2013年华英学校中招数学模拟试卷

合集下载

2013中考数学模拟测试卷

2013中考数学模拟测试卷

2013中考数学模拟测试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在题.前括号内.....【】1. -2的绝对值是A.2 B.-2 C.12- D.2±【】2. 下列计算正确的是A.3x2·4x2=12x2 B.x3·x5=x15 C.x4÷x=x3 D.(x5)2=x7【】3. 某同学在“百度”搜索引擎中输入“魅力南通”,能搜索到与之相关的结果个数约为3930000,这个数用科学记数法表示为A.0.393×107 B.393×104C.39.3×105 D.3.93×106【】4. 若一个多边形的内角和是900°,则这个多边形的边数是A.5 B.6 C.7 D.8【】5. 如图所示,△ABC的顶点是正方形网格的格点,则sin A的值为A.12B.5C.10D.25【】6. 如图,点A、C、B、D分别是⊙O上四点,OA⊥BC,∠AOB=50°则∠ADC的度数为A.20° B.25° C.40° D.50°【】7. 如图所示的工件的主视图是【】8. 某鞋店一天中卖出运动鞋11双,其中各种尺码的鞋的销售量如下表:则这11双鞋的尺码组成的一组数据中,众数和中位数分别是A.24.5,24.5 B.24.5,25 C.25,24.5 D.25,25尺码(cm)23.5 24 24.5 25 25.5销售量(双) 1 2 2 5 1A.B.C.D.(第5题)【 】9. 下列轴对称图形中,只用一把无刻度的直尺不能..画出对称轴的是 A .菱形B .矩形C .等腰梯形D .正五边形【 】10. 如图,已知在Rt△ABC 中,AB =AC =2,在△ABC 内作第一个内接正方形DEFG ;然后取GF 的中点P ,连接PD 、PE ,在△PDE 内作第二个内接正方形HIKJ ;再取线段KJ 的中点Q ,在△QHI 内作第三个内接正方形……依次进行下去,则第n 个内接正方形的边长为A .21()32n ⋅B .221()2n ⋅C .121()32n -⋅ D . 1221()2n -⋅二、填空题:本大题共8小题,每小题3分,共24分.请把最后结果填在题中横线上. 11. 计算:327-= .12. 将一直角三角板与两边平行的纸条如图所示放置,若∠1=53°,则∠2= °. 13. 已知分式21x x -+的值为0,那么x 的值为 . 14. 一个圆锥的母线长为4,侧面积为12π,则这个圆锥的底面圆的半径是 . 15. 如图,函数2y x =和5y ax =+的图象相交于A (m ,3),则不等式25x ax <+的解集 为 .16. 设m ,n 是方程220120x x --=的两个实数根,则2m n +的值为 . 17. 如图,已知正方形ABCD 的边长为2,对角线AC 、BD 相交于点O ,AE 平分∠BAC 交 BD 于点E , 则BE 的长为 . 18. 如图,点A 是双曲线4y x=在第一象限上的一动点,连接AO 并延长交另一分支于点B , 以AB 为斜边作等腰Rt △ABC ,点C 在第二象限,随着点A 的运动,点C 的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为 .A BCD EFGH I K J PQ (第10题)(第6题)OD C B12(第12题)三、解答题:本大题共10小题,共计96分.解答时应写出文字说明、证明过程或演算步骤.19.(本题满分10分) (1)计算:0(3)-+12cos30°-11()5- (2)解方程组:38 53 4 x y x y +=⎧⎨-=⎩①②20.(本题满分8分)化简分式222421444a aa a a -÷--++,并选取一个你认为合适的整数a 代入求值.y AOx(第15题)xBAC(第18题)O y(第17题)OE小敏为了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示优的扇形的圆心角度数; (3)请估计该市这一年(365天)达到优和良的总天数.22.(本题满分8分)如图,AB 与⊙O 相切于点C ,OA =OB .(1)如图①,若⊙O 的直径为8cm ,AB =10cm ,求OA 的长(结果保留根号); (2)如图②,OA 、OB 与⊙O 分别交于点D 、E ,连接CD 、CE ,若四边形ODCE 为菱形,求ODOA的值.OA B C 图 ①ADCBOE图 ②本市若干天空气质量情况扇形统计图优良 64%轻微污染轻度污染 中度污染 重度污染轻微 污染 轻度 污染 天数(天)20 15105832311中度 污染 重度污染空气质如图,在边长为1的正方形组成的网格中,△ABC的顶点和O点均在格点上.(1)以点O为位似中心,在网格中将△ABC放大为原来的2倍,得到△A′B′C′;(2)△A′B′C′绕点B′顺时针旋转90°,画出旋转后得到的△A″B′C″,并求边A′B′在旋转过程中扫过的图形面积.24.(本题满分8分)如图,某飞机于空中探测某座山的高度,在点A处飞机的飞行高度是AF=3700米,从飞机上观测山顶目标C的俯角是45°,飞机继续以相同的高度飞行300米到B处,此时观测目标C的俯角是50°,求这座山的高度CD.DF甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为-7,-1,3,乙袋中的三张卡片所标的数值为-2,1,6,先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y 表示取出卡片上的数值.把x、y分别作为点A的横坐标和纵坐标.(1)用列表或画树形图的方法写出点A(x,y)的所有情况;(2)求点A落在直线2上的概率.y x26.(本题满分10分)甲、乙两组同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)的函数图象如图所示.(1)直接写出甲组加工零件的数量y与时间x之间的函数关系式▲;(2)求乙组加工零件总量a的值;(3)甲、乙两组加工出的零件合在一起装箱,每满300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?如图,在矩形ABCD中,AB=3,BC=4.动点P从点A出发沿AC向终点C运动,同时动点Q从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点P,Q运动速度均为每秒1个单位长度,当点P到达点C时停止运动,点Q也同时停止.连结PQ,设运动时间为t(t >0)秒.(1)当点Q从B点向A点运动时(未到达A点),若△APQ∽△ABC,求t的值;(2)伴随着P,Q两点的运动,线段PQ的垂直平分线为直线l.①当直线l经过点A时,射线QP交AD边于点E,求AE的长;②是否存在t的值,使得直线l经过点B?若存在,请求出所有t的值;若不存在,请说明理由.如图,二次函数212y x mx n =-++的图象与y 轴交于点N ,其顶点M 在直线32y x =-上运动,O 为坐标原点. (1)当m =-2时,求点N 的坐标;(2)当△MON 为直角三角形时,求m 、n 的值;(3)已知△ABC 的三个顶点的坐标分别为A (-4,2),B (-4,-3),C (-2,2),当抛物线212y x mx n =-++在对称轴左侧的部分与△ABC 的三边有公共点时,求m的取值范围.(第2问图)。

2013年数学中考模拟试题及答案

2013年数学中考模拟试题及答案

2013年中考数学模拟试题一、选择题:本大题共8小题,在每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.- 13的倒数是A .-3B .3C .- 13D .132.下列各式运算中,正确的是A .222()a b a b +=+ B3=C .3412a a a ⋅=D .)0(6)3(22≠=a a a3.下列几何体中,主视图、左视图、俯视图完全相同的是 A. 圆柱 B. 圆锥 C. 球 D. 棱锥 4.下列说法正确的是A .买一张福利彩票一定中奖,是必然事件.B .买一张福利彩票一定中奖,是不可能事件.C .抛掷一个正方体骰子,点数为奇数的概率是13. D .一组数据:1,7,3,5,3的众数是3. 5.函数y =中自变量的取值范围在数轴上表示为6.在□ABCD 中,点E 为AD 的中点,连接BE ,交AC 于点F ,则=CFAFA .1:2B .1:3C .2:3D .2:5第7题图7.如图,在△ABC 中,AB = AC ,AB = 8,BC = 12以AB 、AC 为直径作半圆,则图中阴影部分的面积是A.64π-B .1632π-C.16π-.16π-8.如图,点P 按A →B →C →M 的顺序在边长为1的正方形边上运动,M 是CD 边上的中点。

设点P 经过的路程x 为自变量,△APM 的面积为y ,则函数y 的大致图像是二、填空题:本大题共8小题,共32分,只要求填写最后结果,每小题填对得4分. 9.我国公安部交管局公布的数据显示,截至2012年初,全国机动私家车保有量达0.195亿辆,将0.195亿辆用科学记数法表示应是 辆(结果保留2个有效数字) 10.分解因式:=+-y xy y x 22 。

11.= . 12.如果圆锥的底面周长为20πcm ,侧面展开后所得的扇形的圆心角是120º,则该圆锥的侧面积是___________.(结果保留π) 13.如图,直线a ∥b ,l 与a 、b 交于E 、F 点,PF 平分∠EFD 交a 于P 点,若∠1 = 70︒,则∠2 = . 14.已知n 是正整数,n P (n x ,n y )是反比例函数xky =图象上的一列点,其中1x 1=,21F E DblPa2x 2=,…,n x n =,记211y x T =,322y x T =,…,1099y x T =;若1T 1=,则921T T T ⋅⋅⋅⋅⋅⋅的值是_________;15.如图,在等边△ABC 中,9=AC ,点O 在AC 上,且3=AO ,点P 是AB 上一动点,连接OP ,以O 为圆心,OP 长为半径画弧交BC 于点D , 连接PD ,如果PD PO =,那么AP 的长是 .16.如图,n +1个边长为2的等边三角形有一条边在同一直线上,设211B D C ∆的面积为1S ,322B D C ∆的面积为2S ,……,1n n n B D C +∆的面积为n S ,则n S = (用含n 的式子表示).三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.17.化简求值 (本题满分6分) 。

2013年中考数学模拟试卷(含答案)

2013年中考数学模拟试卷(含答案)

数学试题 第1页(共4页)2013年初中毕业生学业水平调研测试数 学本试卷共4页,22小题,满分120分,考试时间100分钟. 注意事项:⒈ 答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的姓名、考生号等,用2B 铅笔把对应号码的标号涂黑.⒉ 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.⒊ 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.⒋ 考生务必保持答题卡整洁.考试结束时,将答卷和答题卡一并交回.一、选择题(本大题5小题,每小题3分,共15分)在每小题给出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.31的相反数是A .31 B .31-C .3D .3-2.下列算式正确的是A .632a a a =+B .532a a a =+C .632a a a =⋅D .532a a a =⋅ 3.如图1是一个底面水平放置的圆柱,它的左视图是A .B .C .D .4.菱形ABCD 的对角线长为分别32=AC ,2=BD ,则菱形的内角=∠BAD A .o30 B .o60 C .o120 D .o1505.袋中有2个红球和4个白球,它们除颜色上的区别外其他都相同.从袋中随机地取出一个球,取到红球的概率是 A .61 B .32 C .31 D .21二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上. 6.据统计,某市2011年有初中毕业生约53600人.试用科学计数法表示=53600 .数学试题 第2页(共4页)7.在2012年“植树节”义务植树活动中,某校九年级5个班植树的颗数分别为16、20、15、21、18,则这组数据的平均数是 . 8.若点)213, 12(-+m m P 在第四象限,则常数m 的取值范围是 .9.如图2,⊙O 的半径5=R ,13=PO ,过P 作⊙O 的切线,切点为A ,则=PA . 10.观察下列连等式:⑴21)1(1)1)(1(x x x x x x -=-+-=+-⑵222)1(1])1)[(1()1)(1(x x x x x x x x -+-=++-=++-⑶43332321)1(1])1)[(1()1)(1(x x x x x x x x x x x x -=-+-=+++-=+++- 依此下去,第四个连等式为: . 三、解答题㈠(本大题5小题,每小题6分,共30分) 11.计算:o145cos 2)21( |22|)13( +---+--.12.先化简,再求值:xx x xx 1121222+++÷+,其中3=x .13.如图3,E 、F 分别是平行四边形ABCD 的边AD 、BC 的中点.⑴求证:DF BE =;⑵直接写出直线BE 与DF 的位置关系(不需要证明.....).14.如图4,在边长为 1 个单位长度的正方形方格纸中建立直角坐标系,坐标轴都在格线上.已知ABC ∆各顶点的坐标为)0 , 1(-A 、)3 , 4(-B 、)1 , 5(-C . ⑴画出ABC ∆关于y 轴对称的///C B A ∆;⑵写出点/B 的坐标,并直接写出//A ABB 是怎样的特殊四边形(不需要证明.....).AB CDEF15.如图5,反比例函数xky=的部分图象与直线xy-=1交点A的横坐标为2-.⑴试确定k的值;⑵当31<≤x时,求反比例函数y的取值范围.四、解答题㈡(本大题4小题,每小题7分,共28分)16.去冬今春,我国西南地区遭遇历史上罕见的旱灾,武警某部接到了限期打30口水井的作业任务,部队官兵到达灾区后,目睹灾情心急如焚,他们增派机械车辆,争分夺秒,每天比原计划多打3口井,结果提前5天完成任务,求原计划每天打多少口井?17.开展阳光体育运动后,体育老师为了解九年级360名男生的身体素质状况,在九年级随机抽取50位男生进行100米跑测试,以测试数据为样本,绘制出如下的频数分布表和频数分布直方图(均未完成):请根据图表数据解答下列问题:⑴求频数分布表中a的值,并把频数分布直方图补充完整;⑵这个样本数据的中位数落在第组(直接填写结果,不必写出求解过程);⑶若九年级男生100米跑的时间小于3.14秒为优秀,根据以上图表,估计九年级全级大约有多少名男生达到优秀?18.如图6,已知ABD∆和ACE∆都是等边三角形,CD、BE相交于点F.⑴求证:ABE∆≌ADC∆;⑵ABE∆可由ADC∆经过怎样的旋转变换得到?数学试题第3页(共4页)数学试题 第4页(共4页)19.为美化环境,建设绿色校园,学校计划铺设一块面积为230m 的等腰三角形绿地,已知等腰三角形一边长为m 10,且顶角是锐角,试求这块等腰三角形绿地另外两边的长.五、解答题㈢(本大题3小题,每小题9分,共27分)20.如图7,B 是线段AD 上一点,ABC ∆和BDE ∆都是等边三角形,⊙O 是ABC ∆的外接圆.CE 与⊙O 相交于G ,CE 的延长线与AD 的延长线相交于F . ⑴求证:BCF ∆∽DEF ∆; ⑵求证:BE 是⊙O 的切线; ⑶若21=BCDE ,求CGEG .21.某商场销售一批进价为16元的日用品,为了获得更多利润,商场需要确定适当的销售价格.调查发现:若按每件20元销售,每月能卖出360件;若按每件25元销售,每月能卖出210件.假定每月销售量y (件)是销售价格x (元/件)的一次函数. ⑴试求y 与x 之间的函数关系式;⑵销售价格定为多少时,商场每月获得的利润最大?每月的最大利润是多少?22.如图8,在平面直角坐标系xOy 中,二次函数542++-=x x y 的图象交x 轴于点A 、B ,交y 轴于点C ,顶点为P ,点M 是x 轴上的动点. ⑴求MB MA +的最小值; ⑵求MC MP -的最大值;⑶当M 在x 轴的正半轴(不包含坐标原点)上运动时, 以CP 、CM 为邻边作平行四边形PCMD .PCMD 能否 为矩形?若能,求M 点的坐标;若不能,简要说明理由.(参考公式:二次函数c bx ax y ++=2图象的顶点坐标是)44, 2(2ab ac ab --)数学试题 第5页(共4页)评分参考一、选择题 BDABC二、填空题 6.41036.5⨯ 7.18 8.3121<<-m 9.1210.5444324321)1(1])1)[(1()1)(1(x x x x x x x x x x x x x x -=-+-=++++-=++++-三、解答题㈠ 11.原式222)2( )22(1⨯+---+=……4分(每项1分) 5=……6分12.原式xx x x 1)1()1(22++⨯+=……2分, xx xxx 321)1(2+=++=……4分,3=x 时,原式332+=……5分, 32+=……6分.13.⑴(方法一)ABCD 是平行四边形,所以BC AD //,且BC AD =……2分,因为E 、F 分别的边AD 、BC 的中点.所以BF ED =……3分,所以DEBF 是平行四边形……4分,所以DF BE =……5分.(方法二)ABCD 是平行四边形,所以CD AB =,BC AD =且C A ∠=∠……2分,因为E 、F 分别的边AD 、BC 的中点.所以CF AE =……3分,所以CDF ABE ∆≅∆……4分,所以DF BE =……5分.⑵DF BE //……6分.14.⑴正确画图……3分,正确写出顶点/A 、/B 、/C ……4分⑵)3 , 4(/B ……5分;//A ABB 是等腰梯形……6分.15.⑴2-=x 时,31=-=x y ……1分,所以632-=⨯-=k ……2分.⑵1=x 时,反比例函数的值616-=-==x k y ……3分;3=x 时,236-=-==x k y……4分.所以,31<≤x 时,反比例函数的取值范围为26-<≤-y ……6分.数学试题 第6页(共4页)ABCADB CD四、解答题㈡16.设原计划每天打x 口井……1分,由题意得:533030=+-x x ……3分去分母,整理得01832=-+x x ……4分, 解得31=x ,62-=x …… 5分,经检验,31=x ,62-=x 都是原方程的根,但62-=x 不合题意,舍去……6分 答(略)……7分.17.⑴503122043=+++++a ……1分,所以8=a ……2分,画图……3分⑵4……5分⑶估计九年级达到优秀的男生大约有36050843⨯++……6分,108=(名)……7分.18.⑴因为A B D ∆和ACE ∆都是等边三角形,所以AE AC =,AB AD =……2分,60=∠=∠CAE BAD ……3分,BAC BAE DAC ∠+=∠=∠060……4分,所以ABE ∆≌ADC ∆……5分.⑵ABE ∆可由ADC ∆逆时针旋转060得到……7分.19.如图,等腰三角形ABC ∆,AC AB =,面积为230m若底边长m BC 10=(如左图),作BC AD ⊥,垂足为D ,由3021=⨯⨯=BC AD S 得6=AD ……1分,因为ABC ∆是等腰三角形,所以521=⨯=BC BD ……2分,所以61==AC AB ……3分若腰长m AC AB 10==(如右图),作AC BD ⊥,垂足为D ,由3021=⨯⨯=BD AC S 得6=BD ……4分,所以822=-=BDABAD ……5分,所以2=CD ,10222=+=BDCDBC ……6分所以,这块等腰三角形绿地另外两边的长为m 61、m 61或m 10、m 102……7分.数学试题 第7页(共4页)五、解答题㈢20.⑴ABC ∆和BDE ∆都是等边三角形,所以060=∠=∠BDE ABC ,所以DE BC //……1分,所以DEF BCF ∠=∠,又因为F F ∠=∠,所以BCF ∆∽DEF ∆……2分 ⑵连接OB ,依题意得,OB 是ABC ∠的平分线,03021=∠=∠ABC ABO ……3分,90)(180=∠+∠-=∠DBE ABO EBO ……4分,所以BE OB ⊥,BE 是⊙O 的切线……5分⑶由⑴DE BC //得21==BCDE BFDF ,所以DE DB DF ==,所以030=∠=∠=∠BCE DEF F ……6分,连接OC 、OG ,与⑵同理得030=∠OCB ,所以060=∠OCG ,从而060=∠COG ,3021=∠=∠COG CBG ……7分,在EBC ∆中,030=∠BCE ,060=∠CBE ,090=∠CEB ,所以BE CE 3=,同理在EBG ∆中,000303060=-=∠EBG ,090=∠GEB ,所以BE EG 33=……8分,所以EG CE 3=,从而21=CGEG ……9分.21.⑴依题意,设b kx y +=……1分,则⎩⎨⎧=+=+2102536020b k b k ……2分,解得⎩⎨⎧=-=96030b k (3)分,所以96030+-=x y ,3216≤≤x (不写x 的取值范围不扣分)……4分.⑵商场每月获利)16)(96030(-+-=x x w ……6分,153601440302-+-=x x ……7分,1920)24(302+--=x ……8分,所以,当24=x 时w 有最大值,最大值是1920元。

2013年中考模拟数学试卷5(有详细解答)

2013年中考模拟数学试卷5(有详细解答)

2013年中考模拟数学试题5(有详细答案)(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共40分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.第1~8小题选对每小题得3分,第9~12小题选对每小题得4分,选错、不选或选出的答案超过一个均记零分.1..下列各数中,最小的数是( )A. -2B. -0.1C. 0D. |-1| 2.下列计算正确的是( )A .π-3=3-πB .30=0C .331-=- D .=±33.某校八年级8位同学身高排序后如下:162,164,167,167,173,176,183,184.则由这组数据得到的结论中错误的是( )A. 中位数 170B. 众数为168C. 极差22D. 平均数为1714.在平面直角坐标系中,将抛物线y =x 2-x -6向上(下)或向左(右)平移了m 个单位,使平移后的抛物线恰好经过原点,则|m |的最小值为( )A .1 B .2 C .3 D .65.如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△A 'O B ',若∠AOB =15°,则∠AOB '的度数是A .25°B .30°C .35°D . 40°6.如图,以点O 为位似中心,将五边形ABCDE 放大后得到五边形A′B′C′D′E′,已知OA=10cm ,OA′=20cm ,则五边形ABCDE 的周长与五边形A′B′C′D′E′的周长的比值是 .A .2:3B .3:4C .1:2D .2:57.下列四个结论中,正确的是( ) 故选D . A 、方程x+=﹣2有两个不相等的实数根 B 、方程x+=1有两个不相等的实数根C 、方程x+=2有两个不相等的实数根D 、方程x+=a (其中a 为常数,且|a|>2)有两个不相等的实数根 8.如图,已知AB 是⊙O 的直径,AD 切⊙O 于点A ,.则下列结论中不一定正确的是( )A. BA ⊥DAB. OC //AEC. ∠COE =2∠CAED. OD ⊥AC9.如图,在四边形ABCD 中,E 、F 分別是AB 、AD 的中点,若EF=2,BC=5,CD=3,则tanC 等于( )BA 'AB 'O第5题图 第6题图A 、43 B 、34 C 、53 D 、5410.小亮为今年参加中考的好友小杰制作了一个正方体礼品盒(如图),六个面上各有一个字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是( )11.如图,A(1),B(1.将△AOB 绕点O 旋转 150得到△A′OB′,则此时点A 的对应点A′的坐标为【 】.A .(l) B .(-2,0) C .(-l,-或(-2,0) D .(1)或(-2,0) 12.在锐角△ABC 中,∠BAC=60°,BN 、CM 为高,P 为BC 的中点,连接MN 、MP 、NP ,则结论:①NP=MP ②当∠ABC=60°时,MN ∥BC ③ BN=2AN ④AN ︰AB=AM ︰AC ,一定正确的有 ( ) A 、1个 B 、2个 C 、3个 D 、4个第8题图第9题图 第10题图第11题图第12题图第Ⅱ卷(非选择题 共80分)二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分. 13.分解因式:a 3b ﹣2a 2b 2+ab 3= _________ .14.已知关于x 的分式方程1+x a -xx x a +--212=0无解,则a 的值为 。

2013年中考数学模拟试卷5

2013年中考数学模拟试卷5

2013年中考数学第五次模拟考试注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷2页为选择题,30分;第Ⅱ卷8页为非选择题,70分;全卷共10页,满分100分,考试时间为90分钟.2.答第Ⅰ卷前,考生务必将自己的姓名、考号、考试科目涂写在第Ⅱ卷上. 3.考试时,不允许使用科学计算器.第Ⅰ卷 选择题(本部分共10小题,每小题3分,共30分.每小题给出4个选项,其中只有一个是正确的)1.化简 ()m n m n +−− 的结果为 【 】A.2m B.2m − C.2n D.2n − 2.随着微电子制造技术的不断进步, 电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7 (平方毫米),这个数用科学记数法表示为【 】A.7×10-6 B.0.7×10-6 C.7×10-7 D.70×10-83.下列说法正确的是 【 】A.4的平方根是2 B.点(23)−−,关于x 轴的对称点是(23)−,是无理数D.将点(23)−−,向右平移5个单位长度到点(22)−,5.在2008年的世界无烟日(5月31日),小华学习小组为了解本地区大约有多少成年人吸烟,随机调查了100个成年人,结果其中有15个成年人吸烟.对于这个关于数据收集与处理的问题,下列说法正确的是 【 】 A.调查的方式是普查 B.本地区只有85个成年人不吸烟C.样本是15个吸烟的成年人 D.本地区约有15%的成年人吸烟 6.在反比例函数a y x=中,当0x >时,y 随x 的增大而减小,则二次函数2y ax ax =−的图象大致是下图中的 【 】A .C .7.某种商品零售价经过两次降价后的价格为降价前的81%,则平均每次降价 【 】A.9.5% B.10% C.19% D.20%8.下列命题中错误..的是 【 】 A.两组对边分别相等的四边形是平行四边形 B.平行四边形的对边相等C.对角线相等的四边形是矩形 D.矩形的对角线相等9.如图,将三角尺ABC (其中∠ABC =60°,∠C =90°)绕B 点按顺时针方向转动一个角度到A 1BC 1的位置,使得点A ,B ,C 1在同一条直线上,那么这个角度等于 【 】A.120° B.90° C.60° D.30°(第10题)10.如图所示,AB 是⊙O 的直径,AD =DE ,AE 与BD 交于点C ,则图中与∠BCE 相等的角有 【 】A.2个 B.3个 C.4个 D.5 个2012年初中毕业生学业考试数学模拟试卷2012.5第Ⅰ卷 选择题答题卡(共30分)将下列各题中唯一正确的答案代号填入下表中.题号 1 2 3 4 5 6 7 8 9 10 答案第Ⅱ卷(非选择题 共70分)注意事项:1. 第Ⅱ卷共8页,用钢笔或圆珠笔直接写在试卷上.2.答卷前将密封线内的A .B .C .D .(第9题)1A 1AB EDA CO第13题图做对题数10 9 8项目填写清楚 题号一二三总分16 17 18 19 20 21 22 得分二、填空题:本大题共5小题,每小题填对得3分,共15分.只要求填写最后结果.11.分解因式:34xy xy −= ____________.12.从围棋盒中抓出一大把棋子,所抓出棋子的个数是奇数的概率为 .13.数学老师布置10道选择题作为课堂练习,科代表将全班同学的答题情况绘制成条形 统计图,根据图中信息,全班每位同学答 对题数的中位数和众数分别为_____________.14. 红丝带是关注艾滋病防治问题的国际性标志.将宽为1cm 的红丝带交叉成60°角重叠在一起 (如图),则重叠四边形的面积为 2.cm15.将一个正三角形纸片剪成四个全等的小正三角形,样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:所剪次数 1 2 34… n正三角形个数4710 13 … a n则a n = (用含n 的代数式表示).三、解答题(本题共7小题,其中第16题6分,第17题6分,第18题8分,第19题8分,第20题8分,第21题9分,第22题10分,共55分)16.(本题满分6分)计算:102(2008)π−−−+o得 分 评 卷 得分评 卷第14题图17.(本题满分6分) 先将分式22111a a a a −⎛⎞×+⎜⎟+⎝⎠进行化简,然后请你给a选择一个合适的值,求原式的值.18.(本题满分8分)如图,⊙O 是△ABC 的外接圆,且AB =AC ,点D 在弧BC 上运动,过点D 作DE ∥BC ,DE 交AB 的延长线于点E ,连结AD 、BD .(1)求证:∠ADB =∠E ;(3分)(2)当点D 运动到什么位置时,DE 是⊙O 的切线?请说明理由.(2分) (3)当AB =5,BC =6时,求⊙O 的半径.(3分)得分 评卷人得 分评 卷E C A19.(本题满分8分)某地震救援队探测出某建筑物废墟下方点 C 处有生命迹象,已知废墟一侧地面上两探测点A、B 相距 3 米,探测线与地面的夹角分别是30°和 60°(如图),试确定生命所在点 C 的深度. (结果精确到0.11.73≈≈)20.(本题满分8分)如图,在等腰梯形ABCD 中,已知AD ∥BC , AB =DC , AD =2,BC =4,延长BC 到E ,使CE =AD .(1)写出图中所有与△DCE 全等的三角形,并选择其中一对说明全等的理由(2)探究当等腰梯形ABCD 的高DF 是多少时,对角线AC 与BD 互相垂直?请回答并说明理由.得 分评 卷得 分 评 卷F EDCBA21. (本题满分9分)为了加强视力保护意识,小明想在长为3.2米,宽为4.3米的书房里挂一张测试距离为5米的视力表.在一次课题学习课上,小明向全班同学征集“解决空间过小,如何放置视力表问题”的方案,其中甲、乙、丙三位同学设计方案新颖,构思巧妙.(1) 甲生的方案:如图1,将视力表挂在墙ABEF 和墙ADGF 的夹角处,被测试人站立在对角线AC 上,问:甲生的设计方案是否可行?请说明理由.(2)乙生的方案:如图2,将视力表挂在墙CDGH 上,在墙ABEF 上挂一面足够大的平面镜,根据平面镜成像原理可计算得到:测试线应画在距离墙ABEF 米处.(3)丙生的方案:如图3,根据测试距离为5m 的大视力表制作一个测试距离为3m 的小视力表.如果大视力表中“E ”的长是3.5cm,那么小视力表中相应“E ”的长是多少cm?22. (本小题满分10分)如图,在平面直角坐标系中,已知点A 坐标为(2,4), 直线2=x 与x 轴相交于点B ,连结OA ,抛物线2x y =从点得 分 评 卷HH(图1)(图2)(图3)3.5㎝AC F3mB 5mD得 分评 卷EC AO 沿OA 方向平移,与直线2=x 交于点P ,顶点M 到A 点时停止移动. (1)求线段OA 所在直线的函数解析式; (2)设抛物线顶点M 的横坐标为m ,①用m 的代数式表示点P 的坐标; ②当m 为何值时,线段PB 最短;(3)当线段PB 最短时,相应的抛物线上是否存在点Q ,使△QMA 的面积 与△PMA 的面积相等,若存在,请求出点Q 的坐标;若不存在,请说明理由.2012年初中毕业生学业考试 数学模拟试卷参考答案一、选择题(本题满分30分,共10小题,每小题3分)C C BD D AB CA D三、解答题:16. (本题6分) 1 17. (本题6分) a-2 18. (本题8分)CACBA解:(1)在△ABC 中,∵AB =AC ,∴∠ABC =∠C . ············ 1分∵DE ∥BC ,∴∠ABC =∠E ,∴∠E =∠C . ············ 2分又∵∠ADB =∠C ,∴∠ADB =∠E . ············ 3分(2)当点D 是弧BC 的中点时,DE 是⊙O 的切线. ··········· 4分 理由是:当点D 是弧BC 的中点时,则有AD ⊥BC ,且AD 过圆心O .又∵DE ∥BC ,∴ AD ⊥ED .∴ DE 是⊙O 的切线. ············ 5分(3)连结BO 、AO ,并延长AO 交BC 于点F , 则AF ⊥BC ,且BF =21BC =3. ········· 6分 又∵AB =5,∴AF =4.设⊙O 的半径为r ,在Rt△OBF 中,OF =4-r ,OB =r ,BF =3, ∴ r 2=32+(4-r )2······· 7分解得r =825, ∴⊙O 的半径是825. ··········· 8分19. (本题8分)20、(本题8分)解:(1)△CDA ≌△DCE ,△BAD ≌△DCE ; ················· 2分 ① △CDA ≌△DCE 的理由是: ∵AD ∥BC ,∴∠CDA =∠DCE .又∵DA =CE ,CD =DC , ········· 3分 ∴△CDA ≌△DCE . ·········· 4分 或 ② △BAD ≌△DCE 的理由是: ∵AD ∥BC , ∴∠CDA =∠DCE .又∵四边形ABCD 是等腰梯形, ∴∠BAD =∠CDA ,∴∠BAD =∠DCE . ··························· 3分 又∵AB =CD ,AD =CE ,∴△BAD ≌△DCE . ·························· 4分 (2)当等腰梯形ABCD 的高DF =3时,对角线AC 与BD 互相垂直. ····· 5分 理由是:设AC 与BD 的交点为点G ,∵四边形ABCD 是等腰梯形,F EDCBA G∴AC =DB .又∵AD =CE ,AD ∥BC , ∴四边形ACED 是平行四边形, ∴AC =DE ,AC ∥DE .∴DB =DE . ···························· 6分 则BF =FE ,又∵BE =BC +CE =BC +AD =4+2=6,∴BF =FE =3. ··························· 7分 ∵DF =3,∴∠BDF =∠DBF =45°,∠EDF =∠DEF =45°, ∴∠BDE =∠BDF +∠EDF =90°, 又∵AC ∥DE∴∠BGC =∠BDE =90°,即AC ⊥BD .·················· 8分 (说明:由DF =BF =FE 得∠BDE =90°,同样给满分.)21.(本题9分)解:(1)甲生的设计方案可行.……………………………………………………(1分)根据勾股定理,得222223.24.328.73AC AD CD =+=+=.∴5AC =>=.……………………………………………(3分)∴甲生的设计方案可行.(2)1.8米.………………………………………………………………………(5分) (3)∵FD ∥BC∴△ADF ∽△ABC .………………………………………………………(7分)∴FD ADBC AB =.………………………………………………………………(8分) ∴33.55FD =. ∴ 2.1FD =(cm ).…………………………………………………………(9分)答:小视力表中相应“E ”的长是2.1cm .22.(本题10分)解:(1)设OA 所在直线的函数解析式为kx y =,∵A (2,4),∴42=k , 2=∴k ,∴OA 所在直线的函数解析式为2y x =.…………………………………(2分) (2)①∵顶点M 的横坐标为m ,且在线段OA 上移动, ∴2y m =(0≤m ≤2).∴顶点M 的坐标为(m ,2m ).∴抛物线函数解析式为2()2y x m m =−+.∴当2=x 时,2(2)2y m m =−+224m m =−+(0≤m ≤2).∴点P 的坐标是(2,224m m −+).…………………………………(2分) ② ∵PB =224m m −+=2(1)3m −+, 又∵0≤m ≤2,∴当1m =时,PB 最短. ……………………………………………(2分)(3)当线段PB 最短时,此时抛物线的解析式为()212+−=x y .假设在抛物线上存在点Q ,使QMA PMA S S = . 设点Q 的坐标为(x ,223x x −+).①当点Q 落在直线OA 的下方时,过P 作直线PC //AO ,交y 轴于点C ,∵3PB =,4AB =,∴1AP =,∴1OC =,∴C 点的坐标是(0,1−).∵点P 的坐标是(2,3),∴直线PC 的函数解析式为2=x y ∵QMA PMA S S = ,∴点Q 落在直线12−=x y 上. ∴223x x −+=21x −.解得122,2x x ==,即点Q (2,3). ∴点Q 与点P 重合.∴此时抛物线上不存在点Q ,使△QMA 与△APM 的面积相等.……………………………………………………………………(2分) ②当点Q 落在直线OA 的上方时,作点P 关于点A 的对称称点D ,过D 作直线DE //AO ,交y 轴于点E ,∵1AP =,∴1EO DA ==,∴E 、D 的坐标分别是(0,1),(2,5), ∴直线DE 函数解析式为12+=x y .∵QMA PMA S S = ,∴点Q 落在直线12+=x y 上. ∴223x x −+=21x +.解得:12x =+,22x =−.代入12+=x y ,得15y =+,25y =−.∴此时抛物线上存在点(12Q ++,()225,222−−Q使△QMA 与△PMA 的面积相等. …………………………………(2分)综上所述,抛物线上存在点(12Q ++,()225,222−−Q使△QMA 与△PMA 的面积相等.。

2013年初三年中考数学模拟试卷3(华师大版)

2013年初三年中考数学模拟试卷3(华师大版)

晋江英都中学2013届初中毕业班数学科综合模拟试卷(三)一、选择题1.3-的倒数是( ).A .3-B .13-C .13D .3 2.下列计算正确的是( ). A .523)(x x = B .33x x x =÷ C .523x x x =⋅ D .332)2(x x =3.下图所示几何体的正视图是( ).A .B .C .D .4.若⊙A 的半径是5,⊙B 的半径是3,5=AB ,则⊙A 与⊙B 的位置关系是( ).A .相交B .内切C . 外切D .内含 5.不等式组2030x x ->-<⎧⎨⎩的解集是( ).A .无解B .2>xC .3<xD .32<<x6.下列说法中正确的是( ).A .“经过某一有交通信号灯的路口,恰好遇到红灯”是必然事件;B .某次抽奖活动中奖的概率为1001,说明每买100张奖券,一定有一次中奖; C .数据1,1,2,2,3的中位数是2; D .想了解泉州城镇居民人均年收入水平,宜采用普查形式.7.如图a 是长方形纸带,∠DEF =20°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是( ).A .110°B .120°C .140°D .150°二、填空题8.写出一个比0小的实数_______.9.地球到太阳的距离为150 000 000km ,150 000 000km 用科学记数表示为__________ km .10.已知反比例函数xy 6=的图象经过点A (3,a ),则=a __.11.因式分解:=++122a a .12.如图,点P 在⊙O 上,︒=∠40P ,则︒=∠______AOB .13.若正多边形的一个外角是30°,则该正多边形的边数是_______. 14.如图,点A 在⊙O 上,∠A =60°,则∠OBC 的度数为 度.15.将一副直角三角尺如图放置,已知AB ∥DE ,则AFC ∠= 度.16.用一张半径为cm 24的扇形纸片做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为cm 10,那么这张扇形纸片的面积是 2cm .17.如图,抛物线1C :x x y 42-=的对称轴为直线a x =,将抛物线1C 向上平移5个单位长度得到抛物线2C ,则:(1)抛物线2C 的顶点坐标为 ;(2)图中的两条 抛物线、直线a x =与y 轴所围成的图形(图中阴影部分)的面积为 .三、 18.计算:10)21(3123)2012(-+÷----π .19.先化简,再求值:(2)(2)(2)a a a a +-+-,其中2a =.20.如图,∠B=∠D,请在不增加辅助线的情况下,添加一个适当的条件,使△ABC≌△ADE 并证明.(1)你添加的条件是;(2)证明:21.在学校组织的“喜迎建党91周年”的知识竞赛中,每班参加比赛的人数相同,成绩分为A、B、C、D四个等级,其中相应等级的得分依次记为100分、90分、80分、70分.学校将某年级的一班和二班的成绩整理并绘制成如右边的两个统计图:请你根据图表提供的信息解答下列问题:(1)直接写出下面的表格中a、b、c的值,以及此次竞赛中二班参加比赛的人数;(2)求二班中成绩为B级的人数.22.“五一劳动节大酬宾!”,某家具城设计的促销活动如下:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“50元”的字样.规定:在本商场同一日内,顾客每消费满500元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格的购物券,购物券可以在本商场消费.某顾客刚好消费500元.(1)该顾客至多可得到多少元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.23.某商店购进一种商品,单价30元.试销中发现这种商品每天的销售量p (件)与每件的销售价x (元)满足关系:1002p x =-.若商店每天销售这种商品要获得200元的利润,求:(1)每件商品的售价应定为多少元?(2)每天要售出这种商品多少件?24.如图,在直角坐标系中,O 为坐标原点,已知反比例函数x k y =)0(>k 的图象经过点A (2,m ),过点A 作AB ⊥x 轴于点B ,且△AOB 的面积为21. (1)求k 和m 的值;(2)点C (x ,y )在反比例函数xk y =的图象上,求当 31≤≤x 时函数值y 的取值范围;(3)过原点O 的直线l 与反比例函数xk y =的图象交于P 、 Q 两点,试根据图象直接写出线段PQ 长度的最小值.25.在直角坐标系中,点A(5,0)关于原点O的对称点为点C.(1)请直接写出点C的坐标;(2)若点B在第一象限内,∠OAB=∠OBA,并且点B关于原点O的对称点为点D.①试判断四边形ABCD的形状,并说明理由;②现有一动点P从B点出发,沿路线BA—AD以每秒1个单位长的速度向终点D运动,另一动点Q从A点同时出发,沿AC方向以每秒0.4个单位长的速度向终点C运动,当其中一个动点到达终点时,另一个动点也随之停止运动.已知AB=6,设点P、Q的运动时间为t秒,在运动过程中,当动点Q在以PA为直径的圆上时,试求t的值.26.如图,已知抛物线b ax ax y --=22(0>a )与x 轴的一个交点为B (-1,0),与y 轴的负半轴交于点C ,顶点为D .(1)直接写出抛物线的对称轴,及抛物线与x 轴的另一个交点A 的坐标;(2)以AD 为直径的圆经过点C .①求抛物线的解析式;②点E 在抛物线的对称轴上,点F 在抛物线上,且以B 、A 、F 、E 四点为顶点的四边形为平行四边形,求点F 的坐标.。

华英数学考试含答案

华英数学考试含答案
谷期电价为:
峰期的费用为:
峰期电价:
所以,用电量为:
5月电费为:
答:5月份小明家将支付电费174.6元。
3、解:每个圆角方形图标面积为:
列式方法一:
列式方法二:
16个圆角方形面积为:
3个圆形图标面积为:
所以,剩余的面积为:
A. 31 B. 33 C.35
6.小轩同学先把一张长方形纸片按图1的方式进行折叠,使折痕的左侧部分比右侧部分短2cm ;展开后按图2的方式再折叠一次,使第二次折痕的左侧部分比右侧部分长2cm ,再展开后,在纸上形成的两条折痕之间的距离是( )。
第一次折叠 第二次折叠
A. 1 cm B. 2 cm C. 4 cm
阶梯电价夏季(5-11月)计费标准 峰谷电价计费标准
平期
峰期
谷期பைடு நூலகம்
电价
(元/千
瓦时)
0.62
比平期
电价增
加50%
平期电
价打
5折
第一档
第二档
第三档
每月用电(千瓦时)
小于260
260至600
大于600
电价(元/千瓦时)
0.62
0.67
0.92
例如:使用电量为300千瓦时,当中的260千
瓦时算第一档,超出部分的40千瓦时算第二档
根据右边促销广告,他至少要付( )元。每支0.4元,
买6支送1支
买一盒(12支)3.8元
7.用长为96cm的绳子在桌面摆出正方形,先用这根绳子摆成一个正方形,再用这根绳子摆成2个正方形,3个正方形,4个正方形(绳子不能剪断),当摆出10个正方形时,每个小正方形的边长为( ),此时摆出的图形共有( )个顶点。
二、判断题(每小题2分,共10分)

2013年中考模拟数学试卷数学答案

2013年中考模拟数学试卷数学答案
(2)由全等及三线合一得AO⊥BC,(5分)
∴∠DBC=∠BAO,∵BD是直径,∴∠BCD=∠ABO=90°,
∴△BDC∽△AOB,(6分)∴ , (7分)
22.(1)设A组的频数是x,那么B组的频数为5x,那么x+5x=12,x=2,(2分)
12÷(1-40%-28%-8%)=50(4分)
(2) (7分)(3)(28%+8%)×500=180(户)(9分)
(2)S1=4m-4(m-4)=16,(5分)
S2=S梯形AECD-S△CEEF= =16,∴S1=S2(8分)
(求S2时也可以将两个三角形的面积一一求出,再求差)
.(3)∵△AEG与△FDG面积和为24,差为16,∴△AEG的面积=20(10分)
∴ ,∴AG=10,∵△FDG∽△FCE,∴ ,
m1=12,m2=6(舍去),∴tan∠BAE= (12分)
∴ ,即
∴ 或 .(14分)
19.解:原式= (4分)= (6分)
20. → (2分)→
→ (5分)→经检验,原方程的解是 (7分)
21.解:(1)证明:连结OC,
∵OB=OC,AB=AC,OA=OA,∴△ABO≌△ACO,(2分)
∴∠ABO=∠ACO,∵AC是切线,∴∠ACO=90°,
∴∠ABO=90°,∴AB是⊙O的切线.(4分)
26.(1)第一条抛物线的解析式是 (3分)
(2)第n个三角形的面积是 ,当n=1,2,5时为整数(6分)
(3)设第n条抛物线的解析式为 ,(7分)
又∵过点 ∴ ,设 ,∴
= ,∴
,n=2.(10分)
(4)作第m个三角形和第n个三角形底边上的高AmC和AnD,
∵顶角互补,∴底角互余.即△AmCBm-1∽△AnDBn-1.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年华英学校中招数学模拟试卷一、 选择题(每小题3分,共18分) 1.在0,-2,1,2这四个数中,绝对值最小的数是( )A.0B.-2C.1D.25.当k <0时,反比例函数y k x=和一次函数y kx k =-的图象大致是( )6.如图,在ABC ∆中,D 、E F 、分别在AB BC AC 、、上,且EF ∥AB ,要使点C 沿EF 折叠后与点D 重合,只需再有下列条件① AF =FC ②EF =12AB ③BD =CF ④AB =AC ⑤E 是BC 的中点中的哪一个即可( ).A.①、②、③B. ②、③、④C.①、③、⑤D. ①、②、⑤二、填空题(每小题3分,共27分)8.一杯“可乐”饮料售价3.6元,商家为了促销,顾客每买一杯“可乐” 饮料获一张赠券,每三张赠券可兑换一杯“可乐” 饮料,则每张赠券的价值相当于______元.9.将一块直角三角尺ABC 平移到如图A ′B ′C ′的位置,若∠A =6O °,则∠1= 度.10.平面直角坐标系中,点(29)A ,、(23)B ,、(32)C ,、(92)D ,在P e 上,在图中点P 的坐标是 .ABCD EFy y y yO x O x O x O xA. B. C. D.2 468 11 2 4 6 8 11y xA BCD 011.如图,圆锥的主视图是等边三角形,圆锥的底面半径为2cm,假若点B 有一蚂蚁只能沿圆锥的表面爬行,它要想吃到母线AC 的中点P 处的食物,那么它爬行的最短路程是________cm .12.已知抛物线2y ax bx c =++经过点(1,2)与(1-,4),则a+c 的值是 .15.如图,AB 为半圆O 的直径,C 是半圆上一点,且∠COA =60°,设扇形AOC 、△COB 、弓形BmC 的面积为S 1、S 2、S 3,则它们之间面积最大的是__________.三、解答题(本大题8个小题, 共75分)19.(9分)小明在探究问题“正方形ABCD 内一点E 到A 、B 、C 三点的距离之和的最小值”时, 由于EA 、EB 、EC 比较分散,不便解决.于是将∆A B E 绕点B 逆时针旋转60得∆A B E '',联结EE ′.(1)小明得到的'EBE ∆是什么三角形?(直接写出结果,不必说出理由) (2)图1中联结A ′C ,试比较AE +BE +CE 与A ′C 的大小.(3)当点E 在正方形ABCD 内移动时,猜测AE +BE +CE 有无最小值?如有利用图2画出符合题意的图示并说出理由;如果不存在最小值,简述理由.第15题(第15题)20.(9分)国美电器“家电下乡”指定型号冰箱、空调的进价和售价如下表所示:类别冰箱空调进价(元/台)2300 1800售价(元/台)2420 1940(1)按国家政策,农民购买“家电下乡”产品可享受售价13%的政府补贴.到该商场购买了冰箱、空调各一台,可以享受多少元的政府补贴?(2)为满足农民需求,商场决定用不超过8万元采购冰箱、空调共40台,且冰箱的数量不少于空调数量的37.①请你帮助该商场设计相应的进货方案;②哪种进货方案商场获得利润最大(利润=售价-进价),最大利润是多少?22.(10分)如图,在直角梯形纸片ABCD中,AB∥DC,︒=∠90A,ADCD>,将纸片沿过点D的直线折叠,使点A落在边CD上的点E处,折痕为DF.连接EF并展开纸片.(1)判断四边形ADEF的形状,并说明理由.(2)取线段AF的中点G,连接EG、DG,如果DG∥CB,试说明四边形GBCE是等腰梯形.23.(12分)如图,在平面直角坐标系中,一次函数y=x+2与x轴、y轴交于A、B两点,动点P从A出发沿射线AO运动,动点Q同时从点B出发沿OB的延长线运动,点P、Q 的运动速度均为每秒一个单位长.连接PQ交直线AB于D.(1)求A,B两点的坐标;(2)设点P的运动时间为t秒,试求△PBQ的面积S与t的关系式.(3)是否存在合适的t 值,使△PBQ 与△AOB 的面积相等?若存在,请求出t 的值;若不存在,请说明理由.(4)过P 作PE ⊥AB 与E ,DE 的长度是固定值还是不确定的?直接写出你的判断结果不必说明理由.参考答案:一.选择题(每小题3分,共18分) 1.A 2.B 3.A 4.D 5.B 6.D 二、填空题(每小题3分,共27分)7. 6a 38. 0.9 9. 150° 10.(6,6) 11. 25 12.313.④ 14. 内切 15.S 3DA P xEy QBO三、解答题(8小题,共75分)16.原式=2x -- ………………………4分 =(32)2---=3-……………………8分 17.解:(1)证明:∵四边形ABCD 是平行四边形∴CD AB CD AB =,//∴FCE ABE CFE BAE ∠=∠∠=∠, ∵E 为BC 的中点 ∴EC EB = ∴FCE ABE ∆≅∆ ∴AE EF =∴四边形ABFC 为平行四边形∴AC BF =…………………………4分(2)解:当D AFD ∠=∠时,四边形ABFC 是矩形. …………………6分 理由如下: ∵D AFD ∠=∠ ∴AF AD =∵四边形ABCD 是平行四边形 ∴AD BC = ∴AF BC =∵四边形ABFC 是平行四边形∴四边形ABFC 是矩形…………………………9分18.解:(1)初三(1)班体育成绩达标人数为(10.02)5049-⨯=人……..2分其余班级体育成绩达标率为0000112.587.5-=…………….4分 答:初三(1)班同学体育达标人数和其余班级同学体育达标率分别49人和0087.5.(2)设全年级有x 名同学,由题意得:5098%(50)87.5%90%x x ⨯+-⨯≥ ………………7分 解得x ≤210………………………………………8分 答:全年级同学人数不超过210人.………………………….9分 19.(1)△BEE ′是等边三角形,…………………………………..2分 (2)AE +BE +CE >A ′C ………………………………….3分 理由:在△AFC 和△BEC 中, ∵△BEE ′是等边三角形, ∴EE ′=BE ,由旋转可知:AE =A ′E ′∴AE +BE +CE =A ′E ′+EE ′+CE >A ′C …………………5分(3) AE +BE +CE 存在最小值. 如图∆A B E 绕点B 逆时针旋转60得∆A B E '',当E 落在AC '上(显然此时E A C ''也落在上)时,A C E AE BE C'就是++的最小值.(两点之间线段最短). (9)分20.解:(1)(2420+1 940)×13%=566.8元. 答:可以享受政府566.8元的补贴. ………2分 (2)①设冰箱采购x 台,则空调采购(40-x )台,则根据题意,得23001800(40)800003(40)7x x x x +-≤⎧⎪⎨≥-⎪⎩……………5分解不等式组,得12≤x ≤16.因为x 为正整数,所以x =12,13,14,15,16. ……7分 即该商场共有5种进货方案:方案一:冰箱购买12台,空调购买28台; 方案二:冰箱购买13台,彩电购买27台; 方案三:冰箱购买14台,彩电购买26台. 方案四:冰箱购买15台,彩电购买25台.方案五:冰箱购买16台,彩电购买24台………………..8分 ②设商场获得总利润y 元,则根据题意,y =(2420-2300)x +(1940-1800)·(40-x )=-20x +5600.因为-20<0,所以y 随x 的增大而减小.所以当x =12时,y 最大=-20×12+5600=5360元 答:方案一商场获得利润最大,最大利润是5360元.……………9分 21.解:如图过P 作PC ⊥AB 于C , …………………2分 在Rt △APC 中,PA =800米,∠PAB =60°∴PC =PA ×sin A =800×sin60°=4003米 …………………5分 . 在Rt △BPC 中, ∠PBC =45°PB =sin PC B=4003÷sin45°=4006米…………………9分22.(1)证明:∵△ADF ≌△EDF , ∴∠DEF =∠A =90°. ∵AB ∥DC ,∴∠ADE =90°.∴四边形ADEF 为矩形……………………4分 又∵DA =DE ,∴四边形ADEF 为正方形…………………………5分 (2)∵CE ∥BG ,CE ≠BG ,∴四边形EGBC 是梯形………………………………7分PACBP又∵DG //CB ,∴四边形BGDC 是平行四边形.∴BC =DG …………………………………….8分 又∵AG =GF , 正方形ADEF 为轴对称图形. ∴GE =DG …………………………………………9分 ∴EG =CB .∴ 四边形EGBC 为等腰梯形……………………….10分23.解:如图(1)由x =0, y =2, B ( 0, 2 );由y =0, x =﹣2, A ( -2, 0 ) …………………………3分(2)当0≤t ≤2时,AP =t ,PO=2-t ,S =1(2)2t t -;当t >2时,AP =t ,PO=t -2,S =1(2)2t t -…………………6分(3)存在.S △AOB =12AO BO ∙∙=2.当1(2)2t t -=2时,t 2-2t +4=0 无解.当1(2)2t t -=2时, t 2-2t -4=0,t =15±, t =15+符合题意.F D A P xEy QBO∴当t=15+时,S△AOB=S△PCQ. ……………………………9分(4)DE的长度为定值, 且DE=12 2AB=理由如下:过P作PF//OB交AB于F,∵AO=BO=2,x轴⊥y轴.∴AB=22,且△AOB、△APE、△FPA均是等腰直角三角形. ∵AP=PF=BQ,∴△PFD≌△QBD.∴D是BF的中点.∵PE⊥AB,∴E是AD的中点∴DE=122AB=.P在原点的右侧时类似.仍有DE=122AB=.……………………12分。

相关文档
最新文档