高中数学会考复习提纲

合集下载

高中数学会考知识要点总结

高中数学会考知识要点总结

高中数学会考知识要点总结
高中数学会考主要包括以下知识要点总结:
1. 几何学:直线和平面的性质和关系、三角形、四边形的性质和关系、圆的性质和关系、空间几何体的性质和关系等。

2. 代数学:多项式的运算和因式分解、一元二次方程、不等式和绝对值、函数的概念
和性质、函数的图像、函数的运算、复合函数、反函数等。

3. 数列与数学归纳法:数列的概念和性质、等差数列和等比数列、数列的推导、数学
归纳法的应用。

4. 解析几何:点、直线、平面的坐标表示、直线和平面的性质和关系、向量的概念和
运算、向量的坐标表示、向量的数量积和向量积。

5. 概率与统计:随机事件的概率、事件的独立性、全概率公式和贝叶斯定理、统计图
表的表示和分析、样本调查和数据分析等。

6. 三角函数:弧度制和角度制、正弦、余弦、正切函数的概念和性质、三角函数的图像、三角函数的运算、解三角方程等。

7. 微积分初步:函数的极限和连续性、导数和导数的应用、函数的积分和积分的应用、微分方程的基本概念、解微分方程的基本方法等。

以上是高中数学会考的主要知识要点总结,需要学生对这些知识点进行系统的学习和
掌握,才能在数学会考中取得好成绩。

普通高中学业水平测试(数学复习提纲)

普通高中学业水平测试(数学复习提纲)

普通高中学业水平测试(数学复习提纲)普通高中学业水平测试(数学复习提纲)为了帮助同学们更好地复习普通高中学业水平测试的数学内容,我们特制定了一份详细的复习提纲,涵盖高中数学的主要知识点。

以下是本次复习的主要内容:一、代数部分1.1 实数- 实数的分类及性质- 实数的运算规则1.2 函数- 函数的定义及性质- 常见函数的图像与性质(如一次函数、二次函数、指数函数、对数函数等)1.3 方程与不等式- 线性方程组的解法- 一元二次方程的解法- 不等式的性质与解法1.4 幂函数与二次函数- 幂函数的定义与性质- 二次函数的定义与性质1.5 指数函数与对数函数- 指数函数的定义与性质- 对数函数的定义与性质1.6 三角函数- 三角函数的定义与性质(正弦、余弦、正切等)二、几何部分2.1 平面几何- 点、线、面的基本性质- 直线方程与曲线方程- 几何图形的面积与体积计算2.2 立体几何- 空间几何体的性质与结构- 空间向量及其运算- 立体几何中的面积与体积计算2.3 解析几何- 坐标系与坐标变换- 直线、圆的方程及其应用- 解析几何中的图形分析与计算三、概率与统计3.1 随机事件- 随机事件的定义与性质- 事件的运算(并、交、补等)3.2 概率分布- 离散型随机变量的概率分布- 连续型随机变量的概率分布3.3 统计量与推断- 描述性统计量(如均值、方差、标准差等)- 概率推断(如假设检验、置信区间等)四、数学应用4.1 数学建模- 数学建模的基本方法与技巧- 数学模型在实际问题中的应用4.2 数学竞赛- 数学竞赛题型及解题策略- 数学竞赛中的常用技巧与方法五、数学思想与方法5.1 函数与方程思想- 利用函数与方程解决实际问题- 函数与方程在高中数学中的应用5.2 数形结合思想- 数形结合在高中数学中的应用- 利用数形结合解决实际问题5.3 分类与整合思想- 分类与整合在高中数学中的应用- 利用分类与整合解决实际问题5.4 归纳与猜想- 数学归纳法的基本原理与应用- 利用归纳与猜想解决实际问题附录- 常见数学符号与公式- 解题策略与技巧- 模拟试题与解答希望这份复习提纲能帮助同学们系统地复习高中数学知识,为普通高中学业水平测试做好充分准备。

高三会考数学知识点归纳

高三会考数学知识点归纳

高三会考数学知识点归纳高三会考数学是中学阶段的最后一次考试,也是对学生数学水平的综合考核。

为了帮助同学们更好地备考,本文将对高三会考数学的主要知识点进行归纳与总结,以期帮助同学们有针对性地进行复习。

一、函数与方程1. 函数的概念与性质- 函数的定义与表示方法- 函数的定义域与值域- 奇偶函数与周期函数的性质2. 一元二次函数- 一元二次函数的标准型与一般型- 一元二次函数的图像与性质- 一元二次函数的解析式与根的性质- 一元二次函数与二次方程的关系3. 幂函数与指数函数- 幂函数与指数函数的定义与性质- 幂函数与指数函数的图像、增减性与奇偶性- 幂函数与指数函数的运算与求值4. 对数函数- 对数函数的定义与性质- 对数函数与指数函数的互逆性- 对数函数的图像、增减性与性质二、几何与图形1. 直线与曲线- 直线与曲线的方程与性质- 直线的斜率与截距2. 三角函数与三角方程- 常用角的主要公式与性质- 正弦函数、余弦函数与正切函数的定义与性质- 三角函数的图像、周期与幅值- 三角函数的复合与反函数- 三角方程的解法与性质3. 圆与圆的方程- 圆的基本性质与方程- 圆的标准方程与一般方程4. 三角形与四边形- 三角形的内角和与外角性质- 三角形的相似性质与判定- 平行四边形、矩形、菱形与正方形的性质与判定三、统计与概率1. 统计描述与统计表达- 数据的收集、整理与展示方法- 数据的中心与离散趋势的度量- 统计图形的绘制与应用2. 概率与统计- 概率的基本概念与性质- 事件与样本空间的关系- 概率计算公式与方法- 事件间的关系与概率分布型的概率计算四、三角函数应用1. 三角函数与向量- 向量的概念与性质- 向量的加法与减法- 向量的数量积与应用- 三角函数与向量的关系与应用2. 三角函数在几何图形中的应用- 三角函数在直角三角形中的应用- 三角函数在斜三角形中的应用- 三角函数在平面几何中的应用以上便是高三会考数学的主要知识点归纳。

高中数学会考重点整理--非常详细总结

高中数学会考重点整理--非常详细总结

高中数学会考重点整理--非常详细总结1. 代数部分- 多项式多项式- 一元多项式的定义和性质- 多项式的加减乘除运算- 一元多项式的整除性质和余式定理- 多项式的因式定理和因式分解- 方程与不等式方程与不等式- 一元二次方程的解法及其性质- 二次函数与二次方程的关系- 一次不等式、二次不等式的解法及其性质- 绝对值方程与绝对值不等式的解法及其性质- 函数函数- 线性函数、反比例函数和一次函数的性质和图像- 二次函数、指数函数和幂函数的性质和图像- 对数函数和指数函数的互反性质- 数列数列- 等差数列和等比数列的性质及其应用- 通项公式、求和公式和首项公式的推导和使用2. 几何部分- 平面几何平面几何- 长度、角度、面积、体积的计算方法及其应用- 相似三角形的性质和判定条件- 三角形内角和、外角和、中线、高线的性质和计算方法- 圆内接四边形和圆内接三角形的性质和判定条件- 立体几何立体几何- 空间几何图形的投影、旋转和平移等变换- 空间几何体的面积和体积计算方法及其应用- 空间几何体的表面积和体积计算方法及其应用- 球的性质、公式和计算方法3. 统计与概率部分- 统计统计- 数据的收集、整理和描述方法- 数据的频数、频率、平均数和离散程度计算- 图表和统计图的制作和解读- 抽样调查和统计推断的基本方法- 概率概率- 基本概率定理和计算方法- 事件的相互排斥和独立性判定条件- 概率问题的计算步骤和策略- 条件概率和事件的互斥性计算方法以上是高中数学会考的重点整理,希望能够帮助你复习和准备考试。

祝你取得好成绩!。

2024年高二会考数学知识点归纳5篇

2024年高二会考数学知识点归纳5篇

高二会考数学知识点归纳5篇高二会考数学知识点归纳1第一章:三角函数。

考试必考题。

诱导公式和基本三角函数图像的一些性质只要记住会画图就行,难度在于三角函数形函数的振幅、频率、周期、相位、初相,及根据最值计算A、B的值和周期,及等变化时图像及性质的变化,这一知识点内容较多,需要多花时间,首先要记忆,其次要多做题强化练习,只要能踏踏实实去做,也不难掌握,毕竟不存在理解上的难度。

第二章:平面向量。

个人觉得这一章难度较大,这也是我掌握最差的一章。

向量的运算性质及三角形法则平行四边形法则难度都不大,只要在计算的时候记住要同起点的向量。

向量共线和垂直的数学表达,这是计算当中经常要用的公式。

向量的共线定理、基本定理、数量积公式。

难点在于分点坐标公式,首先要准确记忆。

向量在考试过程一般不会单独出现,常常是作为解题要用的工具出现,用向量时要首先找出合适的向量,个人认为这个比较难,常常找不对。

有同样情况的同学建议多看有关题的图形。

第三章:三角恒等变换。

这一章公式特别多。

和差倍半角公式都是会用到的公式,所以必须要记牢。

由于量比较大,记忆难度大,所以建议用纸写之后贴在桌子上,天天都要看。

而且的三角函数变换都有一定的规律,记忆的时候可以结合起来去记。

除此之外,就是多练习。

要从多练习中找到变换的规律,比如一般都要化等等。

这一章也是考试必考,所以一定要重点掌握。

高二会考数学知识点归纳2等差数列对于一个数列{an},如果任意相邻两项之差为一个常数,那么该数列为等差数列,且称这一定值差为公差,记为d;从第一项a1到第n项an的总和,记为Sn。

那么,通项公式为,其求法很重要,利用了“叠加原理”的思想:将以上n-1个式子相加,便会接连消去很多相关的项,最终等式左边余下an,而右边则余下a1和n-1个d,如此便得到上述通项公式。

此外,数列前n项的和,其具体推导方式较简单,可用以上类似的叠加的方法,也可以采取迭代的方法,在此,不再复述。

值得说明的是,前n项的和Sn除以n后,便得到一个以a1为首项,以d/2为公差的新数列,利用这一特点可以使很多涉及Sn的数列问题迎刃而解。

范文高中数学会考复习提纲

范文高中数学会考复习提纲

06年高中数学会考复习提纲4 (第二册下B )第九章直线平面简单的几何体 1、平面的性质:公理1:如果有一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内 公理2:如果两个平面有一个公共点, 那么它们还有其他公共点,这些公共点的集合是一条直线。

(两平面相交,只有一条交线)P • J ・- =J ・- - |且P 三|公理3:不在同一直线上的三点确定一个平面。

(强调“不共线”)(三个推论:1、直线和直线外一点,2、两条相交直线,3、两条平行直线,确定一个平面)空间图形的平面表示方法:斜二测画法(水平长不变,竖直长减半) 2、两条直线的位置关系:平行,相交,异面:不同在任何一个平面内的两条直线叫异面直线 (1)、异面直线判断方法:①定义,②判定:连结平面内一点与平面外一点的直线,和这个平面不经过此点的直线是异面直线•(两在两 不在)(2) 、两条直线垂直:两条异面直线所成的角是直角,这两条直线互相垂直. 垂直相交(共面)、异面垂直,都叫两条直线互相垂直.(3) 、空间平行直线:公理 4 :平行于同一直线的两条直线互相平行。

3、 直线与平面的位置关系:"直线在平面内直线在平面外 f 直线与平面相交,记作.直线与平面平行,记作4、 直线与平面平行: 定义:直线和平面没有公共点。

(1)、判定定理:如果不在一个平面内的一条直线和平面内的一条直线平行,(线线平行=线面平行)| •二二,m :_…,且l//m= |/八(2)、性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么 这条直线和交线平行.(线面平行 =•线线平行)l //:• ,1 一 1:-,上「!■■' : m =5、两个平面平行:定义:两个平面没有公共点。

(1)、判定定理:如果一个平面内有两条 相交直线分别平行于另一个平面,那么这两个平面平行。

(线面平行=•面面平行)推论:如果一个平面内有两条 相交直线分别平行与另一个平面内的两条直线,那么这两个平面平行。

会考数学必背知识点高中2023

会考数学必背知识点高中2023

会考数学必背知识点高中2023高中数学是一门重要的学科,无论是高考还是会考,数学都是必考科目之一。

为了取得好成绩,高中学生需要掌握一些必备的数学知识点。

以下是高中数学必背知识点,供高中学生备考使用。

一、函数与方程1.函数的概念与性质2.函数的表示方法和求解问题3.函数的运算与复合函数4.方程与不等式的概念与性质5.一次函数与二次函数6.指数函数与对数函数7.三角函数与其应用8.幂函数与反比例函数9.根与幂值函数二、平面几何1.平面几何的基本概念2.平面上的点与图形3.平面图形及其特征性质4.线段、角、多边形等的性质5.平面图形的相似与全等6.圆与圆的关系7.正多边形的性质8.平面向量与坐标系9.平面几何的证明与解题方法三、立体几何和解析几何1.三维几何的基本概念与性质2.放射线、角、平行线、垂线等的性质3.立体图形的特征性质4.棱台、棱锥、圆柱、圆锥的特征性质5.球体的特征性质6.解析几何的基本概念与性质7.直线方程与点、线、面的位置关系8.两点之间的距离、线段的长度9.平面与直线的位置关系四、概率与统计1.基本概率的计算与应用2.排列、组合与二项式定理3.离散型随机变量与分布律4.连续型随机变量与密度函数5.概率分布函数与分布图6.统计数据的收集与整理7.频数分布表与频率分布图8.统计量的计算与应用9.相关系数与回归分析五、数列与数学归纳法1.数列与等差数列2.等差中项与公差的计算3.等差数列的求和公式4.等比数列与指数函数5.等比中项与公比的计算6.等比数列的求和公式7.数学归纳法的基本概念与应用8.用数学归纳法证明数学结论以上是高中数学必背知识点的简要介绍,每个知识点都非常重要,需要高中学生进行深入的学习和理解。

在备考过程中,学生可以通过刷题、做习题、做模拟试卷等方式来巩固这些知识点,提高自己的解题能力和应试水平。

同时,还需要注重平时的课堂学习,及时复习和总结所学知识,提高自己的数学素养和解题思维能力。

普通高中学业水平测试(数学复习提纲)

普通高中学业水平测试(数学复习提纲)

普通高中学业水平测试(数学复习提纲)
一、数系与代数
1. 实数集
- 自然数、整数、有理数、无理数的概念和性质
- 实数集的运算法则和性质
2. 代数式与方程
- 代数式的概念、基本性质和常见运算
- 一元一次方程及其解法
- 一元二次方程及其解法
3. 函数与方程
- 函数的概念、性质和图象
- 一元一次函数及其图象与应用
- 一元二次函数及其图象与应用
二、几何与三角学
1. 几何论证
- 直线、射线、线段、角的概念和性质
- 几何定理的证明方法和技巧
2. 图形的性质和变换
- 二维图形的基本性质和分类
- 平移、旋转、翻折、对称等变换的概念和性质
3. 三角比与三角函数
- 正弦、余弦、正切等三角比的定义和性质
- 三角函数的概念、性质和应用
三、数据与统计
1. 数据的收集和整理
- 数据的调查方法和整理过程
- 数据的频数分布表、频数分布图和统计图表的绘制
2. 描述统计与概率统计
- 数据的中心倾向和离散程度的度量和分析
- 事件、随机事件和概率的概念和计算方法
3. 统计推断与数据分析
- 样本调查和统计推断的原理和方法
- 假设检验和置信区间的应用
以上是普通高中学业水平测试中数学部分的复习提纲。

在备考过程中,同学们应理解和掌握数系与代数、几何与三角学、数据与统计的基本概念、性质和应用,同时掌握相关的计算方法和解题技巧,以便顺利应对数学考试。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

06年高中数学会考复习提纲4(第二册下B )第九章 直线 平面 简单的几何体 1、平面的性质:公理1:如果有一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内。

公理2:如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是一条直线。

(两平面相交,只有一条交线)lP =⋂⇒⋂∈βαβα且l P ∈公理3:不在同一直线上的三点确定一个平面。

(强调“不共线”)(三个推论:1、直线和直线外一点,2、两条相交直线,3、两条平行直线,确定一个平面)空间图形的平面表示方法:斜二测画法(水平长不变,竖直长减半) 2、两条直线的位置关系:平行,相交,异面:不同在任何一个平面内的两条直线叫异面直线(1)、异面直线判断方法:①定义,②判定:连结平面内一点与平面外一点的直线,和这个平面不经过此点的直线是异面直线.(两在两不在)(2)垂直相交(共面)(3)、空间平行直线:公理43、直线与平面的位置关系: 直线在平面内 直线在平面外 直线与平面相交,记作a ∩α=A直线与平面平行,记作 a4、直线与平面平行:定义:直线和平面没有公共点。

(1)、判定定理:如果不在一个平面内的一条直线和平面内的一条直线平行, 那么这条直线和这个平面平行. (线线平行⇒线面平行)m l m l //,,且αα⊂⊄⇒α//l(2)、性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(线面平行⇒线线平行)l l ⊂βαβαI ,,//5、两个平面平行:定义:两个平面没有公共点。

(1)、判定定理:如果一个平面内有两条相交直线分别平行于另一个平面, 那么这两个平面平行。

(线面平行⇒面面平行)推论:如果一个平面内有两条相交直线分别平行与另一个平面内的两条直线,那么这两个平面平行。

(2)、性质定理:①两个平行平面同时与第三个平面相交,那么它们的交线平行。

(面面平行⇒线线平行)②两个平面平行,其中一个平面内的直线,平行于另一个平面;(面面平行⇒线面平行)③夹在两个平行平面间的两条平行线段相等。

平行间的相互转化关系:线线平行 线面平行 面面平行6、直线和平面垂直:定义:如果一条直线和一个平面相交,且和这个平面内的任意一条直线都垂直,叫直线和平面垂直。

(常用于证明线线垂直:线面垂直⇒线线垂直)(1)、判定定理:一条直线和一个平面内的两条相交直线都垂直,则直线和这个平面垂直。

(线线垂直⇒线面垂直)(2)、性质定理:①过一点和已知平面垂直的直线只有一条,过一点和已知直线垂直的平面只有一条。

②如果两条平行线中的一条垂直于一个平面,另一条也垂直于这个平面。

③线段垂直平分面内的任意一点到线段两端点距离相等。

(3)正射影:自一点P 向平面α引垂线,垂足P ‘叫点P 在α内的正射影(简称射影)斜线在平面内的射影:过斜线上斜足外一点,作平面的垂线,过垂足和斜足的直线叫斜线在平面内的射影。

(4)三垂线定理:在平面内的一条直线和平面的一条斜线的射影垂直,则它和这条斜线垂直。

逆定理:在平面内的一条直线和平面的一条斜线垂直,则它和这条斜线的射影垂直。

7、两个平面垂直:定义:平面角是直角的二面角叫直二面角,相交成直二面角的两个平面垂直。

(1)、判定定理:一个平面过另一个平面的一条垂线,那么这两个平面互相垂直。

(线面垂直⇒面面垂直)(2)、性质定理:两个平面互相垂直,那么在一个平面内垂直于它们交线的直线,垂直于另一个平面。

POA aaCB E AD(面面垂直⇒线面垂直)垂直间的相互转化关系:线线垂直线面垂直 面面垂直8、空间向量:在空间具有大小和方向的量,空间任意两个向量都可用同一平面内的有向线段表示。

(1)、共线向量定理:空间任意两个向量,(0≠),//λ=⇔ (R ∈λ) 空间直线的向量参数表达式(P 在面MAB 内的充要条件):t +=或t t t +-=+=)1( (叫直线AB 当21=t 时,点P 是线段AB 的中点,则)(21OB OA OP +=(2)、共面向量定理:两个向量a ,b 不共线,则向量与a ,b 共面y x +=⇔ (R y x ∈,)平面的向量表达式(P 在面MAB 内的充要条件):MB y MA x MP +=或y x ++=O 为空间任一点,当z y x ++=且1=++z y x 时,P 、A 、B 、C 四点共面。

(3)、空间向量基本定理:如果三个向量a 、b 、c 不共面,那么对空间任一向量,存在一个的唯一有序实数组x ,y ,z ,使c z b y a x p ++=, {,,}叫基底,、、叫基向量。

如果三个向量、、不共面,那么空间向量组成的集合为},,,|{R z y x z y x ∈++=。

(4)、两个向量的数量积:><=⋅,cos ||||,向量a 的模| a |:⋅=2|| 向量在单位向量方向的正射影是一个向量,即><=⋅e a a e a ,cos ||,⊥b 0=⋅⇔b aO(5)、 共线向量或平行向量:所在的直线平行或重合的向量; 直线的方向向量:和直线平行的向量;共面向量:平行于同一平面的向量; 平面的法向量:和平面垂直的向量。

法向量的求法:设是),,(),,,(321321b b b a a a ==),,(z y x =是平面的法向量,则:⎪⎩⎪⎨⎧=⋅=⋅0。

9、 空间直角坐标系:单位正交基底常用},,{k j i 来表示。

=(1,0,0)=(0,1,0)=(0,0,1)其中:12=,12=,12=,0=⋅,0=⋅,0=⋅k j ,1、空间向量的坐标运算:设),,(321a a a a =,),,(321b b b b =,则(1)),,(332211b a b a b a +++=+;(2)),,((332211b a b a b a ---=-; (3)),,(),,(321321a a a a a a λλλλλ=⋅=(R ∈λ); (4)∥332211,,b a b a b a b λλλ===⇔(即λ===332211b a b a b a ); (5)00332211=++⇔=⋅⇔⊥b a b a b a .(6)332211b a b a b a ++=⋅;∵ ·=| || |cos < ,>∴ a ·b =332211b a b a b a ++=232221a a a ++·232221b b b ++·cos <a ,b >由此可以得出:两个向量的夹角公式cos <,>=232221232221332211bb b aa ab a b a b a ++++++当cos <a 、b >=1时,a 与b 同向;当cos <a 、b >=-1时,a 与b 反向;当cos <a 、b >=0时,a ⊥b .在空间直角坐标系中,已知点),,(111z y x A ,),,(222z y x B ,),,(121212z z y y x x ---= A 、B 两点间的距离公式:221221212)()()(z z y y x x d B A -+-+-=、yA 、B 中点M 坐标公式:)(21OB OA OM +==)2,2,2(212121z z y y x x +++10、角(1)、等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相同。

(2)、最小角定理:平面的斜线和它在平面内的射影所成的角是这条斜线和这个平面内任一条直线所成的角中最小的.公式:21cos cos cos θθθ⋅=; (3)、角的范围:①、异面直线所成的角的范围:20πθ≤< 两条直线所成的角的范围:20πθ≤≤两个向量所成的角的范围:πθ≤≤0 ②、斜线与平面所成的角的范围:20πθ≤<直线与平面所成的角的范围:20πθ≤≤③、二面角的范围:πθ≤≤0 (4)、定义及求法:①、异面直线所成的角:已知两条异面直线a 、b ,经过空间任一点O 作'a ∥a ,'b ∥b ,'a 与'b 所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).范围:]2,0(πα∈.求法一:作平行线;求法二:(向量)两条直线的方向向量的夹角的余弦的绝对值为两直线的夹角的余弦。

②、斜线和平面所成的角:一个平面的斜线和它在这个平面内的射影的夹角;斜线和平面不垂直,不平行。

如果直线和平面平行或在平面内,则直线和平面所成的角是0。

的角。

OBAC求法一:公式21cos cos cos θθθ⋅=;求法二:解直角三角形,斜线、斜线的射影、垂线构成直角三角形;求法三:向量法:已知PA?的一个法向量,过P 作平面?的垂线PO ,连结OA 则?PAO 所成的角为?,则③、二面角:从一条直线出发的两个半平面所组成的图形叫二面角,直线叫二面角的棱;二面角的平面角:垂直于二面角的棱,且与两个半平面的交线所成的角。

求法一:几何法:一作二证三计算.利用三垂线定理及其逆定理作二面角的平面角,再解直角三角形;求法一:向量法:二面角的两个半平面的法向量所成的角(或其补角) n 1和n 2分别为平面?和?的法向量,记二面角βα--l 的大小为?,则>=<21,n n θ或><-=21,n n πθ(依据两平面法向量的方向而定)总有|,cos ||cos |21><=n n θ若该二面角为锐二面角 则θ若二面角βα--l 为钝二面角则||||arccos 2121n n -=πθ11、距离(满足最小值原理)(1)求法一:解直角三角形;求法二:等积法,利用体积相等;求法三:向量法:如图点P 为平面外一点,点A 为平面内的任一点,平面的法向量为n,过点P 作平面?的垂线PO ,记PA 和平面?所成的角为?, 则点P 到平面的距离||||||||sin ||||n PA n PA n PA n d ====θO ’ BB ’ A A ’ A A ‘O Bl(2)、直线到平行平面的距离:直线上任一点到与它平行的平面的距离;求法:转化为点到平面的距离求。

(3)、两个平行平面的距离:两个平行平面的共垂线段的长度;求法:转化为点到平面的距离来求。

(4)、异面直线的距离:两条异面直线的公垂线夹在异面直线间的部分;(公垂线是唯一的,必须垂直相交)求法一:解直角三角形;求法二:异面直线上任意两点的距离公式:θcos 22222mn n m d l ±++=的连线在公共法向量上的射影长。

设E 、F 分别是两异面直线上的点, 的距离 12、棱柱(1)、定义:有两个面互相平行,其余相邻两个面的交线互相平行的多面体叫棱柱。

相关文档
最新文档