运筹学1
运筹学1

16/10
若将目标函数变为max Z = 2x1 + 4x2 ,则表示目标函数的等值线与约束 条件x1 + 2x2 ≤8的边界线x1 + 2x2 = 8平行。当Z值由小变大时,与线段Q 2Q3重合,如图1.3所示,线段Q2Q3上任意一点都使Z取得相同的最大值, 即这个线性规划问题有无穷多最优解。
17/10
运筹学第一次作业指导
储宜旭
이 문서는 나눔글꼴로 작성되었습니다. 설치하 기
运筹学
2/10
3/10
4/10
5/10
实际问题线性规划模型的基本步骤: (1) 确定决策变量。这是很关键的一步,决策变量选取 得当,不仅会使线性规划的数学模型建得容易,而且 求解比较方便。 (2) 找出所有限制条件,并用决策变量的线性等式或不 等式来表示,从而得到约束条件。一般可用表格形式 列出所有的限制数据,然后根据所列出的数据写出相 应的约束条件,以避免遗漏或重复所规定的限制要求。 (3) 把实际问题所要达到的目标用决策变量的线性函数 来表示,得到目标函数,并确定是求最大值还是最小 值。
10/10
11/10
12/10
线性规划问题的图解法
为了给后面的线性问题的基本理论提供较直观的几何说明, 先介绍线性规划问题的图解法。 我们把满足约束条件和非负条件的一组解叫做可行解,所有 可行解组成的集合称为可行域。 图解法的一般步骤如下。 (1) 建立平面直角坐标系。 (2) 根据线性规划问题的约束条件和非负条件画出可行域。 (3) 作出目标函数等值线Z = c(c 为常数),然后根据目标函 数平移等值线至可行域边界,这时目标函数与可行域的交点 即最优解。
运筹学(一)

第三节
单纯形法原理
一、线性规划问题的解
可行解:满足约束条件的解称为可行解,可行解的集合称
a m 1 x1
a
m
2
x2
amnxn (,)bm
x1, x2 , , xn 0
n : 变 量 个 数 ; m:约 束 行 数 ;
n:变量个数 m:约束个数 cj:价值系数 bi:资源拥有量 aij :工艺系数
n m :线性规划问题的规模
c j : 价 值 系 数 ; b j : 右 端 项 ; aij : 技 术 系 数
2x1 x2 x3 x3 x4 9
st.34xx11
x2 2x3 2x3 x5 2x2 3x3 3x3 6
4
x1, x2, x3, x3, x4, x5 0
第二节
图解法
一、图解法的步骤
1.画出直角平面坐标系; 2.图示约束条件,找出可行域; 3.图示目标函数; 4.最优解的确定。
x2 2x2
2x3 3x3
4 6
x1 0, x2 0, x3取值无约束
解: z令 z,x1x1,x3x3 x3 ,其x中 3 , x3 0, 同时引入x4松 和弛 剩变 余 x5,标 量 变准 量形式
m z x a 1 2 x 2 x 3 x 3 3 x 3 0 x 4 0 x 5
1940年,英国军事部门成立了第一个由一些数学家、物理学家 和工程专家等组成的OR小组,负责研究一些武器有效使用的问题。
1942年,美国也成立了由17人组成的OR小组,研究反潜艇策 略等问题。
(3)二战后:推广与发展
战时从事运筹学研究的许多专家转到了经济部门、民用企业、大 学或研究所,继续从事决策的数量方法的研究,运筹学作为一门学 科逐步形成并得以迅速发展。运筹学发展到今天,已成为分支学科 众多的一个繁荣昌盛的大家族。随着电子计算机的发展和使用,运 筹学处理复杂性问题的能力大大加强,成为解决实际问题的有力工 具,广泛地应用于企业管理、交通运输、公共服务等领域。
运筹学(1)

一、绪论§1 运筹学的简史运筹学作为科学名称出现于20世纪30年代末。
英、美对付德国空袭,采用雷达,技术上可行,实际运用不好用。
如何合理运用雷达?“运用研究”(Operational Research),我国1956年用“运用学”名词,1957年正式定名为运筹学。
运筹学小组在英、美军队中成立,研究:护航舰队保护商船队的编队问题、当船队遭受德国潜艇攻击时如何使船队损失最小问题、反潜深水炸弹的合理爆炸深度(德国潜艇被摧毁数增到400%)、船只在受敌机攻击时的逃避方法(大船急转向、小船缓转向,中弹数由47%降到29%)。
运筹学组织在英、美军队(RAND)中成立,研究:战略性问题、未来武器系统的设计和合理运用方法、美国空军各种轰炸机系统的评价、未来武器系统和未来战争战略、苏联军事能力及未来预报、苏联政治局计划的行动原则和未来战争的战略、到底发展哪种洲际导弹(50年代)、战略力量的构成和数量(60年代)。
运筹学在工业、农业、经济、社会问题等领域有应用。
运筹数学:数学规划(线性规划(丹捷格(G.B.Dantzig)1947,单纯形法;康托洛维奇1939解乘数法,1960《最佳资源利用的经济计算》,诺贝尔奖;列昂节夫1932投入产出模型;冯.诺意曼)、非线性规划、整数规划、目标规则、动态规划、随机规划等)、图论与网络、排队论(随机服务系统理论)(丹麦工程师爱尔朗(Erlang)1917提出一些著名公式)、存贮论、对策论(冯.诺意曼和摩根斯坦,1944《对策论与经济行为》)、决策论、维修更新理论、搜索论、可靠性和质量管理等。
运筹学领域的诺贝尔奖得主:阿罗、萨谬尔逊、西蒙(经济学家)、多夫曼、胡尔威茨、勃拉凯特(Blackett,美,物理学家)。
运筹学会的建立:英国(1948年)、美国(1952年)、法国(1956年)、日本(1957年)、印度(1957年)、中国(1980年),38个国家和地区。
国际运筹学联合会(IFORS)的成立:1959年,英、美、法发起成立,中国1982年加入。
运筹学第1章-线性规划

下一页 返回
图解法步骤:
(1)建立坐标系; (2)将约束条件在图上表示; (3)确立满足约束条件的解的范围; (4)绘制出目标函数的图形 (5)确定最优解
用图解法求解下列线性规划问题
max z 2x1 3x2
4x1 0x2 16
s.t
10xx11
4x2 2x2
12 8
x1, x2 0
1. 1.1问题举例
(1)生产计划问题。 生产计划问题是典型的已知资源求利润最大化的问题,对于此类
问题通常有三个假设:①在某一计划期内对生产做出的安排;②生产 过程的损失忽略不计;③市场需求无限制,即假设生产的产品全部 卖出。
下一页 返回
1.一般线性规划问题的数学模型
例1 用一块连长为a的正方形铁皮做一个容 器,应如何裁剪,使做成的窗口的容积为最 大?
解:设 x1, x2分别表示从A,B两处采购的原油量(单
位:吨),则所有的采购方案的最优方案为:
min z 200x1 290x2
0.15x1 0.50x2 150000
s.t
0.20x1 0.50x1
0.30x2 0.15x2
120000 120000
x1 0, x2 0
1. 1线性规划问题与模型
也可以写成模型(1-6)和模型(1-7)的形式,其中模型(1-7)较为常用。
运筹学-1、线性规划

则:
x1 x2 100
x1 ( x3 ) x4 x2 2
设x3为第二年新的投资; x4为第二年的保留资金;
则:
18
•设x5为第三年新的投资;x6为第三年的保留资金;
则:
x3 ( x5 ) x6 x4 2 x1 2
•设x7为第四年新的投资;第四年的保留资金为x8;
max Z 2 x7 x9 x1 x2 100 x 2x 2x 2x 0 2 3 4 1 4 x1 x3 2 x4 2 x5 2 x6 0 s.t 4 x3 x5 2 x6 2 x7 2 x8 0 4 x5 x7 2 x 8 2 x9 0 x 0, j 1, 2, , 9 j
13
例3:(运输问题)设有两个砖厂A1 、A2 ,产 量分别为23万块、27万块,现将其产品联合供应三 个施工现场B1 、 B2 、 B3 ,其需要量分别为17万 块、18万块、15万块。各产地到各施工现场的单位 运价如下表: 现场 砖厂 B1 B2 B3
A1 A2
5 6
14 18
7 9
问如何调运才能使总运费最省?
20
例5:(下料问题) 某一机床需要用甲、乙、 丙三种规格的钢轴各一根,这些轴的规格分别是 2.9,2.1, 1.5(m),这些钢轴需要用同一种圆钢来做,圆 钢长度为7.4m。现在要制造100台机床,最少要用多 少根圆钢来生产这些钢轴?
解:第一步:设一根圆钢切割成甲、乙、丙三 种钢轴的根数分别为y1,y2,y3,则切割方式可用不等 式2.9y1+2.1y2+1.5y3≤7.4 表示,求这个不等式的有实 际意义的非负整数解共有8组,也就是有8种不同的 下料方式,如下表所示:
运筹学第1章:线性规划问题及单纯型解法

原料甲 原料乙 最低含量 VA 0.5 0.5 2 VB1 1.0 0.3 3 VB2 0.2 0.6 1.2 VD 0.5 0.2 2 0.3 0.5 单价
分别代表每粒胶丸中甲, 设 x1, x2分别代表每粒胶丸中甲, 乙两种原料的用量
5
例3,合理下料问题 , 分别代表采用切割方案1~8的套数, 的套数, 设 xj 分别代表采用切割方案 的套数
19
( f(x
)= 3
6
1.2.2 单纯型法的基本思路
确定初试基础可行解
检查是否为 最优解? 最优解?
是
求最优解的目标函数值
否 确定改善方向
求新的基础可行解
20
1.2.3 单纯型表及其格式
IV CB III XB II x1 b c1 a11 a21 c1′′= cn+1 xn+1 b1 c2′′= cn+2 xn+2 b2 x2 … xn c2 … cn a12 … a1n a22 … a2n I xn+1 cn+1 1 0 0 zn+1 xn+2 cn+2 0 1 0 zn+2 … … … … … … xn+m cn+m 0 0 1 zn+m
OBJ : max f ( x) = 6x1 + 4x2 2x1 + x2 ≤ 10 铜资源约束 x1 + x2 ≤ 8 铅资源约束 s.t. x2 ≤ 7 产量约束 x1, x2 ≥ 0 产量不允许为负值 最优解: x1 = 2, x2 = 6, max f ( x) = 36.
4
例2,配料问题(min, ≥) ,配料问题(
2 max 1 O 1 2 3 4 D 5 6 7 H 8
运筹学第一章 1.4 大M法和两阶段法

(2)写出初始基本可行解 )写出初始基本可行解——
根据“ 用非基变量表示基变量的表达式” 根据 “ 用非基变量表示基变量的表达式 ” , 非基变量取0 算出基变量, 非基变量取0,算出基变量,搭配在一起构成 初始基本可行解。 初始基本可行解。 2、建立判别准则: 建立判别准则: (1)两个基本表达式的一般形式 LP限制条件中全部是 LP限制条件中全部是“≤”类型约束,新 限制条件中全部是“ 类型约束, 增的松弛变量作为初始基变量的情况来描述: 增的松弛变量作为初始基变量的情况来描述 :
2、处理人工变量的方法: 处理人工变量的方法:
(1)大M法——在约束条件中人为地加入非负 在约束条件中人为地加入非负 的人工变量, 的人工变量,以便使它们对应的系数列向量构 成单位阵。 成单位阵。 问题:加入的人工变量是否合理?如何处理? 问题:加入的人工变量是否合理?如何处理? 目标函数中, 在目标函数中,给人工变量前面添上一个绝对 值很大的负系数M>>0 迭代过程中, 值很大的负系数 -M ( M>>0 ) , 迭代过程中 , 只要基变量中还存在人工变量, 只要基变量中还存在人工变量,目标函数就不 可能实现极大化——惩罚! 惩罚! 可能实现极大化 惩罚
σj =cj −zj =cj −∑ a c
i= 1
m
' n+i ij
(2)最优性判别定理
若 X = (0,0,L0,b ,b ,Lb ) 是对应于基B的基本 是对应于基B , , 可行解, 的检验数, 可行解,σ j 是非基变量 x (j0) 的检验数,若对 于一切非基变量的角指标j 于一切非基变量的角指标j,均有 σ j ≤0,则 X(0)为最优解。 为最优解。
最优性判别定理; 最优性判别定理;无“有限最优解”判断定理 有限最优解”
运筹学:第1章 线性规划 第3节 对偶问题与灵敏度分析

s.t.
4x1 3x1
5x2 200 10x2 300
x1, x2 0
9x1 4x2 360
s.t.
34xx11
5x2 10 x
200 2 300
3x1 10x2 300
x1, x2 0
则D为
min z 360y1 200y2 300y3 300y4
9 y1 4 y2 3y3 3y4 7 s.t.4 y1 5y2 10 y3 10 y4 12
amn xn bm ym xn 0
机会成本 a1 j y1 a2 j y2 aij yi amj ym
表示减少一件产品所节省的可以增加的利润
(3)对偶松弛变量的经济解释——产品的差额成本
机会成本
利润
min w b1 y1 b2 y2 bm ym
a11 y1
st
a12
y1
a1n y1
max z CX
(P)
AX b
s
.t
.
X
0
(D)
min w Yb
s.t.
YA C Y 0
• (2)然后按照(D)、(P)式写出其对偶
例:写出下面线性规划的对偶规划模型:
max z 2x1 3x2
min w 3 y1 5y2 1y3
x1 2x2 3 y1 0
s.t.
2xx11
例如,在前面的练习中已知
max z 2.5x1 x2 的终表为
3x1 5x2 15 s.t.5x1 2x2 10
x1, x2 0
0 x3 9 2.5 x1 2
0 19 1 - 3
5
5
1
2
0
1
5
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
管理运筹学模拟试题一
一 判断下列说法是否正确,并对错误加以改正。
(每题2分,合计10分) 1. 图解法可以求解包含5个变量的LP 问题。
2. 当线性规划问题的一个基解满足所有的x i ≤ 0时,称此基解为一个可
行基解。
3. 根据对偶问题的性质,当对偶问题无可行解时,其原问题无最优解。
4. 用表上作业法求解运输问题时,产、销可能不平衡。
5. 输入过程是泊松流,则顾客相继到达的间隔时间服从负指数分布。
二 填空题(每空2分,合计40分)
1. 一个线性规划问题包含一组 变量,一组 条件和一个 函数。
2. 线型规划的系数矩阵B 为m ×n 阶,其基可行解的个数不超过 。
3. 标准LP 问题 的检验数σ=
4. 若原问题有有最优解,则其对偶问题是否有最优解 ,若存在最优解,则目标函数值之间存在什么关系 z ω。
5. 对偶单纯形法求解LP 问题,若换入变量x j 所在行的各系数a ij ≥0,则该问题 。
6. 在运输问题中,通常以达到___________或获得___________为目标,来选择最佳运输方案。
7. 为求解需要量大于供应量的运输问题,可虚设一个供应点,该点的供应量等于_____________。
8. 整数规划中如果所有变量都限制为(非负)整数,就称为 。
1
1max ,.. ,
0,1,2,,.n
j j j n
j j j j z c x s t P x b x j n ====≥=∑
∑
9. 要求恰好达到目标值的目标规划,其目标函数为 。
10. 分支定界法用于求解 和 。
11. 图( ,)G V E =是一个树,则G 中任意两点间 。
12. 排队系统的三个基本组成部分 、 和 。
13. 泊松分布的期望E[N(t)]= 。
三 按要求做出模型,不需计算(每题10分,合计20分)
1.利民服装厂生产男式童装和女式童装。
产品的销路很好,但有三种工序即裁剪、缝纫和检验限制了生产的发展。
已知制作一件童装需要这三道工序的工时数、预计下个月内各工序所拥有的工时数以及每件童装所提供
该厂生产部经理希望知道下个月内使利润最大的生产计划。
试建立该问题的LP 模型。
2. 写出下面线性规划问题的对偶问题:(10分)
123123123123123min z 25,.. 258, 23 3, 4 26, ,,0.
x x x s t x x x x x x x x x x x x =++-+≤++=-+≤≥
四 对偶计算题(每题10分,合计10分)
设有下述问题:
(P )
123
4
123412341234m i n z 2653,
.. -223,
23 2, ,,,0.
x x x x s t x x x x x x x x x x x x =++++++≥++-≥≥
(1)写出(P )的对偶问题(D );
(2)求解(D );
(3)利用(D )的最优表直接写出原问题(P )的解。
五 最短路径计算题(每题10分,合计10分)
求下图所示图G 中v1到v8的最短路。
六 排队论计算题(每题10分,合计10分)
某修理店只有一个工人,顾客按强度为4人每小时的Poisson 过程到达,该工人检查顾客的器具的损坏情况,立即修好或提出修理意见,所需时间平均为6分钟,服务时间服从指数分布。
试求: (1) 修理店空闲时间的比例; (2) 在店内顾客的平均数; (3) 等待服务顾客的平均数。
V 1
8 V 6
2 12
1 5 9
V 2
V 3 V 4
V 5 V 7
V 8
2 11
4
2 4
2 8
1
参考答案
一、 判断下列说法是否正确,并对错误加以改正。
(每题2分,合计10分) 1. 错误。
图解法只能求解包含三个或三个以下变量的LP 问题。
2. 错误。
当线性规划问题的一个基解满足所有的x i ≥ 0时,称此基解为
一个可行基解。
3. 正确。
4. 错误。
产、销必须平衡
5. 正确。
二、 填空题(每空2分,合计40分) 1 决策变量 2 约束条件 3 目标函数 4
m
n
C 5
1
,1
j j i i j i c c a -=-∑
6 存在最优解
7 z = ω
8 无可行解
9 总运费最少 10 总利润最大 11 需要量与供应量的差值
12 纯整数规划
13
min ()z f d d +-=+
14 纯整数规划 15 混合整数规划
16 必有一条链
17 输入过程 18 排队规则
19 服务机构
20 t λ
三、 按要求做出模型,不需计算(每题10分,合计20分)
1.解:设x 1,x 2分别表示男式童装和女式童装下个月的产量,z 表示生产x 1件男式童装和x 2件女式童装所创造的总利润,以元为单位,则LP 模型为:
Max z =5x 1 + 8x 2
s.t. x 1 +
3
2x 2 ≤ 900 12x 1 + 1
3x 2 ≤ 300
18x 1 + 1
4
x 2 ≤ 100
x 1,x 2 ≥ 0 2. 解:
四、 对偶计算题(每题10分 ,合计10分)
解: (1)(P )的对偶问题为
(D ) 121212121212max 32,.. 22, 236, 2 5, 3, ,0y y s t y y y y y y y y y y ω=+-+≤+≤+≤-≤≥.
(2)将(D )化为标准型,加入松弛变量y1,y2,y3,y4,用单纯形法求解后的最优表为: 表16.1
(D )的最优解和最优值为
*
**129131,;424
y y ω===
(3)将表16.1中各松弛变量 的检验数反号,就得到原问
题的最优解:
**
**1234150,,,044x x x x ====
(P )的最优值与(D )的相同,即 。
123123123123132max 836,.. -241, 23 2, -5 25, ,0,y y y s t y y y y y y y y y y y y ω=+++-≤++≤+-≤≥无约束.
*31
4
z =
****3456,,,y y y y
五、 最短路径计算题(每题10分 ,合计10分) 解 如图
最短路长8
六、 排队论计算题(每题10分 ,合计10分) 解 (1)店内没有顾客的概率为
010.6p ρ=-=
(2)在店内顾客的平均数为
0.671L ρ
ρ
=
=-
(3)等待服务顾客的平均数
2
0.2671q L ρρ
==-
1 12
5 9
V 1
V 2
V 3 V 4
V 5 V 6
V 7
V 8
8 2 11
4
2 2 4
2 8
1。