin sin cos 2222=⎪⎪⎭⎫ ⎝⎛⋅+-⋅-=θθθθθθσγθFl d dW 022cos 22cos 32sin 2=⋅⋅+--θθθ02cos 2cos 32sin 22=---θθθ12cos 3-=θ ,3333.02cos -=θo 47.109)3333.0arccos(2=-=θ,'445474.54o o ==θ(5)求两杆横截面面积的比值θσsin ][F A AB =,][cot σθF A BC =θθθσθθσcos 1cot sin 1][cot sin ][===F FA A BCAB因为:12cos 3-=θ,311cos 22-=-θ,31cos 2=θ31cos =θ,3cos 1=θ所以:3=BCABA A [习题2-18] 一桁架如图所示。