中考数学模拟试题基础题
【好题】数学中考模拟试题(带答案)

【好题】数学中考模拟试题(带答案)一、选择题1 .二次函数y= x 2-6x+m 满足以下条件:当-2vxv-1时,它的图象位于 x 轴的下方;当8vxv9时,它的图象位于 x 轴的上方,则 m 的值为()A. 27B. 9C. - 7D. - 162 .下列各式中能用完全平方公式进行因式分解的是( )A. x 2+x+1B. x 2+2x- 1C. x 2- 1D. x 2- 6x+93 .已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是:林茂从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中 间,y 表示林茂离家的距离.依据图中的信息,下列说法错误的是(B.体育场离文具店1kmC.林茂从体育场出发到文具店的平均速度是 50m minD.林茂从文具店回家的平均速度是60m min4 .若一元二次方程 x 2- 2kx+k 2= 0的一根为x= - 1,则k 的值为( ) A. - 1B. 0C. 1 或-1D. 2 或 05 .有31位学生参加学校举行的最强大脑”智力游戏比赛,比赛结束后根据每个学生的最后得分计算出中位数、平均数、众数和方差,如果去掉一个最高分和一个最低分,则一定 不发生变化的是()A.中位数B.平均数C.众数D.方差6 .如图,AB, AC 分别是。
O 的直径和弦,OD AC 于点D,连接BD, BC,且AB 10, AC 8,则 BD 的长为()A. 2V 5B. 4C. 2辰D. 4.87 .如图,某小区规划在一个长 16ml 宽9m 的矩形场地ABCDh,修建同样宽的小路,使其中两条与AB 平行,另一条与 AD 平行,其余部分种草,如果使草坪部分的总面积为 112m2,设小路的宽为xm,那么x 满足的方程是()x 表不时)A.体育场离林茂家2.5km8 .如图是二次函数 y=ax 2+bx+c (a, b, c 是常数,a 为)图象的一部分,与 x 轴的交点A 在点(2, 0)和(3, 0)之间,对称轴是 x=1 .对于下列说法:①ab <0;②2a+b=0 ;③3a+c>0;④a+b>m (am+b ) ( m 为实数); ⑤ 当-1vxv3时,y>0,其中正确的是( .)11.绿水青山就是金山银山某工程队承接了 ।季的到来,实际B. x 2-25x+32=0C. x 2-17x+16=0D. x 2-17x-16=0B.①②⑤C.②③④D.③④⑤B. - 4,AG 平分C. ID. 11EFC 40°,则 GAF 的度数为()115° C. 125° D. 130°60万平方米的荒山绿化任务,为了迎接雨'25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米, A. C.12.A. 606030(1 25%) x(1 25%) 60 旬 ------ - 30 x已知实数a a-7 > b-7xb,若a>b,则下列结论错误的是 B. 6+a>b+660 60 ,(1 25%) x x60 60 (1 25%)xx30 D. -3a>-3bA. 2x 2-25x+16=0A.①②④结果大于19.根据以下程序,当输入 x= 2时,输出结果为(A. 一 1则下面所列方程中正确的是(B.D.工作时每天的工作效率比原计划提高了二、填空题13.关于x的一元二次方程ax2 3X 1 0的两个不相等的实数根都在-1和0之间(不包^^-1和0),则a的取值范围是14.在一个不透明的袋子中有若干个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程.以下是利用计算机模拟的摸球试验统计表:根据试验所得数据,估计摸出黑球”的概率是(结果保留小数点后一位).15.用一个圆心角为180°,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径为.16.甲、乙两人在1200米长的直线道路上跑步,甲、乙两人同起点、同方向出发,并分别以不同的速度匀速前进,已知,甲出发30秒后,乙出发,乙到终点后立即返回,并以原来的速度前进,最后与甲相遇,此时跑步结束.如图,y (米)表示甲、乙两人之间的距离,x (秒)表示甲出发的时间,图中折线及数据表示整个跑步过程中y与x函数关系,那么,乙到达终点后秒与甲相遇.,评)A,Q 30 120 M秒)17.如图,矩形ABCD中,AB=3, BC=4,点E是BC边上一点,连接AE,把/ B沿AE折叠,使点B落在点g 处,当为直角三角形时,BE的长为—.18.分解因式:2x2 -18 =19.从-2, - 1, 1, 2四个数中,随机抽取两个数相乘,积为大于- 4小于2的概率是20.如图,在矩形ABCD中,AB=3, AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cos/EFC的值是三、解答题21.现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?22.某校开展了互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的5个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)这次调查的学生共有多少名;(2)请将条形统计图补充完整,并在扇形统计图中计算出进取”所对应的圆心角的度数;(3)如果要在这5个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B、C、D、E).配等四灌取23.安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y (千克)与每千克降价X (元)(0 x 20)之间满足一次函数关系,其图象如图所示:【参考答案】***试卷处理标记,请不要删除一、选择题1. D解析:D 【解析】 【分析】先确定抛物线的对称轴为直线 x=3,根据抛物线的对称性得到 x=-2和 相等,然后根据题意判断抛物线与x 轴的交点坐标为(-2,0), ( 8,1(-2 , 0)代入y = x 2-6x+m 可求得m 的值.【详解】—6解:♦.•抛物线的对称轴为直线x= -------- =3,⑴ (2) 求y 与x 之间的函数关系式;商贸公司要想获利 2090元,则这种干果每千克应降价多少元?24 .直线AB 交。
【必考题】数学中考模拟试题(含答案)

【必考题】数学中考模拟试题(含答案)一、选择题1.如图,已知a ∥b ,l 与a 、b 相交,若∠1=70°,则∠2的度数等于( )A .120°B .110°C .100°D .70°2.如图,在热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,热气球C 的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点的距离是( )A .200米B .2003米C .2203米D .100(31)+米 3.已知11(1)11A x x ÷+=-+,则A =( ) A .21x x x -+ B .21x x - C .211x - D .x 2﹣14.如图的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A 点到B 点,甲虫沿大半圆弧ACB 路线爬行,乙虫沿小半圆弧ADA 1、A 1EA 2、A 2FA 3、A 3GB 路线爬行,则下列结论正确的是 ( )A .甲先到B 点 B .乙先到B 点C .甲、乙同时到B 点D .无法确定 5.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm ,正方形A 的边长为6cm 、B 的边长为5cm 、C 的边长为5cm ,则正方形D 的边长为( )A.14cm B.4cm C.15cm D.3cm6.如图,是一个几何体的表面展开图,则该几何体是()A.三棱柱B.四棱锥C.长方体D.正方体7.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.若AC=5,BC=2,则sin∠ACD的值为()A.5B.25C.5D.238.将一块直角三角板ABC按如图方式放置,其中∠ABC=30°,A、B两点分别落在直线m、n上,∠1=20°,添加下列哪一个条件可使直线m∥n( )A.∠2=20°B.∠2=30°C.∠2=45°D.∠2=50°9.一副直角三角板如图放置,点C在FD的延长线上,AB//CF,∠F=∠ACB=90°,则∠DBC的度数为( )A.10°B.15°C.18°D.30°10.如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A.tantanαβB.sinsinβαC.sinsinαβD.coscosβα11.如图,在半径为13的Oe中,弦AB与CD交于点E,75DEB∠=︒,6,1AB AE==,则CD的长是()A.26B.210C.211D.4312.8×200=x+40解得:x=120答:商品进价为120元.故选:B.【点睛】此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程是关键.二、填空题13.如图,△ABC的三个顶点均在正方形网格格点上,则tan∠BAC=_____________.14.一列数123,,,a a a……na,其中1231211111,,,,111nna a a aa a a-=-===---L L,则1232014a a a a++++=L L__________.15.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为______.16.如图,点A 在双曲线y=4x 上,点B 在双曲线y=k x (k≠0)上,AB ∥x 轴,过点A 作AD ⊥x 轴 于D .连接OB ,与AD 相交于点C ,若AC=2CD ,则k 的值为____.17.若一个数的平方等于5,则这个数等于_____.18.如图,将矩形ABCD 沿CE 折叠,点B 恰好落在边AD 的F 处,如果AB 2BC 3=,那么tan ∠DCF 的值是____.19.分解因式:2x 2﹣18=_____.20.计算:21(1)211x x x x ÷-+++=________. 三、解答题21.如图,在四边形ABCD 中,∠ABC=90°,AC=AD ,M ,N 分别为AC ,CD 的中点,连接BM ,MN ,BN .(1)求证:BM=MN ;(2)∠BAD=60°,AC 平分∠BAD ,AC=2,求BN 的长.22.2018年“妇女节”前夕,扬州某花店用4000元购进若干束花,很快售完,接着又用4500元购进第二批花,已知第二批所购花的束数是第一批所购花束数的1.5倍,且每束花的进价比第一批的进价少5元,求第一批花每束的进价是多少?23.对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境.为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的A,B,C,D四个小区进行检查,并且每个小区不重复检查.(1)甲组抽到A小区的概率是多少;(2)请用列表或画树状图的方法求甲组抽到A小区,同时乙组抽到C小区的概率.24.某市某中学积极响应创建全国文明城市活动,举办了以“校园文明”为主题的手抄报比赛.所有参赛作品均获奖,奖项分为一等奖、二等奖、三等奖和优秀奖,将获奖结果绘制成如右两幅统计图.请你根据图中所给信息解答意)(1)等奖所占的百分比是________;三等奖的人数是________人;(2)据统计,在获得一等奖的学生中,男生与女生的人数比为11:,学校计划选派1名男生和1名女生参加市手抄报比赛,请求出所选2位同学恰是1名男生和1名女生的概率;(3)学校计划从获得二等奖的同学中选取一部分人进行集训使其提升为一等奖,要使获得一等奖的人数不少于二等奖人数的2倍,那么至少选取多少人进行集训?25.解不等式组3415122x xxx≥-⎧⎪⎨--⎪⎩>,并把它的解集在数轴上表示出来【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.【详解】如图,∵∠1=70°,∴∠3=180°﹣∠1=180°﹣70°=110°,∴∠2=∠3=110°,故选B.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.2.D解析:D【解析】【分析】在热气球C处测得地面B点的俯角分别为45°,BD=CD=100米,再在Rt△ACD中求出AD的长,据此即可求出AB的长.【详解】∵在热气球C处测得地面B点的俯角分别为45°,∴BD=CD=100米,∵在热气球C处测得地面A点的俯角分别为30°,∴AC=2×100=200米,∴AD22200100-3∴AB=AD+BD=3100(3故选D.【点睛】本题考查了解直角三角形的应用--仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.3.B解析:B【解析】【分析】由题意可知A=111)11x x++-(,再将括号中两项通分并利用同分母分式的减法法则计算,再用分式的乘法法则计算即可得到结果.【详解】解:A=11111x x++-=111xx x+-g=21xx-【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.4.C解析:C【解析】1 2π(AA1+A1A2+A2A3+A3B)=12π×AB,因此甲虫走的四段半圆的弧长正好和乙虫走的大半圆的弧长相等,因此两个同时到B点。
2024年河北省邢台市威县威县第三中学中考模拟数学试题

2024年河北省邢台市威县威县第三中学中考模拟数学试题一、单选题1.x 表示一个两位数,把6写到x 的右边组成一个三位数,则表示这个三位数的式子是( ) A .6xB .106x +C .1006x +D .600x +2.如图,已知、AB CD 分别表示两幢相距50米的大楼,小明在CD 大楼10楼E 处观察,观测仰角为30︒时,恰好看到大楼AB 的顶端点A ;观测俯角为45︒时,恰好看到大楼AB 的底端点B ,那么视线EA 和视线EB 组成的AEB ∠度数为( )A .60︒B .75︒C .90︒D .100︒3.化简221()y y x y -÷⨯,正确的是( )A .42y x-B .42y xC .22y x -D .22y x4.下列事件中,是随机事件的是( ) A .对顶角相等B .太阳从东方升起C .任意画一个三角形,其内角和为360︒D .两条直线被第三条直线所截,同位角相等 5.如图,图中三角形有一个是等腰三角形,则x 的值是( )A .5B .8C .9D .166.若一个整数202400…用科学记数法表示为102.02410⨯,则原数中“0”的个数为( ) A .7B .8C .10D .117.如图,两个正方形的边长分别为a ,()b a b >,若10a b +=,6ab =,则阴影部分的面积为()A.40 B.41 C.42 D.438a不可能的值为()A.14B.12C.2 D.89.已知ABCV(如图1),求作:平行四边形ABCD.如图2、图3是嘉琪的作图方案,其依据是()A.两组对边分别平行的四边形是平行四边形B.对角线互相平分的四边形是平行四边形C.两组对边分别相等的四边形是平行四边形D.一组对边平行且相等的四边形是平行四边形10.近年来,河北省迁安市践行绿水青山就是金山银山的理念,全面推进矿山生态修复和综合整治,今年计划将1000亩矿山进行绿化,实际绿化时,工作效率是原计划的1.4倍,进而比原计划提前20天完成绿化任务,设原来平均每天绿化荒山x亩,根据题意可列方程为()A.10001000201.4x x+=B.10001000201.4x x-=C.1.411000100020x x-= D.1.411000100020x x+=11.如图,将一张正六边形纸片的阴影部分剪下,恰好拼成一个菱形,若拼成的菱形的面积为2,则原正六边形纸片的面积为()A .4B .6C .8D .1012.小刚在解关于x 的方程()200ax bx c a ++=≠时,只抄对了1,4a c ==,解出其中一个根是=1x -.他核对时发现所抄的b 是原方程中b 的相反数.则原方程的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .有一个根是=1x -D .不存在实数根13.如图是由5个相同小正方体搭成的几何体,若将小正方体A 放到小正方体B 的正上方,则关于该几何体变化前后的三视图,下列说法正确的是( )A .主视图改变B .左视图改变C .俯视图改变D .以上三种视图都改变14.如图,两张等宽的纸条交叉叠放在一起,重合部分构成一个四边形ABCD ,在其中一张纸条转动的过程中,下列结论错误的是( )A .AD CD =B .四边形ABCD 面积AC BD =⋅ C .AC BD ⊥D .四边形ABCD 的周长4AB =15.如图,A ,B ,C ,D 为O e 的四等分点,动点P 从圆心O 发,沿O C D O ---运动.设运动时间为()s t ,P 到圆心O 的距离为y ,则下列图象中表示y 与t 之间函数关系最恰当的是( )A .B .C .D .16.抛物线265y x x =-+-的图象与x 轴交于A ,B 两点,把x 轴下方的图象沿x 轴翻折形成一个新的图象,有一条平行于x 轴的直线y a =,它与新图象的交点为P ,则以下说法正确的是( )A .当5a =时,则满足条件的P 有三个B .当4a <时,则满足条件的P 有4个C .当5a >时,则满足条件的P 有两个D .当4a =时,则满足条件的P 只有一个二、填空题17.如图,在平面直角坐标系中,矩形OABC 面积为4,反比例函数(0)ky k x=≠与边BC 、AB 有交点,请写出一个符合条件的k 的整数值.18.如图,两摞规格完全相同的作业本整齐地叠放在桌面上,根据图中所给出的数据信息,回答下列问题:(1)每本作业本的厚度为mm;(2)若有一摞这种规格作业本x本整齐放在桌面上,这摞作业本顶部距离地面高度为h(单位:mm),则h .(用含x的代数式表示)19.如图,正六边形ABCDEF的面积为6,以顶点C为旋转中心,将正六边形ABCDEF按顺时针方向旋转,使得D的对应点D¢落在直线BC上,则正六边形ABCDEF至少旋转度,此时,两个正六边形重合部分面积为.三、解答题20.请根据图中提供的信息,回答下列问题:(1)求一个暖水瓶与一个水杯的价格分别是多少元?(2)某商场出售这样的暖水瓶和水杯,为了迎接新年,商场搞促销活动,规定:暖水瓶打八折.若某单位想要买5个暖水瓶和20个水杯,总共要花多少钱?21.已知,图1中阴影面积为1S,图2中阴影面积为S.2(1)用含x 的代数式表示1S ,2S ;当1x =时,求12S S +的值; (2)比较1S 与2S 的大小,并说明理由.22.“感受数学魅力,提升数学素养”,某学校在其举办的数学文化节上开展趣味数学知识竞赛,从九年级(1)班和(2)班两班各随机抽取了10名学生的成绩,整理如下:(成绩得分用x 表示,共分成四组:A .8085x ≤<,B .8590x ≤<,C .9095x ≤<,D .95100x ≤≤) 九年级(1)班10名学生的成绩是:80,82,86,89,92,96,96,98,99,100. 九年级(2)班10名学生的成绩在C 组中的数据是:90,93,93. 通过数据分析,得到如下统计表与统计图: 九年级(1)班、(2)班抽取的学生竞赛成绩统计表根据以上信息,解答下列问题:(1)直接写出上述a 、b 、c 的值:=a ________,b =________,c =________;(2)学校欲选派成绩更稳定的班级参加下一阶段的活动,根据表格中的数据,学校会选派哪一个班级?说明理由.(3)九年级两个班共100人参加了此次调查活动,估计两班参加此次调查活动成绩优秀()90x ≥的学生总人数是多少?23.某超市一段时期内对某种商品经销情况进行统计分析:得到该商品的销售数量P (件)由基础销售量与浮动销售量两个部分组成,其中基本销售量保持不变,浮动销售量与售价x (元/件,50200x <<)成正比例,销售过程中得到的部分数据如下:(1)求P 与x 之间的函数关系式;(2)当该商品销售数量为40件时,求每件商品的售价; (3)设销售总额为W ,求W 的最大值.24.如图,在Rt ABC △中,90C ∠=︒,BAC ∠的角平分线AD 交BC 边于D ,以AB 上一点O 为圆心,OA 为半径作O e ,分别交BC 、AB 于点D 、E .(1)判断直线BC 与O e 的位置关系,并说明理由; (2)若O e 的半径为8,AD BD =.①求线段BD 与»DE的长度,并比较大小; ②直接写出线段BD 、BE 与»DE 围成的阴影部分的图形面积________.(结果保留根号和π)25.如图,小强组装了一款遥控车,并在长度为320m 的跑道AB 上试验它在不同速度下的运行情况.从点A 出发,先以4m/s 的速度行进了20s ,接着以6m/s 的速度行进到终点B ,为记录,全程安装了拍摄设备,拍摄设备在与起点A 距离80m 处的P 点.设遥控车的运动时间为()s x ,遥控车与拍摄点的距离为()m y .(1)求y 与x 之间的函数关系式;(2)求遥控车距离拍摄点20m 时的运动时间;(3)当遥控车从点A 出发时,一个机器人从拍摄点出发以m/s a 的速度向点B 行进,并在与点B 相距30m 内(不包含30m ,不与点B 重合)被遥控车追上;直接写出a 的取值范围.26.如图1,在等腰三角形ABC 中,10AC BC ==,16AB =,点D 从A 点出发向终点B 运动,过点D 作DG AB ⊥交折线AC CB -于点G ,设AD x =.(1)BD =________;(用含x 的代数式表示)(2)连接BG ,设BDG V 的面积为y ,求y 与x 的函数表达式,并直接写出当x 取何值时,y 有最大值;(3)如图2,当点G 在边AC 上时,作点G 关于点C 的对称点M .当G 是AM 的三等分点时,求x 的值.。
2024年浙江省宁波市中考数学模拟试题(六)

2024年浙江省宁波市中考数学模拟试题(六)一、单选题1.下列算式的结果等于6-的是( )A .()122--B .()122÷-C .()42+-D .()42⨯- 2.下列运算正确的是( )AB -C5±D 347=+ 3.下列计算正确的是( )A .23x x x +=B .632x x x ÷=C .()437x x =D .347x x x ⋅= 4.设a b c ,,均为实数,( )A .若a b >,则ac bc >B .若a b =,则ac bc =C .若ac bc >,则a b >D .若ac bc =,则a b =5.某中老年合唱团成员的平均年龄为52岁,方差为210岁,在人员没有变动的情况下,两年后这批成员的( )A .平均年龄为52岁,方差为210岁B .平均年龄为54岁,方差为210岁C .平均年龄为52岁,方差为212岁D .平均年龄为54岁,方差为212岁 6.如图,设O 为ABC V 的边AB 上一点,O e 经过点B 且恰好与边AC 相切于点C .若30,3B AC ∠=︒=,则阴影部分的面积为( )A 2πB 2πC πD π- 7.在面积等于3的所有矩形卡片中,周长不可能是( )A .12B .10C .8D .68.如图,锐角三角形ABC 中,AB AC =,D ,E 分别在边AB ,AC 上,连接BE ,CD ,下列命题中,假命题是( )A .若CD BE =,则DCB EBC ∠=∠B .若DCB EBC ∠=∠,则CD BE =C .若BD CE =,则DCB EBC ∠=∠D .若DCB EBC ∠=∠,则BD CE =9.四名同学在研究函数22y x bx c =++(b c ,为已知数)时,甲发现该函数的图象经过点()1,0;乙发现当2x =时,该函数有最小值;丙发现3x =是方程222x bx c ++=的一个根;丁发现该函数图象与y 轴交点的坐标为()0,6.已知这四名同学中只有一人发现的结论是错误的( )A .甲B .乙C .丙D .丁10.如图,ABC V 的两条高线AD BE ,交于点F ,过B ,C ,E 三点作O e ,延长AD 交O e 于点G ,连接GO GC ,.设53AF DF ==,,则下列线段中可求长度的是( )A .GB B .GDC .GOD .GC二、填空题11.分解因式:224x y -+=.12.在一个不透明的纸箱中装有4个白球和n 个黄球,它们只有颜色不同.为了估计黄球的个数,杨老师进行了如下试验:每次从中随机摸出1个球,杨老师发现摸到白球的频率稳定在13附近,则纸箱中大约有黄球个. 13.某种罐装凉茶一箱的价格为84元,某商场实行促销活动,买一箱送四罐,每罐的价格比原来便宜0.8元,设每箱中有凉茶x 罐,则可列方程:.14.如图,在Rt ABC V 中,已知90C ∠=︒,3CD BD =,cos ABC ∠sin BAD ∠=.15.第二十四届国际数学家大会会徽的设计基础是1700多年前中国古代数学家赵爽的“弦图”.如图,在由四个全等的直角三角形(Rt DAE V ,Rt ABF V ,Rt BCG V ,Rt CDH △)和中间一个小正方形EFGH 拼成的大正方形ABCD 中,连接BE .设BAF α∠=,BEF β∠=,正方形EFGH 和正方形ABCD 的面积分别为1S 和2S ,若90αβ+=︒,则21S S =:.16.已知关于x 的一元二次方程20x ax b ++=有两个根1x ,2x ,且满足1212x x <<<.记=+t a b ,则t 的取值范围是 .三、解答题17.(1)计算:212tan 6012-⎛⎫︒+ ⎪⎝⎭; (2)已知2410x x --=,求代数式()()()22311x x x --+-的值. 18.圆圆和方方在做一道练习题:已知0a b <<,试比较a b 与11a b ++的大小. 圆圆说:“当12a b ==,时,有12a b =,1213a b +=+;因为1223<,所以11a ab b +<+”. 方方说:“圆圆的做法不正确,因为12a b ==,只是一个特例,不具一般性.可以……”请你将方方的做法补充完整.19.某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理和分析,部分信息如下:a .七年级成绩频数分布直方图;b .七年级成绩在7080x ≤<这一组的是:70,72,74,75,76,76,77,77,77,77,78;c .七、八年级成绩的平均数、中位数如表:根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有 人,表中m 的值为 ;(2)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级50名测试学生中的排名谁更靠前;(3)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.8分的人数. 20.某同学尝试在已知的ABCD Y 中利用尺规作出一个菱形,如图所示.(1)根据作图痕迹,能确定四边形AECF 是菱形吗?请说明理由.(2)若=60B ∠︒,2BA =,4BC =,求四边形AECF 的面积.21.小丽家饮水机中水的温度为20℃,通电开机后,饮水机自动开始加热,此过程中水温()y ℃与开机时间()min x 满足一次函数关系,随后水温开始下降,此过程中水温()y ℃与开机时间()min x 成反比例关系,当水温降至20℃时,根据图中提供的信息,解答问题.(1)当010x ≤≤时,求水温()y ℃关于开机时间()min x(2)求图中t 的值.(3)若小丽在将饮水机通电开机后外出散步,请你预测小丽散步70min 回到家时,饮水机中水的温度.22.在等边三角形ABC 外侧作直线AP ,点B 关于直线AP 的对称点为D ,连接CD ,交AP 于点E ,连接BE .(1)依题意补全如图;(2)若20PAB ∠=︒,求ACE ∠;(3)若060PAB ︒<∠<︒,用等式表示线段DE ,EC ,CA 之间的数量关系并证明.23.已知二次函数214y x bx c =-++的图象经过原点O 和点()8,0A t +,其中0t ≥. (1)当0t =时.①求y 关于x 的函数解析式,求出当x 为何值时,y 有最大值?最大值为多少? ②当x a =和x b =时()a b ≠,函数值相等,求a 的值.(2)当0t >时,在08x ≤≤范围内,y 有最大值18,求相应的t 和x 的值.24.如图,作半径为3的O e 的内接矩形ABCD ,设E 是弦BC 的中点,连接AE 并延长,交O e 于点F ,G 是»AB 的中点,CG 分别交AB AF ,于点H ,P ,若4BC =.(1)求BH ;(2)求:AP PE .(3)求tan APH .。
模拟中考数学试题及答案

模拟中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.33333B. πC. √4D. 1/3答案:B2. 已知函数y=2x+1,当x=3时,y的值为:A. 7B. 5C. 3D. 1答案:A3. 一个长方形的长是宽的两倍,如果宽增加2米,长减少2米,面积不变,那么原来长方形的长是:A. 4米B. 6米C. 8米D. 10米答案:B4. 一个数的平方是25,这个数是:A. 5B. -5C. 5或-5D. 以上都不是答案:C5. 以下哪个图形是轴对称图形?A. 平行四边形B. 正五边形C. 不规则多边形D. 圆答案:D6. 一个圆的半径是3厘米,那么它的周长是:A. 18.84厘米B. 9.42厘米C. 6.28厘米D. 3.14厘米答案:A7. 一个等腰三角形的底边长为6厘米,底角为45度,那么它的高是:A. 3厘米B. 4厘米C. 6厘米D. 9厘米答案:B8. 以下哪个选项是二次函数的一般形式?A. y=ax^2+bx+cB. y=ax^2+bxC. y=a(x+b)(x+c)D. y=ax+b答案:A9. 一个数的相反数是-3,那么这个数是:A. 3B. -3C. 0D. 6答案:A10. 一个数的绝对值是5,那么这个数可以是:A. 5B. -5C. 5或-5D. 以上都不是答案:C二、填空题(每题3分,共30分)11. 一个数的立方根是2,那么这个数是______。
答案:812. 一个数的倒数是1/4,那么这个数是______。
答案:413. 一个三角形的内角和是______度。
答案:18014. 一个等差数列的首项是3,公差是2,那么它的第五项是______。
答案:1115. 一个等比数列的首项是2,公比是3,那么它的第三项是______。
答案:1816. 一个直角三角形的两直角边长分别是3和4,那么它的斜边长是______。
答案:517. 一个圆的直径是10厘米,那么它的面积是______平方厘米。
2024年北京市三帆中学中考模拟数学试题(解析版)

2024年北京市三帆中学中考模拟数学试题一、选择题(本题共16分,每小题2分)第1—8题均有四个选项,符合题意的选项只有一个.1. 下列几何体的三视图之一是长方形的是( )A B. C. D.【答案】B【解析】【分析】分别写出各个立体图形的三视图,判断即可.【详解】解:A 、圆锥的主视图、左视图都是三角形,俯视图是圆形,故本选项不合题意;B 、圆柱的左视图和主视图是长方形,俯视图是圆,故本选项符合题意;C 、球体的主视图、左视图、俯视图都是圆形,故本选项不合题意;D 、三棱锥的三视图都不是长方形,故本选项不合题意.故选:B .【点睛】此题考查了简单几何体的三视图,熟练掌握简单几何体的三视图是解本题的关键.2. 某种新冠病毒的直径约为120纳米,已知1纳米=0.000001毫米,120纳米用科学记数法表示为( )A. 毫米B. 毫米C. 毫米D. 毫米【答案】A【解析】【分析】将其化为的形式,其中满足,为整数即可求解.【详解】120纳米=毫米=0.00012毫米=毫米,故选:A【点睛】此题考查科学记数法的表示方法,科学记数法的表示形式为的形式,其中,为整数,表示时关键要确定a 的值以及n 的值.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同;当原数绝对值大于10时,n 是正整数;当原数的绝对值小于1时,n 是负整数.3. 如图,直线,直线EF 分别与直线AB ,CD 交于点E ,F ,点G 在直线CD 上,GE ⊥EF .若.41.210-⨯51.210-⨯51210-⨯612010-⨯10n a ⨯a 110a ≤∣∣<n 120×0.00000141.210-⨯10n a ⨯110a ≤∣∣<n //AB CD,则∠2的大小为( )A. 145°B. 135°C. 125°D. 120°【答案】A【解析】【分析】根据,由两直线平行同位角相等可推导;根据GE ⊥EF ,可知;然后借助三角形外角的性质“三角形外角等于不相邻的两个内角和”,利用()计算∠2即可.【详解】解:∵,∴,∵GE ⊥EF ,∴,∴.故选:A .【点睛】本题主要考查了平行线的性质及三角形外角的定义和性质,解题关键是熟练掌握相关性质并灵活运用.4. 有理数a ,b 在数轴上的表示如图所示,则下列结论正确的是( )甲:;乙:;丙:A. 只有甲正确B. 只有甲、乙正确C. 只有甲、丙正确D. 只有丙正确【答案】C【解析】【分析】根据数轴上点的位置关系,可得、的大小,根据绝对值的意义,判断即可.【详解】解:由数轴上点的位置关系,得,.∴,故甲正确;,故乙错误;,故丙正确;155∠=︒//AB CD 1EFG =∠∠90FEG ∠=︒EFG FEG +∠∠//AB CD 155EFG ==︒∠∠90FEG ∠=︒25590145EFG FEG =+=︒+︒=︒∠∠∠b a -<0ab >b a a b-=-a b 0a b >>||||a b >b a -<0ab <()b a b a a b -=--=-故选:C .【点睛】本题考查了有理数的大小比较,利用数轴确定、的大小即与的大小是解题关键.5. 在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为( )A. -3B. -2C. -1D. 1【答案】A【解析】【分析】根据CO=BO 可得点C 表示的数为-2,据此可得a=-2-1=-3.【详解】解:∵点C 在原点的左侧,且CO=BO ,∴点C 表示的数为-2,∴a=-2-1=-3.故选A .【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.6. 已知锐角∠AOB 如图,(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作,交射线OB 于点D ,连接CD ;(2)分别以点C ,D 为圆心,CD 长为半径作弧,交于点M ,N ;(3)连接OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是( )A. ∠COM=∠CODB. 若OM=MN ,则∠AOB=20°C. MN ∥CDD. MN=3CD【答案】D【解析】【分析】由作图知CM=CD=DN,再利用圆周角定理、圆心角定理逐一判断可得.a b ||a ||b PQPQ【详解】解:由作图知CM=CD=DN ,∴∠COM=∠COD ,故A 选项正确;∵OM=ON=MN ,∴△OMN 是等边三角形,∴∠MON=60°,∵CM=CD=DN ,∴∠MOA=∠AOB=∠BON=∠MON=20°,故B 选项正确;∵∠MOA=∠AOB=∠BON ,∴∠OCD=∠OCM= ,∴∠MCD=,又∠CMN=∠AON=∠COD ,∴∠MCD+∠CMN=180°,∴MN ∥CD ,故C 选项正确;∵MC+CD+DN >MN ,且CM=CD=DN ,∴3CD >MN ,故D 选项错误;故选D .【点睛】本题主要考查作图-复杂作图,解题的关键是掌握圆心角定理和圆周角定理等知识点.7. 已知,,,,精确到的近似值是()A. B. C. D. 【答案】B【解析】的取值范围,再利用四舍五入找出近似值即可.13180-COD2︒∠180-COD ︒∠1223.512.25=23.612.96=23.713.69=23.814.44=0.13.5 3.6 3.7 3.8【详解】解:,,,,精确到的近似值是,故选B .【点睛】本题考查了无理数的估算,熟练掌握估算方法是解题关键.8. 下面三个问题中都有两个变量:①如图1,货车匀速通过隧道(隧道长大于货车长),货车在隧道内的长度y 与从车头进入隧道至车尾离开隧道的时间x ;②如图2,实线是王大爷从家出发匀速散步行走的路线(圆心O 表示王大爷家的位置),他离家的距离y 与散步的时间x ;③如图3,往空杯中匀速倒水,倒满后停止,一段时间后,再匀速倒出杯中的水,杯中水的体积y 与所用时间x其中,变量y 与x 之间的函数关系大致符合下图的是( )A. ①②B. ①③C. ②③D. ①②③【答案】D【解析】【分析】根据y 值随x 的变化情况,逐一判断.【详解】解:①当货车开始进入隧道时y 逐渐变大,当货车完全进入隧道,由于隧道长大于货车长,此时y 不变且最大,当货车开始离开隧道时y 逐渐变小.故①正确;②王大爷距离家先y 逐渐变大,他走的是一段弧线时,此时y不变且最大,之后逐渐离家越来越近直至回223.612.961313.69 3.7=<<=3.6 3.7∴<<23.612.9613=≈ 23.713.6914=≈0.1 3.6家,即y 逐渐变小,故②正确;③往空杯中匀速倒水,倒满后停止,水的体积逐渐增加,一段时间后,再匀速倒出杯中的水,这期间,水量先保持不变,然后逐渐减少,杯中水的体积y 与所用时间x ,变量y 与x 之间的函数关系符合图象,故③正确;故选:D .【点睛】本题主要考查了函数图象的读图能力.要理解函数图象所代表的实际意义是什么才能从中获取准确的信息.二、填空题(本题共16分,每小题2分)9.在实数范围内有意义,则的取值范围是______.【答案】【解析】【分析】本题考查了二次根式有意义的条件,解题的关键是掌握二次根式被开方数为非负数.据此即可解答.【详解】解:在实数范围内有意义,∴,解得:,故答案:.10. 因式分解:3a 2-12a +12=______.【答案】【解析】【分析】直接提取公因式3,再利用完全平方公式分解因式即可.【详解】解:==故答案为:.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.11. 分式方程的解是______.【答案】【解析】为x 3x ≥-30x +≥3x ≥-3x ≥-()232a -231212a a -+()2344a a -+()232a -()232a -422x x=-2x =-【分析】先去分母,再解出整式方程,然后检验,即可求解.【详解】解:去分母得:,解得:,检验:当时,,∴原方程解为.故答案为:【点睛】本题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键.解分式方程注意要检验.12. 如图,正六边形ABCDEF 的边长为2,以顶点A 为圆心,AB 的长为半径画圆,则图中阴影部分的面积为______.【答案】##【解析】【分析】延长FA 交⊙A 于G ,如图所示:根据六边形ABCDEF 是正六边形,AB =2,利用外角和求得∠GAB =,再求出正六边形内角∠FAB =180°-∠GAB =180°-60°=120°, 利用扇形面积公式代入数值计算即可.【详解】解:延长FA 交⊙A 于G ,如图所示:∵六边形ABCDEF 是正六边形,AB =2,∴∠GAB =,∠FAB =180°-∠GAB =180°-60°=120°,的()224x x -=2x =-2x =-()20x x -≠2x =-2x =-43π43π360606︒=︒360606︒=︒∴,故答案为.【点睛】本题主要考查扇形面积计算及正多边形的性质,熟练掌握扇形面积计算及正多边形的性质是解题的关键.13. 如图,在中,,过点B 作,交于点D ,若,则的长度为_________.【答案】2【解析】【分析】过点B 作BE ⊥AC 于点E ,设DE=x ,然后通过直角三角形30°角的性质求得BD=2x ,CD=4x ,CE=3x ,再运用由等腰三角形的性质得到AE=CE ,列方程求解x ,即可求出CD 的长.【详解】解:如图,过点B 作BE ⊥AC 于点E ,设DE=x ,则AE=AD+DE=1+x .∵AB=BC ,∠ABC=120°,∴∠A=∠C=30°∵,∴∠DBC=90°∴∠EDB=60°,∠DBE=30°∴BD=2DE=2x ,DC=2DB=4x∴CE=DC-DE=3x∵AB=BC , BE ⊥AC ,∴AE=CE∴1+x=3x ,解得x=∴CD=4x=2.2120443603603FABn r S πππ⨯⨯===扇形43πABC ,120AB BC ABC =∠=︒BD BC ⊥AC 1AD =CD BD BC ⊥12【点睛】本题考查等腰三角形的性质和直角三角形30°所对的边等于斜边的一般,需要熟练运用考查的性质进行解题.14. 如图,在平面直角坐标系中,已知点,将关于直线对称,得到,则点C 的对应点的坐标为___________;再将向上平移一个单位长度,得到,则点的对应点的坐标为_________.【答案】①. ②. 【解析】【分析】根据对称点的性质可知,对应点的纵坐标与点C 的纵坐标相同,然后利用中点坐标公式计算出点C 的横坐标即可解决;点是由点向上平移一个单位长度得到,根据平移规律解决即可.【详解】解:根据对称的性质可知,点的纵坐标为2,设点的横坐标为m ,∵两点关于直线x=4对称∴,∴m=5,∴的坐标为(5,2)根据平移的规律可知,点是由点向上平移一个单位长度得到,故的横坐标不变为5,的纵坐标为:2+1=3.故点的坐标.xOy ()3,2C ABC 4x =111A B C △1C 111A B C △222A B C △1C 2C ()5,2()5,31C 2C 1C 1C 1C 3+m 42=1C 2C 1C 2C 2C 2C ()5,3故答案是:;【点睛】本题考查了对称的性质以及点的平移规律,解决本题的关键是正确理解题意,熟练掌握点的坐标平移规律和计算方法.15. 一组学生春游,预计共需要费用120元,后来又有2人参加进来,总费用不变,于是每人可少摊3元,若设原来这组学生人数为x ,那么可列方程为_____.【答案】【解析】【分析】理解题意找出题意中存在的等量关系,未增加人前每人摊的费用增加人后每人摊的费用,列出方程即可.【详解】解:解:设原来这组学生人数为x ,则原来每人摊的费用为,又有2人参加进来,此时每人摊的费用为,根据题意可列方程为,故答案为:.【点睛】本题考查了由实际问题抽象出分式方程,解题的关键在于找出题中的等量关系.16. 如图,在Rt △ABC 中,∠ABC =90°,∠A =32°,点B 、C 在上,边AB 、AC 分别交于D 、E 两点﹐点B 是的中点,则∠ABE =__________.【答案】【解析】【分析】如图,连接 先证明再证明利用三角形的外角可得:再利用直角三角形中两锐角互余可得:再解方程可得答案.()5,2()5,312012032x x -=+-3=120x 1202x +12012032x x -=+12012032x x -=+O O CD13︒,DC ,BDC BCD ∠=∠,ABE ACD ∠=∠,BDC A ACD A ABE ∠=∠+∠=∠+∠()2902,BDC A ABE ∠=︒-∠+∠【详解】解:如图,连接是的中点,故答案为:【点睛】本题考查的是圆周角定理,三角形的外角的性质,直角三角形的两锐角互余,掌握圆周角定理的含义是解题的关键.三、解答题(本大题共11小题,共63分)17. 计算:.【答案】【解析】【分析】直接利用特殊角的三角函数值以及负指数幂的性质和绝对值的性质化简得出答案.【详解】解:原式=.【点睛】本题主要考查了实数的运算,正确化简各数是解题的关键.,DC B CD,,BDBC BDC BCD ∴=∠=∠ ,DEDE = ,ABE ACD ∴∠=∠,BDC A ACD A ABE ∴∠=∠+∠=∠+∠90,32,ABC A ∠=︒∠=︒ ()2902,BDC A ABE ∴∠=︒-∠+∠45453213.ABE A ∴∠=︒-∠=︒-︒=︒13.︒113tan 302|3-⎛⎫︒+ ⎪⎝⎭5-332-++5=-18. 解不等式组:.【答案】【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:由,得:,由,得:此不等式解集为所有实数,不等式组的解集为.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19. 已知:如图,为锐角三角形,.求作:点P ,使得,且.作法:①以点A 为圆心,长为半径画圆;②以点B 为圆心,长为半径画弧,交于点D (异于点C );③连接并延长交于点P .所以点P 就是所求作的点.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹):(2)完成下面的证明.证明:连接∵,∴点C 在上.又∵,()312,1122x x x x ⎧-<⎪⎨+-<⎪⎩3x <()312x x -<3x <1122x x +-<∴3x <ABC AB AC =AP AB =APC BAC ∠=∠AB BC A DA A PCAB AC =A DC DC =∴(________________________)(填推理的依据),由作图可知,,∴(________________________)(填推理的依据)________.∴.【答案】(1)见解析(2)同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,同弧或等弧所对的圆心角相等,.【解析】【分析】(1)根据题意画出图形即可;(2)利用圆周角定理解决问题即可.【小问1详解】解:图形如图所示:【小问2详解】证明:连接.,点在上.,(同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半),由作图可知,,∴(同弧或等弧所对的圆心角相等)..故答案为:同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,同弧或等弧所对的圆心角相等,.12DPC DAC =∠∠BD BC =DAB CAB ∠=∠12=∠APC BAC ∠=∠DAC PC AB AC = ∴C A DC DC =12DPC DAC ∴∠=∠BD BC =DAB CAB ∠=∠12DAC =∠APC BAC ∴∠=∠DAC【点睛】本题考查作图复杂作图,圆周角定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.20. 已知关于x 的一元二次方程.(1)不解方程,判断此方程根的情况;(2)若是该方程的一个根,求代数式的值.【答案】(1)见解析(2)【解析】【分析】(1)利用根的判别式判断即可.(2)将代入一元二次方程,整理得,再将变形为,代入求值即可.【小问1详解】解:∵,∴此一元二次方程有两个不相等的实数根;【小问2详解】解:将代入一元二次方程,整理得,即,∴.【点睛】本题考查一元二次方程根的判别式、一元二次方程的解,求代数式的值,牢记:当时,一元二次方程有两个不相等的实数根;当时,一元二次方程有两个相等的实数根;当时,一元二次方程无实数根.21. 已知:如图,菱形,分别延长,到点F ,E ,使得,,连接,,,.-()22210x k x k k +-+-=2x =2265k k ---1-24b ac ∆=-2x =22210x kx k -+-=232k k +=-2265k k ---()2235k k -+-24b ac∆=-()()22214k k k =---2244144k k k k=-+-+10=>2x =()22210x k x k k +-+-=2320k k ++=232k k +=-()()222652352251k k k k ---=-+-=-⨯--=-240b ac ∆=->240b ac ∆=-=24<0b ac ∆=-ABCD AB CB BF BA =BE BC =AE EF FC CA(1)求证:四边形为矩形;(2)连接交于点O ,如果,,求的长.【答案】(1)证明见解析;(2)【解析】【分析】本题考查了矩形的性质与判定、菱形的性质、勾股定理等知识.根据菱形的判定和性质以及直角三角形的性质解答是关键.(1)根据菱形的性质以及矩形的判定证明即可;(2)连接,根据菱形的判定和性质以及直角三角形的性质解答即可.【小问1详解】证明:∵,,∴四边形为平行四边形,∵四边形为菱形,∴,∴,∴,即,∴四边形为矩形;【小问2详解】连接,,与交于点G ,由(1)可知,,且,∴四边形为平行四边形,AEFC DE AB DE AB ⊥4AB =DE ED =DB BF BA =BE BC =AEFC ABCD BA BC =BE BF =BA BF BC BE +=+AF EC =AEFC DB DE DE AB AD EB ∥AD EB =AEBD∵,∴四边形为菱形,∴,,,∵矩形中,,,∴,,∴在中,∴22. 在平面直角坐标系xOy 中,函数y=(x>0)的图象与直线y=x+1交于点A (2,m ).(1)求k 、m 的值;(2)已知点P (n ,0),过点P 作平行于 y 轴的直线,交直线y=x+1于点B ,交函数y=(x>0)的图象于点C .若y=(x>0)的图象在点A 、C 之间的部分与线段AB 、BC 所围成的区域内(不包括边界),记作图形G .横、纵坐标都是整数的点叫做整点.①当n=4时,直接写出图形G 的整点坐标;②若图形G 恰有2 个整点,直接写出n 的取值范围.【答案】(1)k =4,m =2;(2)①(3,2),②0<n <1或4<n ≤5.【解析】【分析】(1)将A 点代入直线解析式可求m ,再代入y =,可求k .(2)①根据题意先求B ,C 两点,可得图形G 的整点的横坐标的范围2<x <4,且x 为整数,所以x 取3.再代入可求整点的纵坐标的范围,即求出整点坐标.②根据图象可以直接判断2≤n <3.【详解】解:(1)∵点A (2,m )在y =x +1上,∴m =×2+1=2.∴A (2,2).∵点A (2,2)在函数y =的图象上,∴k =4.故答案为:k =4,m =2.(2)①当n =4时,B 、C 两点的坐标为B (4,3)、C (4,1).DE AB ⊥AEBD AE EB =2AB AG =2ED EG =AEFC EB AB =4AB =2AG =4AE =Rt AEG △EG =ED =k x 1212k x k xk x1212k x∵整点在图形G 的内部,∴2<x <4且x 为整数∴x =3∴将x =3代入y =x +1得y =2.5,将x =3代入y =得y =,∴<y <2.5,∵y 为整数,∴y =2,∴图形G 的整点坐标为(3,2).②当x =3时,<y <2.5,此时的整点有(3,2)共1个;当x =4时,1<y <3,此时的整点有(4,2)共1个;当x =5时,<y <3.5,此时的整点有(5,1),(5,2),(5,3)共3个;∵图形G 恰有2 个整点,∴4<n ≤5,当x =1时,1.5<y <4,此时的整点有(1,2),(1,3)共2个;∵图形G 恰有2 个整点,∴0<n <1,综上所述,n 的取值范围为:0<n <1或4<n ≤5.【点睛】本题考查反比例函数和一次函数的交点问题,待定系数法,以及函数图象的性质.关键是能利用函数图象有关解决问题.23. 为了进一步加强中小学国防教育,教育部研究制定了《国防教育进中小学课程教材指南》.某中学开展了形式多样的国防教育培训活动.为了解培训效果,该校组织七、八年级全体学生参加了国防知识竞赛(百分制),并规定90分及以上为优秀,分为良好,分为及格,59分及以下为不及格.该学校七、八两个年级各有学生300人,现随机抽取了七、八年级各20名学生的成绩进行了整理与分析,下面给出了部分信息.a .抽取七年级20名学生的成绩如下:124x 434343458089~6079~65875796796789977710083698994589769788188b .抽取七年级20名学生成绩的频数分布直方图如图1所示(数据分成5组:,,,,)c .抽取八年级20名学生成绩的扇形统计图如图2所示.d .七年级、八年级各抽取的20名学生成绩的平均数、中位数、方差如下表:年级平均数中位数方差七年级81八年级82请根据以上信息,回答下列问题:(1)补全七年级20名学生成绩的频数分布直方图,写出表中的值;(2)估计七、八两个年级此次竞赛成绩达到优秀的学生共有多少人;(3)若本次竞赛成绩达到81分及以上的同学可以获得参加挑战赛的机会,请根据样本数据估计,七、八两个年级中哪个年级获得参加挑战赛的机会的学生人数更多?并说明理由.【答案】(1)补全条形统计图见解析;(2)七、八两个年级此次竞赛成绩达到优秀的学生共有165人(3)七年级获得参加挑战赛的机会的学生人数更多;理由见解析【解析】【分析】(1)根据题意可得七年级成绩位于的有4人;七年级成绩位于第10位和第11位的是81和83,即可求解;(2)先求出八年级成绩优秀的所占的百分比,再分别用300乘以各自的百分比,即可求解;5060x ≤<6070x ≤<7080x ≤<8090x ≤<90100)x ≤≤m 167.979.5108.3m 82m =6070x ≤<(3)分别求出七、八两个年级获得参加挑战赛的机会的学生人数,然后进行比较即可.【小问1详解】解:根据题意得:七年级成绩位于的有4人,补全图形如下:七年级成绩位于第10位和第11位的是81和83,∴七年级成绩的中位数;【小问2详解】解:根据题意得:八年级成绩良好的所占的百分比为∴八年级成绩优秀的所占的百分比为,∴八年级成绩达到优秀的学生有(人),七年级成绩达到优秀的学生有人,(人),答:七、八两个年级此次竞赛成绩达到优秀的学生共有165人.【小问3详解】解:八年级获得参加挑战赛的机会的学生人数约为:(人),七年级获得参加挑战赛机会的学生人数约为:(人),∵,∴七年级获得参加挑战赛的机会的学生人数更多.的6070x ≤<8183822m +==72100%20%360︒⨯=︒120%45%5%30%---=30030%90⨯=53007520⨯=9075165+=()30020%30%150⨯+=1130016520⨯=150165<【点睛】本题主要考查了条形统计图和扇形统计图,求中位数,用样本估计总体,明确题意,准确从统计图中获取信息是解题的关键.24. 如图,在中,,,点是线段上的动点,将线段绕点 顺时针度转至,连接.已知,设为,为.小明根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究,下面是小明的探究过程,请补充完整.(说明:解答中所填数值均保留一位小数)(1)请利用直尺和量角器,在草稿纸上根据题意画出准确的图形,并确定自变量的取值范围是________;(2)通过取点、画图、测量,得到了与的几组值,如下表:则表中的值为__________;(3)建立平面直角坐标系,通过描点、连线,画出该函数的完整图象.(4)结合画出的函数图象,解决问题:① 线段长度的最小值为__________;② 当,,三点共线时,线段的长为__________.【答案】(1)(2)(3)函数图象见解析(4);【解析】【分析】(1)利用直尺和量角器,根据,,画出准确的图形,从而得到的长度,即可得到自变量的取值范围;ABC 90ABC ∠=︒40C ∠=︒D BC AD A 50︒AD 'BD '2cm AB =BD cm x BD 'cm y y x x x y /cm x 00.50.7 1.0 1.5 2.0/cm y 1.7 1.3 1.1m0.70.9m BD 'cm D B D ¢BD cm 0 2.5x <<0.90.70.990ABC ∠=︒40C ∠=︒2cm AB =BC x(2)根据表格内的数据在时,的值逐渐减小,在时,的值逐渐增大,可得该函数是以为对称轴的抛物线,则和为对称点,故两点的值相等,即可得到的值;(3)根据(2)中的数据描点,连线即可得到该函数的完整图象;(4)①结合(2)(3)可知,该函数是一个二次函数图象的一部分,其对称轴为直线,结合表格中的数据可知,最小值为,即线段的最小值为.②当,,三点共线时,则在中,由于,可得到,即,由(3)中图象可得的值,即的长.【小问1详解】解:由题可得,利用直尺和量角器画出准确的图形如下:则用直尺量得,∵点是线段上的动点,为,∴自变量的取值范围为:,故答案为:.【小问2详解】解:由表格中的数据可得:在时,的值逐渐减小;在时,的值逐渐增大,∴该函数是以为对称轴的抛物线,∴和为对称点,∴当和时,值相等,∴当时,,即.【小问3详解】解:由(2)表格中的数据可得到该函数的完整图象如下:【小问4详解】解:①结合(3)可知,该函数是一个二次函数图象的一部分,其对称轴为直线,0 1.5x <≤y 1.52x ≤<y 1.5x = 1.0x = 2.0x =y m 1.5x =y 0.7BD '0.7cm D B D ¢ADD ' AD AD ='AB DD '⊥BD BD '=x y =x BD 2.5cm BC =D BC BD cm x x 0 2.5x <<0 2.5x <<0 1.5x <≤y 1.52x ≤<y 1.5x =1.0x = 2.0x =1.0x = 2.0x =y 1.0x =0.9y =0.9m = 1.5x =结合(2)中表格的数据可知,最小值为,∴线段的最小值为.②如图所示:当,,三点共线时,∵,∴为等腰三角形,∵,∴,即,由(2)得,∴.【点睛】本题考查函数图象实际应用问题,能根据数据画出函数图象是解题的关键.25. 某校为了更好地开展阳光体育二小时活动,对本校学生进行了“写出你最喜欢的体育活动项目”(只写一项)的随机抽样调查,如图是根据得到的相关数据绘制的统计图的一部分.请根据以上信息解答下列问题:(1)该校对 名学生进行了抽样调查;(2)通过计算请将图1和图2补充完整;(3)图2中跳绳所在的扇形对应的圆心角的度数是 ;(4)若该校共有2400名同学,请利用样本数据估计全校学生中最喜欢跳绳运动的人数约为多少?【答案】(1)200;(2)补全图形见解析;(3)144°;(4)估计全校学生中最喜欢跳绳运动的人数约为960人.【解析】的y 0.7BD '0.7cm D B D ¢AD AD ='ADD ' AB DD '⊥BD BD '=x y =0.9x y ==0.9BD =【分析】(1)由最喜欢跳绳运动的人数及其所占百分比可得总人数;(2)根据各组人数之和等于总人数求得最喜欢投篮运动的人数,再除以总人数可得其对应百分比,从而补全图1和图2;(3)用360°乘以最喜欢跳绳运动的人数所占百分比可得跳绳所在的扇形圆心角的度数;(4)总人数乘以样本中最喜欢跳绳运动的人数所占百分比即可得.【详解】(1)被调查的学生总人数为80÷40%=200(人),故答案为:200;(2)最喜欢投篮运动的人数为200﹣(40+80+20)=60(人),最喜欢投篮运动的人数所占百分比为×100%=30%, 补全图形如下:(3)图2中跳绳所在的扇形对应的圆心角的度数是为360°×40%=144°.故答案为144°;(4)2400×40%=960(人).答:估计全校学生中最喜欢跳绳运动的人数约为960人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了利用样本估计总体.26. 二次函数(1)写出函数图象的开口方向、顶点坐标和对称轴.(2)判断点是否在该函数图象上,并说明理由.(3)求出以该抛物线与两坐标轴的交点为顶点的三角形的面积.【答案】(1)开口向下,对称轴为直线,顶点为;(2)不在函数图象上,理由详见解析;(3) 12.602002642y x x =--()3, 4-=1x -(1,8)-【解析】【分析】(1)先把抛物线解析式配成顶点式得到,然后根据二次函数的性质写出开口方向,对称轴方程,顶点坐标;(2)将代入函数解析式求出对应的y 即可判断;(3)确定抛物线与轴的交点坐标为,然后根据三角形面积公式求解.【详解】解:(1)解:(1),抛物线开口向下;,抛物线对称轴方程为,顶点坐标;开口向下,对称轴为直线,顶点为;(2)不在函数图象上.理由:当时,所以点不在函数图象上.(3)令,得,解得,,所以抛物线与轴的交点坐标为,,当x =0时,y =6.抛物线与轴交于点,.【点睛】本题考查了二次函数的性质:二次函数的图象为抛物线;对称轴为直线;抛物线与轴的交点坐标为.27. 在中,,,是边上一点,点与关于直线对称,过点作交于,交于.22(1)8y x =-++3x =y (0,6)226422(1)8y x x x =--=-++ 20a =-< ∴22(1)8y x =-++ ∴=1x -(1,8)-=1x -1,8-()3x =29436244y =-⨯-⨯+=-≠-4-(3,)0y =26420x x --=13x =-21x =x (3,0)-(1,0)y 0,6A ()()1136122ABC S ∆=⨯+⨯=2(0)y ax bx c a =++≠2b x a=-y (0,)c ABC 90BAC ∠=︒AB AC =D AB D E AC E EF CD ⊥CD G BC F(1)补全图形;(2)探究线段和的数量关系,并证明;(3)直接写出线段的的数量关系______.【答案】(1)见详解(2),证明见详解 (3)【解析】【分析】(1)先根据点对称的性质作出点E ,再根据垂直平分线的性质作,通过尺规作图过点E 作即可;(2)先通过直角三角形的性质证明,再根据等腰直角三角形的性质和三角形外角的性质证明,从而,最终证得;(3)过点F 作,垂足为P ,先证明得到,再根据是等腰直角三角形得到,从而得到答案.【小问1详解】延长,以点A 为圆心,以为半径画圆弧交延长线于点E ,以点E 为圆心作圆弧,和分别相交于点M 、点N ,再分别以点M 、点N为圆心,大于为半径画圆弧,相交于点Q ,连接,分别于、相交于点G 和点F ;图形补全如下: 【小问2详解】解:,证明如下,如下图所示,连接,交于点O ,CD EF BF DE CD EF =BF DE =EF CD ⊥AEO ACE ∠=∠EFC FCE ∠=∠EF EC =CD EF =FP BE ⊥()PEF ACD ASA ≌12PF DA DE ==BPF △BF =DA DA DA CD 2MN EQ CD BC CD EF =EC AC EF∵点与关于直线对称,∴是的垂直平分线,∴,,∴,∵,∴,∵,∴,∴,∵,,∴,∴,,∴,∴,∴;【小问3详解】解:如下图所示,过点F 作,垂足为P ,∵,D E AC AC DE DC EC ==90EAC ∠︒DCA ACE∠=∠90EOA AEO ∠+∠=︒EF CD ⊥90GOC GCO ∠+∠=︒GOC AOE ∠=∠OEA GCO ∠=∠AEO ACE ∠=∠90BAC ∠=︒AB AC =45B BCA ∠=∠=︒45EFC B BEF AEO ∠=∠+∠=︒+∠45FCE BCA ACE AEO ∠=∠+∠=︒+∠EFC FCE ∠=∠EF EC =CD EF =FP BE ⊥90EPF CAD CD EF PEF DAC ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩∴,∴,∵,∴,∴,∵,∴,∵,∴.【点睛】本题考查垂直平分线的性质、等腰直角三角形的性质、等腰三角形的性质和全等三角形的性质,解题的关键是添加正确的辅助线构造出等腰三角形.28. 平面直角坐标系中,点和图形,若上存在点与点对应,则称是图形的“呼应点”.(1)点的“呼应点”的坐标为_______;(2)是否存在点是直线的“呼应点”,若存在,求的值;若不存在,说明理由;(3)直线上存在以为半径的的“呼应点”,直接写出的取值范围______.【答案】(1)(2)存在, (3)【解析】【分析】(1)根据“呼应点”的含义即可完成;(2)由题意可得P 的“呼应点”,把此点坐标代入直线中,即可求得t 的值;(3)设是上的“呼应点”,点N 是直线上点M 的对应点,则可得,从()PEF ACD ASA ≌12PF DA DE ==45B ∠=︒90BPF ∠=︒45B BFP ∠=∠=︒BP PF =222BF BP PF =+BF =12PF DE =BF =xoy (),M a b W W (),N b a --M M W )1Q -(),P t t 3y =+t 2y mx =-()0,4T T e m (1,t =117m -≤≤-3y =+(),M a b T e 2y mx =-(,)N b a --。
中考仿真模拟考试 数学试题 附答案解析

C. D.
10.如图,两个边长相等的正方形ABCD和EFGH,正方形EFGH的顶点E固定在正方形ABCD的对称中心位置,正方形EFGH绕点E顺时针方向旋转,设它们重叠部分的面积为S,旋转的角度为θ,S与θ的函数关系的大致图象是【】
A. B. C. D.
二、填空题(本大题共 6 小题,共 24 分)
【详解】由题意,可得 .
故答案为:5.
【点睛】本题主要考查平均数,掌握平均数的公式是解题的关键.
15.▱ABCD中,已知点A(﹣1,0),B(2,0),D(0,1),则点C的坐标为________.
【答案】(3,1).
【解析】
∵四边形ABCD为平行四边形.
∴AB∥CD,又A,B两点的纵坐标相同,∴C、D两点的纵坐标相同,是1,又AB=CD=3,
17.化简: ÷(a-4)- .
18.已知:如图,在菱形ABCD中,AC、BD交于点O,菱形的周长为8,∠ABC=60°,求BD的长和菱形ABCD的面积.
19.求证:一组对边平行且相等的四边形是平行四边形.(要求:画出图形,写出已知、求证和证明过程)
20.已知反比例函数y= (k≠0)的图象经过点B(3,2),点B与点C关于原点O对称,BA⊥x轴于点A,CD⊥x轴于点D
【解析】
【分析】
由四边形ABCD为矩形,根据矩形的对角线互相平分且相等,可得OA=OB=4,又∠AOB=60°,根据有一个角为60°的等腰三角形为等边三角形可得三角形AOB为等边三角形,根据等边三角形的每一个角都相等都为60°可得出∠BAO为60°,据此即可求得AB长.
【详解】∵在矩形ABCD中,BD=8,
A.21×10-4B.2.1×10-6C.2.1×10-5D.2.1×10-4
中考数学模拟试题

中考数学模拟试题一、选择题(本大题10小题,每小题3分,共30分)1.下列图形中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.2.下列各数中,属于无理数的是()A.B.1.414 C.D.3.华为Mate 30 5G系列是近期相当火爆的5G国产手机,它采用的麒麟9905G 芯片在指甲盖大小的尺寸上集成了103亿个晶体管,将103亿用科学记数法表示为()A.1.03×109B.10.3×109C.1.03×1011D.1.03×10104.下列四个算式中正确的是()A.a2+a3=a5B.(﹣a2)3=a6C.a2⋅a3=a6D.a3÷a2=a5.将抛物线y=2(x﹣3)2+2向左平移3个单位长度,再向下平移2个单位长度,得到抛物线的解析式是()A.y=2(x﹣6)2 B.y=2(x﹣6)2+4C.y=2x2 D.y=2x2+4k(k≠0)的图象6. 在同一平面直角坐标系中,函数y kx+1(k≠0)和yx大致是A. B. C. D.7. 如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D.若CD=3,则BD的长是A.7B. 6C.5D. 48. 如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA=12,则阴影部分(即四边形AEOF)的面积是()A.4 B.6.25C.7.5 D.99.二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出下列结论:①b2﹣4ac>0;②2a+b<0;③4a﹣2b+c=0;④a:b:c=﹣1:2:3.其中正确的个数有()A.1个B.2个C.3个D.4个二、填空题(本大题7小题,每小题3分,共21分)11. 因式分解:x3y﹣xy3= .12. 一组数据由5个数组成,其中4个数分别为2,3,4,5且这组数据的平均数为4,则这组数据的中位数为.13.一个不透明的袋子中装8个小球,其中3个红球,3个白球,2个黑球,小球除颜色外形状、大小完全相同.现从中随机摸出一个小球,摸出的小球是红色的概率为____.15.若关于x的分式方程=2a无解,则a的值为.圆周的一个扇形,将留下的扇形围16.如图,如果从半径为9的圆形纸片剪去13成一个圆锥(接缝处不重叠),那么这个圆锥的高为17.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,点F在边AC上,并且CF=1,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,连接BP,则线段BP 长的最小值是.剪去(第16题图)(第17题图)三、解答题(本大题共9个小题,共69分)20.(6分)如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的D处测得楼顶B 的仰角为45°,其中点A,C,E在同一直线上.(1)求坡底C点到大楼距离AC的值;(2)求斜坡CD的长度.21.(7分)央视“经典咏流传”开播以来受到社会广泛关注。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学中考模拟试题
一、选择题(每小题4分,共40分)
1.下面的图形是天气预报中的图标,其中既是轴对称图形又是中心对称图形的是()
A.晴B.浮尘C.大雨D.大雪
2.2017年北京市在经济发展、社会进步、城市建设、民生改善等方面取得新成绩、新面貌.综合实力稳步提升.全市地区生产总值达到280000亿元,将280000用科学记数法表示为()
A.280×103B.28×104C.2.8×105D.0.28×106
3.下列各组数中,互为相反数的是()
A.|﹣|与﹣B.|﹣|与﹣C.|﹣|与D.|﹣|与
4.下列运算正确的是()
A.x2+x2=x4B.a2•a3=a5
C.(3x)2 =6x2D.(mn)5÷(mn)=mn4
5.下列计算正确的是()
A.x2﹣3x2=﹣2x4B.(﹣3x2)2=6x2
C.x2y•2x3=2x6y D.6x3y2÷(3x)=2x2y2
6.如图,AB∥CD,DB⊥BC,∠2=50°,则∠1的度数是()
A.40°B.50°C.60°D.140°
7.一次函数y=x﹣2的图象经过点()
A.(﹣2,0)B.(0,0)C.(0,2)D.(0,﹣2)8.在△ABC中,已知∠A、∠B都是锐角,|sin A﹣|+(1﹣tan B)2=0,那么∠C的度数为()
A.75°B.90°C.105°D.120°
9.一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球
后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是()
A.B.C.D.
11.若二次根式有意义,则x的取值范围是()
A.x>B.x≥C.x≤D.x≤5
二.填空题(每小题4分,共24分)
12.禽流感病毒的形状一般为球形,直径大约为0.000000102m,将0.000000102用科学记数法表示为.
13.计算:()﹣2+(π﹣3)0﹣=.
14.计算2﹣=.
15.已知y关于x成正比例,且当x=2时,y=﹣6,则当x=1时,y的值为
16.分解因式:x3﹣2x2+x=
17.因式分解:3x3﹣6x2y+3xy2=.
18.若(y+3)(y﹣2)=y2+my+n,则m+n的值为
三.解答题(共9小题)
19.解方程组
(1)(2).
20.解不等式组:
21.解方程:4x(x+3)=x2﹣9
22.先化简,再求值:(2﹣)÷,其中x=2.
23.如图,等腰Rt△ABC的顶点B落在直线l2上,若∠1=75°,∠2=60°.求证:l1∥l2.
20.目前“校园手机”现象越来越受到社会关注,针对这种现象,某校九年级数学兴趣小组的同学随机调查了若干名家长对“中学生带手机的”的态度(态度分为:A.无所谓;B.基本赞成;C.赞成;D.反对).并将调查结果绘制成频数折线统计图1和扇形统计图2(不完整).请根据图中提供的信息,解答下列问题:
(1)此次抽样调查中,共调查了多少名名中学生家长;
(2)求出图2中扇形C所对的圆心角的度数,并将图1补充完整;
(3)在此次调查活动中,初三(1)班有A1、A2两位家长对中学生带手机持反对态度,初三(2)班有B1、B2两位学生家长对中学生带手机也持反对态度,现从这4位家长中选2位家长参加学校组织的家校活动,用列表法或画树状图的方法求出选出的2人来自不同班级的概率.
18.“校园安全”受到全社会的广泛关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了如图两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:
(1)接受问卷调查的学生共有人,扇形统计图中“了解”部分所对应扇形的圆心角为°;
(2)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为人;
(3)若从对校园安全知识达到“了解”程度的3个女生A、B、C和2个男生M、N中分别随机抽取1人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到女生A的概率.
19.如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B (﹣4,n).
(1)求n和b的值;
(2)求△OAB的面积;
(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.。