勾股定理全章知识点总结大全教学提纲
(寒假班内部讲义)第十八章-勾股定理

第十八章勾股定理第一部分知识网络一、重、难点重点:勾股定理及其逆定理的应用。
难点:勾股定理及其逆定理的应用。
二、知识要点梳理知识点一:勾股定理直角三角形两直角边a、b的平方和等于斜边c的平方。
(即:a2+b2=c2)要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题知识点二:勾股定理的逆定理如果三角形的三边长:a、b、c,则有关系a2+b2=c2,那么这个三角形是直角三角形。
要点诠释:用勾股定理的逆定理判定一个三角形是否是直角三角形应注意:(1)首先确定最大边,不妨设最长边长为:c;(2)验证c2与a2+b2是否具有相等关系,若c2=a2+b2,则△ABC是以∠C为直角的直角三角形(若c2>a2+b2,则△ABC是以∠C为钝角的钝角三角形;若c2<a2+b2,则△ABC为锐角三角形)。
知识点三:勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。
知识点四:互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。
如果把其中一个叫做原命题,那么另一个叫做它的逆命题。
三、规律方法指导1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。
2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。
3.勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错误。
4. 勾股定理的逆定理:如果三角形的三条边长a,b,c有下列关系:a2+b2=c2,•那么这个三角形是直角三角形;该逆定理给出判定一个三角形是否是直角三角形的判定方法.5.•应用勾股定理的逆定理判定一个三角形是不是直角三角形的过程主要是进行代数运算,通过学习加深对“数形结合”的理解.第二部分 学习笔记1.直角三角形的边、角之间分别存在什么关系?(1) 角与角之间的关系:在△ABC 中,∠C=90°,有∠A+∠B=90°;(2) 边与边之间的关系:在△ABC 中,∠C=90°,有222c a b =+2.勾股定理:如果直角三角形两直角边分别为a,b,斜边为c ,那么222c a b =+ 即直角三角形的两直角边的平方和等于斜边的平方。
八年级《勾股定理》知识点归纳和题型归类

勾股定理知识点归纳和题型归类 一.知识归纳1.勾股定理:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法,用拼图的方法验证勾股定理的思路是:①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:方法一:4EF G H S S S∆+=正方形正方形ABCD,2214()2ab b a c ⨯+-=,化简可证. 方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++,所以222a b c +=方法三:1()()2S a b a b=+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证 3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则c ,cbaHG F EDCB Abacbac cabcab a bcc baE D CBAb,a②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题5.勾股定理的逆定理如果三角形三边长a,b,c满足222a b c+=,那么这个三角形是直角三角形,其中c为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b+与较长边的平方2c作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;若222a b c+<,时,以a,b,c为三边的三角形是钝角三角形;若222a b c+>,时,以a,b,c为三边的三角形是锐角三角形;②定理中a,b,c及222a b c+=只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足222a c b+=,那么以a,b,c为三边的三角形是直角三角形,但是b为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c+=中,a,b,c为正整数时,称a,b,c为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等③用含字母的代数式表示n组勾股数:丢番图发现的:式子nmnmmnnm>+-(,2,2222的正整数)毕达哥拉斯发现的:122,22,1222++++nnnnn(1>n的整数)柏拉图发现的:1,1,222+-n n n (1>n 的整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解. 8..勾股定理逆定理的应用 勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论. 9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决. 题型一:直接考查勾股定理 例1.在ABC ∆中,90C ∠=︒. ⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长题型二:应用勾股定理建立方程 例2.⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD =⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为例3.如图ABC ∆中,90C ∠=︒,12∠=∠,1.5CD =,2.5BD =,求AC 的长例4.如图Rt ABC ∆,90C ∠=︒3,4AC BC ==,分别以各边为直径作半圆,求阴影部分面积题型三:实际问题中应用勾股定理 例5.如图有两棵树,一棵高8cm ,另一棵高2cm ,两树相距8cm ,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了 m 。
勾股定理知识点总结大全

勾股定理知识点总结大全一、勾股定理的定义勾股定理又称毕达哥拉斯定理,它是指:在直角三角形中,直角边的平方等于其他两条边的平方和。
具体表达方式是:设直角三角形的两个直角边分别为a、b,斜边为c,则有a²+b²=c²。
这就是著名的毕达哥拉斯定理,也是勾股定理的核心概念。
二、勾股定理的证明1. 几何证明勾股定理有多种证明方法,其中有几何证明是最常见的。
几何证明主要通过图形的构造和变换,利用几何形状的属性,从而证明勾股定理。
常见的几何证明方法包括利用正方形、相似三角形、垂直平分线、圆的性质等,通过构造等辅助图形,最终得到a²+b²=c²的结论。
2. 代数证明另外,勾股定理也可以通过代数方法进行证明。
代数证明主要通过变换方程、化简运算,利用数学公式和规律,从而得到a²+b²=c²的结论。
通过几何和代数两种证明方法,可以更全面地理解勾股定理的内涵和外延,为后续的学习和应用打下坚实的基础。
三、勾股定理的性质1. 勾股三元数根据勾股定理,我们可以找到很多满足a²+b²=c²的整数解组,这样的整数解组叫做勾股三元数。
例如:3²+4²=5²、5²+12²=13²、9²+40²=41²等。
勾股三元数的性质是研究勾股定理的重要方面,它们具有很多有趣的特性和规律,对于数论的研究有着重要的意义。
2. 勾股定理的逆定理对于一个三元数组(a, b, c),如果它满足a²+b²=c²,则称它是勾股三元数。
而勾股定理的逆定理表明,每个整数对(a, b),都可以构成一个勾股三元数。
这个逆定理的证明非常复杂,它涉及到模运算、费马大定理、椭圆曲线等高深的数学知识,是数论和代数学研究的重要课题之一。
3. 勾股定理的推广在直角三角形外,勾股定理也有很多推广成立的情况。
(完整版)勾股定理笔记要点

勾股定理基础知识汇总一、 已经学过的有关直角三角形中的边角关系BA1.两锐角之间的关系:90oA B ∠+∠=2.边与高的关系: ab ch =3.边与角之间的特殊关系:在直角三角形中30°角所对的直角边等于斜边的一半;4.直角三角形斜边上的中线等于斜边的一半。
二、 勾股定理在直角三角形中,两条直角边的平方和等于斜边的平方。
即222a b c +=三、 勾股定理逆定理如果一个三角形的两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形。
四、 勾股数组1.如果三个正整数,,a b c 满足关系222a b c +=,那么,,a b c 叫做勾股数。
2.勾股数的性质如果,,a b c 是勾股数,k 为正整数,那么,,ka kb kc 也是勾股数思考:勾股数的定义中有何限制?3.常用勾股数:3,4,5;5, 12,13;7,24,25;8,15,17;4.勾股数的几种表达方式22(1).21,22,221n n n n n ++++(毕达哥拉斯)22(2)1,2,1n n n -+(柏拉图) 2222(3),2,m n mn m n -+(丢番图)请探究上述三个表达式,思考下列问题 (1) 你能从勾股数3,4,5;5, 12,13;7,24,25;归纳出毕达哥拉斯给出的表达式吗?这组勾股数有何特征?(2) 柏拉图公式与丢番图公式之间有何联系?与你已经学过的哪些公式有关联?五、勾股定理应用(1) 学习过勾股定理之后三角形的特殊关系①如果30oA ∠=,那么::2a b c =②如果45o A ∠=,那么::a b c = ③如果,,a b c 是直角三角形的三条直角边,那么以a+ b ,c + h ,h 的长为边的三条线段能组成直角三角形④如果,,a b c 是直角三角形的三条直角边,那么以a 1,b 1,1h的长为边的三条线段能组成直角三角形(2) 藤绕树问题的解法我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A 处缠绕而上,绕五周后其末端恰好到达点B 处.则问题中葛藤的最短长度是 尺.(3) 长方体盒子对角线的长度公式H G F EDCBA(4) 蚂蚁最短路径问题公式AD EFGHab cADEFGHbcABCDEFG Hab cc baH GF E DC B A六、 典型例题例1:我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图(1)),图(2)由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD 、正方形EFGH 、正方形MNKT 的面积分别为S 1、S 2、S 3.若正方形EFGH 的边长为2,则S 1+S 2+S 3= .【答案】122.如图是用硬纸板做成的四个全等的直角三角形,两直角边长分别是a b ,,斜边长为c 和一个边长为c 的正方形,请你将它们拼成一个能证明勾股定理的图形.(1)画出拼成的这个图形的示意图. (2)证明勾股定理.3.(1)如图1是一个重要公式的几何解释.请你写出这个公式;(2)如图2,Rt Rt ABC CDE △≌△,90B D ∠=∠=,且B C D ,,三点共线.试证明90ACE ∠=;(3)伽菲尔德(Garfield ,1881年任美国第20届总统)利用(1)中的公式和图2证明了勾股定理(1876年4月1日,发表在《新英格兰教育日志》上),现请你尝试该证明过程.4.「问题情境」勾股定理是一条古老的数学定理,它有很多种证明方法,我国汉代数学家赵爽根据弦图,利用面积法进行了证明.著名数学家华罗庚曾提出把“数形关系”(勾股定理)带到其他星球,作为地球人与其他星球“人”进行第一次“谈话”的语言. 「定理表述」请你根据图1中的直角三角形叙述勾股定理(用文字及符号语言叙述):(3分)「尝试证明」以图1中的直角三角形为基础,可以构造出以a b 、为底,以a b +为高的直角梯形(如图2).请你利用图2,验证勾股定理;(4分) 「知识拓展」利用图2中的直角梯形,我们可以证明2a bc+< BC a b =+,AD = .又在直角梯形ABCD 中有BC AD(填大小关系),即 .2a bc+∴<.(3分)(图1) (图2)A BC Dcb aa ab b ccE a b b a 图1 abc c A E D C B b a图25.给出定义,若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.(1)在你学过的特殊四边形中,写出两种勾股四边形的名称;(2)如图,将△ABC绕顶点B按顺时针方向旋转60°得到△DBE,连接AD,DC,CE,已知∠DCB=30°.①求证:△BCE是等边三角形;②求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.6.在△ABC中,BC=a,AC=b,AB=c,设c为最长边.当a2+b2=c2时,△ABC是直角三角形;当a2+b2≠c2时,利用代数式a2+b2和c2的大小关系,探究△ABC的形状(按角分类).(1)当△ABC三边长分别为6,8,9时,△ABC为______c2;当△ABC三边长分别为6,8,11时,△ABC 为___________三角形.(4分)(2)猜想:当a2+b2______c2时,△ABC为锐角三角形;当a2+b2______c2时,△ABC为钝角三角形.(4分) (3)判断当a=2,b=4时,△ABC的形状,并求出对应的c的取值范围.(4分) 7.阅读材料:例:()22134x x+-+并求它的最小值.解:()()()222 222 1340132x x x x+-+=-+-+,如图,建立平面直角坐标系,点()0P x,是x轴上一点,()2201x-+P与点()01A,的距离,()2232x-+可以看成点P与点()32B,的距离,所以原代数式的值可以看成线段PA与PB长度之和,它的最小值就是PA PB+的最小值.设点A关于x轴的对称点为A′,则PA PA=′,因此,求PA PB+的最小值,只需求PA PB+′的最小值,而点A′、B间的直线段距离最短,所以PA PB+′的最小值为线段A B′的长度.为此,构造直角三角形A CB′,因为=3=3A C CB',,所以32A B=′,即原式的最小值为32根据以上阅读材料,解答下列问题:(1)代数式()()221129x x-+-+的值可以看成平面直角坐标系中点()0P x,与点()11A,、点B___________的距离之和.(填写点B的坐标)(2)代数式22491237x x x+-+的最小值为_____________.。
勾股定理知识点总结、经典例题教学内容

知识点及例题知识点一:勾股定理如果直角三角形的两直角边长分别为:a,b,斜边长为c,那么a2+b2=c2.即直角三角形中两直角边的平方和等于斜边的平方.要点诠释:(1)勾股定理揭示的是直角三角形平方关系的定理。
(2)勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角。
(3)理解勾股定理的一些变式:c2=a2+b2, a2=c2-b2,b2=c2-a2,c2=(a+b)2-2ab知识点二:用面积证明勾股定理方法一:将四个全等的直角三角形拼成如图(1)所示的正方形。
图(1)中,所以。
方法二:将四个全等的直角三角形拼成如图(2)所示的正方形。
图(2)中,所以。
方法三:将四个全等的直角三角形分别拼成如图(3)—1和(3)—2所示的两个形状相同的正方形。
在(3)—1中,甲的面积=(大正方形面积)—(4个直角三角形面积),在(3)—2中,乙和丙的面积和=(大正方形面积)—(4个直角三角形面积),所以,甲的面积=乙和丙的面积和,即:.方法四:如图(4)所示,将两个直角三角形拼成直角梯形。
,所以。
知识点三:勾股定理的作用1.已知直角三角形的两条边长求第三边;2.已知直角三角形的一条边,求另两边的关系;3.用于证明平方关系的问题;4.利用勾股定理,作出长为的线段。
2. 在理解的基础上熟悉下列勾股数满足不定方程x2+y2=z2的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x,y,z为三边长的三角形一定是直角三角形。
熟悉下列勾股数,对解题是会有帮助的:①3、4、5②5、12、13;③8、15、17;④7、24、25;⑤10、24、26;⑥9、40、41.如果(a,b,c)是勾股数,当t>0时,以at,bt,ct为三角形的三边长,此三角形必为直角三角形。
经典例题透析类型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。
第一章勾股定理知识点总结

【知识体系】
(3)满足条件a2+b2=c2的三个 正整数 ,称为
勾股数。 常见的勾股数组有:3、4、5; 5、12、13; 8、 15、17; 7、24、25; 20、21、29; 9、40、 41;… 这些勾股数组的整数倍仍然是勾股数组。
【知识体系】
3、最短距离:将立体图形展开,利用直角三 角形的勾股定理求出最短距离(斜边长)。
一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点 沿纸箱爬到B点,那么它所爬行的最短路线的长是
__________________________________.
一艘轮船以40海里/时的速度离开了港口A向东
北方向航行,另一艘轮船同时离开港口A以30海里/ 时的速度向东南方向航行,他们离开港口半小时后
【知识体系】
1、勾股定理:如果直角三角形两直角边分别为 a,
b,斜边为c,那么
a 2 b2 c 2
等
。
即直角三角形两直角边的 平方和
于 斜边的平方
。
【知识体系】
2、勾股逆定理:如果直角三角形三边长a、b、c
满足 直角
a b c
2 2
2
,那么这个三角形是
三角形。
(且 最长边所对的角 为直角)
解: 15 2 225 15 2 36 2 39 2 该三角形为直角三角形 1 所求面积为 15 36 180 2 36 2 1256 39 2 1581 225 1256 1581
如图,在四边形ABCD中,∠C=90°,AB=13,BC=4, CD=3,AD=12,求证:AD⊥BD. 证明:在RtBCD中,
BD 2 BC 2 CD 2 4 2 32 5 2 BD 5 5 2 12 2 169 13 2 CD 2 AD 2 AB 2 ABD为直角三角形 且ADB 90 0 AD BD
第十七章勾股定理知识点总结

第十七章勾股定理知识点总结一.基础知识点:1:勾股定理直角三角形两直角边a、b的平方和等于斜边c的平方。
(即:a2+b2=c2)要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(在ABC∆中,90C∠=︒,则c,b,a=)(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题2:勾股定理的逆定理如果三角形的三边长:a、b、c,则有关系a2+b2=c2,那么这个三角形是直角三角形。
要点诠释:勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意:(1)首先确定最大边,不妨设最长边长为:c;(2)验证c2与a2+b2是否具有相等关系,若c2=a2+b2,则△ABC是以∠C为直角的直角三角形(若c2>a2+b2,则△ABC是以∠C为钝角的钝角三角形;若c2<a2+b2,则△ABC为锐角三角形)。
(定理中a,b,c及222+=只是一种表现形式,不可认为是唯一的,如若三角形a b c三边长a,b,c满足222+=,那么以a,b,c为三边的三角形是直角三角形,但a c b是b为斜边)3:勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。
4:互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。
如果把其中一个叫做原命题,那么另一个叫做它的逆命题。
规律方法指导1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。
2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。
3.勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错误。
勾股定理全章知识点总结

勾股定理【知识脉络】【基础知识】Ⅰ. 勾股定理(1)内容:直角三角形两直角边的平方和等于斜边的平方; 表示方式:若是直角三角形的两直角边别离为a ,b ,斜边为c ,那么222a b c +=.(2)勾股定理的证明勾股定理的证明方式很多,常见的是拼图的方式用拼图的方式验证勾股定理的思路是:①图形进过割补拼接后,只要没有重叠,没有间隙,面积可不能改变;②依照同一种图形的面积不同的表示方式,列出等式,推导出勾股定理.常见方式如下:方式一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证. 方式二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++ 因此222a b c +=方式三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证(3)勾股定理的适用范围勾股定理揭露了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,关于锐角三角形和钝角三角形的三边就不具有这一特点。
(4)勾股定理的应用:①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,那么22c a b =+, c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A 方法一 方法二方法三 方法二b =,a ;②明白直角三角形一边,可得另外两边之间的数量关系③可运用勾股定明白得决一些实际问题Ⅱ. 勾股定理的逆定理(1)内容:若是三角形三边长a ,b ,c 知足222a b c +=,那么那个三角形是直角三角形,其中c 为斜边。
① 勾股定理的逆定理是判定一个三角形是不是是直角三角形的一种重要方式,它通过“数转化为形”来确信三角形的可能形状,在运用这必然理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,假设它们相等时,以a ,b ,c 为三边的三角形是直角三角形;② 若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;假设222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;③ 定理中a ,b ,c 及222a b c +=只是一种表现形式,不能够为是唯一的,如假设三角形三边长a ,b ,c 知足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,可是b 为斜边(2)勾股数①能够组成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数能够提高解题速度,如3,4,5;5,12,13;6,8,10;7,24,25;8,15,17;9,12,15;9,40,41;等Ⅲ. 勾股定理及其逆定理的实际应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.常见图形:A B C 30° D C B A A D B CⅣ. 互逆命题的概念 若是一个命题的题设和结论别离是另一个命题的结论和题设,如此的两个命题叫做互逆命题.若是把其中一个叫做原命题,那么另一个叫做它的逆命题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勾股定理全章知识点总结大全勾股定理全章知识点总结大全一.基础知识点:1:勾股定理直角三角形两直角边a、b的平方和等于斜边c的平方。
(即:a2+b2=c2)要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(在ABC∆中,90C∠=︒,则c,b=,a)(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题2:勾股定理的逆定理如果三角形的三边长:a、b、c,则有关系a2+b2=c2,那么这个三角形是直角三角形。
要点诠释:勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意:(1)首先确定最大边,不妨设最长边长为:c;(2)验证c2与a2+b2是否具有相等关系,若c2=a2+b2,则△ABC是以∠C为直角的直角三角形(若c2>a2+b2,则△ABC是以∠C为钝角的钝角三角形;若c2<a2+b2,则△ABC 为锐角三角形)。
(定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边)3:勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理; 联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。
4:互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。
如果把其中一个叫做原命题,那么另一个叫做它的逆命题。
5:勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一:,4EFGH S S S ∆+=正方形正方形ABCD 2214()2ab b a c ⨯+-=,化简可证. 方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证 6:勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25;9,12,15;8,15,17;9,40,41;12,16,20等③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)二、规律方法指导1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。
2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。
3.勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错误。
4. 勾股定理的逆定理:如果三角形的三条边长a ,b ,c 有下列关系:a 2+b 2=c 2,•那么这个三角形是直角三角形;该逆定理给出判定一个三角形是否是直角三角形的判定方法.bacbac cabcab5.•应用勾股定理的逆定理判定一个三角形是不是直角三角形的过程主要是进行代数运算,通过学习加深对“数形结合”的理解.我们把题设、结论正好相反的两个命题叫做互逆命题。
如果把其中一个叫做原命题,那么另一个叫做它的逆命题。
(例:勾股定理与勾股定理逆定理)勾股定理典型例题及专项训练专题一:直接考查勾股定理及逆定理例1.在ABC∆中,90C∠=︒.⑴已知6AC=,8BC=.求AB的长⑵已知17AB=,15AC=,求BC的长分析:练习:1、如图所示,在四边形ABCD中,∠BAD=︒90,∠DBC=︒90,AD=3,AB=4,BC=12,求CD。
cb aHGFEDCBAabccbaEDCBACB D2.已知等腰三角形腰长是10,底边长是16,求这个等腰三角形的面积。
3、已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。
四边形ABCD 的面积。
例2:已知直角三角形的两边长分别为5和12,求第三边。
练习:在∆ABC 中,AB=13,AC=15,高AD=12,则BC的长为多少?例3:(1).已知∆ABC 的三边a 、b 、c 满足0)()(22=-+-c b b a ,则∆ABC 为 三角形练习:1、已知2512-++-y x x 与25102+-z z 互为相反数,试判断以x 、y 、z 为三边的三角形的形状。
2、.若∆ABC 的三边a 、b 、c 满足条件2a c b a c b 26241033822++=+++,试判断∆ABC 的形状。
图1CAB图2CAB图3CAB图4C BA图5D ACB3.已知,0)10(8262=-+-+-c b a 则以a 、b 、c 为边的 三角形是4:已知如图,在△ABC 中,∠C=60°,AB=34,AC=4,AD 是BC 边上的高,求BC 的长。
经典图形突破: 练习1.如图,△AB C中,AB=AC ,∠A=45º,AC 的垂直平分线分别交AB 、AC 于D 、E ,若CD=1,则BD 等于( )A .1B .C .D .ACBD2.已知一直角三角形的斜边长是2,周长是6,求这个三角形 的面积.3.△ABC 中,D 是AB 的中点,若AC=12,BC=5,CD=6.5. 求证:△ABC 是直角三角形.4.如图,在正方形ABCD 中,F 为DC 的中点,E 为BC 上一点,且EC=14BC , 猜想AF•与EF 的位置关系,并说明理由.5.如图Rt ABC ∆,90C ∠=︒3,4AC BC ==,分别以各边为直径作半圆,求阴影部分面积BC6.如图,△ABC中,AB=AC=20,BC=32,D是BC上一点,且AD⊥AC,求BD的长.专题二勾股定理的证明1、利用四个全等的直角三角形可以拼成如图所示的图形,这个图形被称为弦图.从图中可以看到:大正方形面积=小正方形面积+四个直角三角形面积.因而c2=+.化简后即为c2=.2、如图,直线l上有三个正方形a b c,,,若a c,的面积分别为5和11,则b的面积为()(A)4 (B)6(C)16 (D553、一个直立的火柴盒在桌面上倒下,启迪人们发现了勾股定理的一种新的证明方法.如图,火柴盒的一个侧面ABCD倒下到AB C D'''的位置,连结CC',设B'ADC'ACbc abcabcCBA,,AB a BC b AC c ===,请利用四边形BCC D ''的面积证明勾股定理:222a b c +=.4、(2010年辽宁省丹东市)图①是一个边长为()m n +的正方形,小颖将 图①中的阴影部分拼成图②的形状,由图①和图② 能验证的式子是( )A .22()()4m n m n mn +--=B .222()()2m n m n mn +-+=C .222()2m n mn m n -+=+D .22()()m n m n m n +-=-专题三 网格中的勾股定理1、如图1,在单位正方形组成的网格图中标有AB 、CD 、EF 、GH 四条线段,其中能构成一个直角三角形三边的线段是( ) (A )CD 、EF 、GH (B )AB 、EF 、GH (C )AB 、CD 、GH(D )AB 、CD 、EF2、(2010年四川省眉山市)如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )图①图②A.90° B.60° C.45° D.30°专题四实际应用建模测长1、如图(8),水池中离岸边D点1.5米的C处,直立长着一根芦苇,出水部分BC的长是0.5米,把芦苇拉到岸边,它的顶端B恰好落到D点,并求水池的深度AC.2、有一个传感器控制的灯,安装在门上方,离地高4.5米的墙上,任何东西只要移至5米以内,灯就自动打开,一个身高1.5米的学生,要走到离门多远的地方灯刚好打开?专题五梯子问题1、如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米?ADBC2、一架方梯长25米,如图,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米?专题六 最短路线1、如图,学校教学楼旁有一块矩形花铺,有极少数同学为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了( )步路(假设2步为1米),却踩伤了花草.A 、6B 、5C 、4D 、32、如图,一圆柱体的底面周长为20㎝,高AB 为10㎝,BC 是上底面的直径。
一蚂蚁从点A 出发,沿着圆柱的侧面爬行到点C ,试求出爬行的最短路程。
3、如图,有一个圆柱体,底面周长为20㎝,高AB 为10㎝,在圆柱的下底面A 点处有一只蚂蚁,它想绕圆柱体侧面一周爬行到它的顶端C 点处,那么它所行走的路程是多少?A A ′BB ′O第20题图4为筹备迎新生晚会,同学们设计了一个圆筒形灯罩,底色漆成白色,然后缠绕红色油纸,如图,已知圆筒高108cm ,其圆筒底面周长为36cm ,如果在表面缠绕油纸4圈, 应裁剪多长油纸?5、如图,一只蚂蚁从一个棱长为1米,且封闭的正方体盒子外部的点 A 向顶点B 爬行,问这只蚂蚁爬行的最短路程为多少米?6、(2004•淄博)如图是一块长,宽,高分别是6cm ,4cm 和3cm 的长方体木块一只蚂蚁要从长方体木块的一个顶点A 处,沿着长方体的表面到长方体上和A 相对的顶点B 处吃食物,那么它需要爬行的最短路径的长是( )ACBAA 、(3+2)cmB 、cm C 、cmD 、cm7、如图,长方体的长为15cm ,宽为10cm ,高 为20cm ,点B 到点C 的距离为5cm , 一只蚂蚁如果要沿着长方体的表面从A 点爬到B 点,需要爬行的最短距离是多少?8、如图为一棱长为3cm 的正方体,把所有面都分为9个小正方形,其边长都是1cm ,假设一只蚂蚁每秒爬行2cm ,则它从下地面A 点沿表面爬行至右侧面的B 点,最少要花几秒钟?9、如图,是一个三级台阶,它的每一级的长、宽、高分别为2m 、0.3m 、0.2m ,A 和B是台阶上两个相对的顶点,A 点有一只蚂蚁,想到B 点去吃可口的食物,问蚂蚁沿着台阶爬行到B 点的最短路程是多少? .BCA21015A03 0. 2BA6cm3cm1cmACAC10、(2010福建泉州市惠安县)如图,长方体的底面边长分别为1cm 和3cm,高为6cm.①如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要__________cm;②如果从点A开始经过4个侧面缠绕3圈到达点B,那么所用细线最短需要__________cm.专题七折叠三角形1、如图,一块直角三角形的纸片,两直角边AC=6㎝,BC=8㎝。