SM331模拟量输入模块
西门子S7-300PLC模拟量接线常见问题

西门子S7-300PLC模拟量接线常见问题问题:什么是2线和4线的测量传感器,以及连接时的注意事项?解答:2线传感器是一个被动的测量传感器,它的电源是由SM331来提供的;4线传感器是一个主动测量传感器,它的电源由外部电源提供而不是SM331提供,2根测量线被连接到SM上,所以SM331(-7KF)最大有8个通道。
注意:・2线测量传感器连接Mana与M(短接11和20端,11端和10端);短接没用的同通道组的通道,跨接一个 3.3K W的电阻。
・4线测量传感器短接10和11端,短接所有的Mx-到Mana。
问题:怎样接一个没有用的模拟量模块的输入?解答:没有用的模拟量输入接线应依靠这个输入的参先化,首先必须明确它是电压输入还是电流输入,以及设定了怎样的测量范围,被设定的测量量是电阻值还是温度值。
根据参数设定,可以按照以下方式连接没有用的模拟量输入。
这种连接对于SM331来说是非常必要的。
因为它每个通道组有两个物理输入点,那么没有用的通道可能会影响或破坏一个通道组另一个通道的诊断,特别是的1-5V、4 -20mA的信号。
问题:如何设置和修改以下模块的分辨率?・6ES7331-7KB01-0AB0・6ES7331-7KB00-0AB0・6ES7331-7KF01-0AB0・6ES7331-7KF00-0AB0解答:这些分辨率不可以直接在硬件组态中选择,它只能被间接的通过干扰频率抑制来设置。
下列表格提供了相关数据:问题:SM322连接S+和S-的目的?解答:对于电压输出,S+和S-连接起来是为了检测负载侧实际压降,并把它传回到SM332,这将模块对外部的波动和偏差进行补偿,以提高负载侧的精度例如,温度的改变。
如果不需要,那么将S+和QV、S-和Mana相连,或让S+、S-开路。
问题:SM332的S+和S-连接端有什么用?解答:S+和S-连接端用于获取负载的实际电压值并将之传送回SM332。
从而使模块能够(在一定程度上)弥补,例如,由于温度变化而导致的波动和偏差。
西门子S7-300系列SM331型号8路分析输入模块数据表说明书

No
to terminal)
Interrupts/diagnostics/status information Alarms ● Diagnostic alarm ● Limit value alarm Diagnostic messages ● Diagnostic functions ● Diagnostic information readable ● Diagnostics Diagnostics indication LED ● Group error SF (red)
integrating
16 bit; Unipolar: 15/15/15/15 bits; bign/15 bits + sign/15 bits + sign/15 bits + sign Yes; 10/ 16.67/ 20/ 100 ms 10 / 50 / 60 / 400 Hz
8 50 V; Permanent
32 mA
Yes Yes No No No
No Yes 2 MΩ No No Yes 2 MΩ
6ES7331-7NF00-0AB0 Page 1/4
13.05.2015
Changes preserved © Copyright Siemens AG
● -2.5 V to +2.5 V ● -250 mV to +250 mV ● -5 V to +5 V ● Input resistance (-5 V to +5 V) ● -50 mV to +50 mV ● -500 mV to +500 mV ● -80 mV to +80 mV Input ranges (rated values), currents ● 0 to 20 mA ● Input resistance (0 to 20 mA) ● -10 mA to +10 mA ● -20 mA to +20 mA ● Input resistance (-20 mA to +20 mA) ● -3.2 mA to +3.2 mA ● 4 mA to 20 mA ● Input resistance (4 mA to 20 mA) Input ranges (rated values), thermoelements ● Type B ● Type E ● Type J ● Type K ● Type L ● Type N ● Type R ● Type S ● Type T ● Type U ● Type TXK/TXK(L) to GOST Input ranges (rated values), resistance thermometer ● Cu 10 ● Ni 100 ● Ni 1000 ● LG-Ni 1000 ● Ni 120 ● Ni 200 ● Ni 500 ● Pt 100 ● Pt 1000 ● Pt 200 ● Pt 500 Input ranges (rated values), resistors
S7-300使用方法说明

S7-300 系列PLC组态简介一、系统构成西门子S7-300系列的常用组件主要有电源模块(1)、CPU模块(1)、开关量模块(2)、开关量输出模块(2)、模拟量输入模块(2)、模拟量输出模块。
说明如下:1.电源模块:PS307—5A;为PLC系统提供稳定的24V直流电源。
2.CPU模块:CPU314;是系统的核心负责程序的运行,数据的存储与处理,与上位机的通讯和数据的传输。
3.开关量输入模块:SM321;可进行32路开关量的检测,输入信号为24V有效,若输入为无源触点,可利用电源模块提供24V驱动信号。
4.开关量输出模块:SM322;可提供8路开关量输出,为继电器输出方式;分为4组每两路公用一个公共端。
5.模拟量输入模块:SM331;为实现对8路模拟量数据采集,输入信号可以是电流信号、电压信号、热电偶输入、热电阻输入,可根据不同的应用场合对模块进行设置。
6.模拟量输出模块:SM332;可提供4路模拟量输出信号,根据应用可将各路输出设置为电压输出或电流输出。
图1、系统模块组成。
二、硬件组态1.基本机架(中心机架)机架即是用于安装固定各个模块的专用槽架。
PLC的各个模块就遵循一定的规则固定在上面。
每个机架中:插槽1为电源模板插槽;插槽2为CPU模板插槽;插槽3留给通讯模板接口模板及扩展模板。
插槽4以后留给应用模板。
每个模块最多可以安装8个应用模块。
模块的底部通过总线连接器与前后的模块想连接,构成一个整体系统。
中心机架至少应装配电源模块和CPU模块,再根据需要配置其他功能模块。
说明:所谓插槽,在这里只是抽象的概念,S7—300系统中的机架物理形态上只是一个槽形轨道,上面没有具体的插槽,模块也只是按一定顺序固定在上面,模块之间也无须保留空间,而是紧密地相邻安装。
插槽的概念只有在对系统进行软件组态时才能具体化。
(软件组态将在后面介绍)2.机架的扩展当基本机架不能满足系统要求时,可通过扩展机架对系统进行扩展,扩展方式有两种:①、用IM365模板:可扩展一个机架,需用两块IM365模板,连接长度最长为一米。
2-3-S7-300模拟量模块使用

internal use only / © Siemens For AG 2009. All Rights Reserved.
模板选型 模拟值表示 更换量程卡 参数设置 接线 应用举例
2-3 S7-300模拟量模块使用
2---模拟值表示
输出范围为0 - 20 mA 和 4 - 20 mA的模拟值表示
2-3 S7-300模拟量模块使用
模板选型 模拟值表示 更换量程卡 参数设置 接线 应用举例
6---应用举例 6-1 压力检测
1 任务描述。
一个压力检测系统,压力传感器的量程为0-15MPa, 输出信号为4-20mA。使用S7-300的模拟量输入模块,输 入模块的量程设置为4-20mA,转换后的模拟值为027648。那么在0-27648内的任意一个模拟值代表的压力 值是多少?
6---应用举例 6-1 压力检测
4 编程步骤:FC1功能程序编写。
internal use only / © Siemens For AG 2009. All Rights Reserved.
模板选型 模拟值表示 更换量程卡 参数设置 接线 应用举例
2-3 S7-300模拟量模块使用
6---应用举例 6-1 压力检测
4 编程步骤:FC1功能程序编写。
internal use only / © Siemens For AG 2009. All Rights Reserved.
模板选型 模拟值表示 更换量程卡 参数设置 接线 应用举例
2-3 S7-300模拟量模块使用
6---应用举例 6-1 压力检测
4 编程步骤:FC1功能程序编写。
模板选型 模拟值表示 更换量程卡 参数设置 接线 应用举例
模拟量的输入输出原理

硬件设置
1).每个模拟量模块可以选着不同的测量类型和范围, 通过量程卡上的适配开关可以设定测量的类型和 范围。 2).没有量程卡的模块具有适应电压和电流测量的不 同接线端子,通过正确的连接可以设置测量的类 型。 3).设置类型:A(热电阻、热电偶) B(电压) C(四线制电流) D(二进制电流)
模拟量输入模块 SM331
1).用于将模拟量信号转换为CPU内部处理的 数字信号主要成分是A/D转换器。 2).输入的信号一般是模拟量变送器输出的标 准直流电压、电流信号。(0~5V,4~20mA) 3).可以直接与温度传感器相连,但这次试验 中为了显示当前温度采用了AI818变送及显 示功能。 4).外壳上有LED指示灯可以用于显示故障错 误且前面板有标签可以标注。
模拟量输出模块SM332
1).用于将CPU送给的数字信号转换为成比列 的电流信号或电压信号。 2).各通道均有模拟量输出都有故障指示灯, 可以读取诊断信息。 3).由负载和执行器提供器提供电流和电压。 4).额定负载电压均为DC24V,最大短路电流为 25mA,最大开路电压为18V。
模拟量输出模块接线图
模拟量的输入输出原理
制作人
PLC信号模块
模拟量: 在时间上或数值上都是连续的物理量称为, 模拟量 在时间上或数值上都是连续的物理量称为,一般模拟量
输入输出分别用AI/AO表示。 表示。 输入输出分别用 表示 通常用通道表示一路输入信号。 通常用通道表示一路输入信号。
模拟信号模块:输入模块 模拟信号模块:输入模块SM331 输出模块SM332 输出模块 输入输出SM334/SM335 输入输出 数字信号模块: 输入模块SM321 数字信号模块 输入模块 输出模块SM322 输出模块 输入输出SM323 输入输出
SM331模拟量输入模块

模拟量输入模块测量范围的设定
•模拟量输入模块的输入信号种类用安装在模块侧面的量程卡 (量程模块)来设置,量程卡安装在模拟量输入模块的侧面, 每两个通道为一组,共用一个量程卡,下图中的模块共用8个通 道,因此有4个量程卡。量程卡可以设定为“A”、“B”、“C”、
“D”4个位置,其常见的含义为:“A”为热电阻、热电偶;
对于上面的各种模拟量输入信号的对应关 系,需要编写相应的处理程序将PLC 内部 的数值转化为对应的实际工程量(如温度、 压力)的值,因为工艺要求是基于具体的 工程量而定的,例如“当压力大于3.5MPa 时打开排气阀”,所以不进行模拟量转换, 就无法知道当前的0~27648范围的这个数 值到底对应的压力是多少,也就无从谈起 编程实现了。
值用16位二进制补码定点数来表示,最高位(第15位)为符号 位,正数的符号位为0,负数的符号位为1。模拟量模块的模拟 值位数(即转换精度)可以设置为9~15位(与模块的型号有关, 不包括符号位),如果模拟值的精度小于15位,则模拟值左移, 使其最高位(符号位)在16位字的最高位(第15位),模拟值 左移后未使用的低位则填入“0”,这种处理方法称为“左对 齐”。 电压测量范围为±l0~±lV的模拟值表示如表所示
M: Ground terminal 接地端 L +: Terminal for 24 VDC supply voltage 24VDC 电源接线端 UCM: Potential difference between inputs and reference potential of the MANA measuring circuit 信号输入端与MANA间的电势差 UISO: Potential difference between MANA and M terminal of CPU MANA与CPU的M端间的电势 差 I +: Measuring lead for current input 电流输入测 量端 U +: Measuring lead for voltage input 电压输入 测量端
通用型模拟量输入扩展模块(SM331)技术规范及接线图
支持
支持
支持;用外部测量变送器时,可以对每个测量变送器单独供电
支持
支持;用外部测量变送器时,可以对每个测量变送器单独供电
支持
误差/ 精度
在整个温度围运行极限
•电压输入
•电流输入
•电阻输入
•热电阻输入
±0.1 %
±1 K
±1 K
±0.1%;±0.7%
±0.3%;±0.9%
±0.1 %
±0.1 %
0.8Kelvin (Pt100,Ni100,气候型;Ni1000,LG-Ni1000,
标准型;Ni1000,
LG-Ni1000,气候型)
±0.6%;
±0.6% (80mV,2.5-10V)
±0.4% (250-1,000mV)
±0.5%;3.2-20 mA
±0.5% ;150,300,600Ω
±0.6%;
图片
模拟量输入特性
模拟量输入通道
8模拟量输入,9/12/14位分辨率
8模拟量输入,14位分辨率,用于等时模式下运行
8模拟量输入,13位分辨率
2模拟量输入,9/12/14位分辨率
•电阻测量模拟量输入点数
4
8
1
所需前连接器
20 针
20 针
40 针
20 针
时钟同步
•时钟同步运行
否
支持
否
否
测量围
电压输入围
•0 至+10 V
技术规
SM331
型号
6ES7 331-7PF00-0AB0
6ES7 331-7PF10-0AB0
6ES7 331-7NF00-0AB0
6ES7 331-7NF10-0AB0
西门子S7-300PLC模拟量输入输出
西门子S7-300PLC模拟量输入输出1、基本概况S7-300 的CPU 用16 位的二进制补码表示模拟量值。
其中最高位为符号位S,0 表示正值,1 表示负值,被测值的精度可以调整,取决于模拟量模块的性能和它的设定参数,对于精度小于15 位的模拟量值,低字节中幂项低的位不用。
S7-300 模拟量输入模块可以直接输入电压、电流、电阻、热电偶等信号,而模拟量输出模块可以输出0~10 V、1~5 V、-10 V~10 V、0~20 mA、4~20 mA 等模拟信号。
2、模拟量输入模块SM331 模拟量输入(简称模入(AI))模块SM331 目前有三种规格型号,即8AI 乘以l2 位模块、2AI 乘以l2 位模块和8AI 乘以l6 位模块。
SM331 主要由A/D 转换部件、模拟切换开关、补偿电路、恒流源、光电隔离部件、逻辑电路等组成。
A/D 转换部件是模块的核心,其转换原理采用积分方法,被测模拟量的精度是所设定的积分时间的正函数,也即积分时间越长,被测值的精度越高。
SM331 可选四档积分时间:2.5 ms、16.7 ms、20 ms 和l00 ms,相对应的以位表示的精度为8、12、12 和14。
SM331 与电压型传感器的连接,如图1 所示。
图1 输入模块与电压型传感器的连接SM331 与2 线电流变送器的连接如图2a)所示,与4 线电流变送器的连接如图2b)所示。
4 线电流变送器应有单独的电源。
图2 输入模块与2/4 线变送器电流输入的连接3、模拟量输出模块SM332 模拟量输出(简称模出(AO))模块SM332 目前有三种规格型号,即4AO 乘以l2 位模块、2AO 乘以12 位模块和4AO 乘以l6 位模块,分别为4 通道的12 位模拟量输出模块、2 通道的12 位模拟量输出模块、4 通道的16 位模拟量输出模块。
SM332 可以输出电压,也可以输出电流。
在输出电压时,可以采用2 线回路和4 线回路两种方式与负载相连。
游泳池水处理系统的PLC控制毕业设计
游泳池水处理系统的PLC设计摘要在工业不断发展的今天,人们更加追求自动化的同时可编程序控制器映入了我们的眼帘,可编程序控制器在各行各业的应用不断增加,让我们看到他的应用之广泛,此次设计是在游泳池水处理自动控制方面的一个具体体现,正文介绍了可编程序控制器(PLC)、西门子S7-300 CPU313及温度传感器在游泳池水处理系统中的应用及PID调节。
本设计在详细了解了S7-300 PLC的结构、用法,以及游泳池水处理系统的工艺流程的前提下,运用PLC对水处理各环节进行精确的控制。
引入PLC后,比传统的游泳池更加安全、可靠,更加节省人力资源,操作简单,节省硬件等诸多优点,随着市场的开放与不断扩大许多国外的品牌不断涌入我国,我们可以选用更适合要求的产品。
选用合适的PLC有利于系统的完美发挥,无论是从抗干扰能力或是其他方面PLC控制的系统都是当前最具实力的产品。
关键词:可编程序控制器;S7-300;PID温控PLC designing of natatoriumwater processing systemAbstractWith the development and advancement of industry, the Programmable Logic Controller that has been widely applied in a lot fields has become focus nowadays. This designing is a material and concrete exhibition in the aspect of natatorium water processing system. This article mainly illustrates PID regulation and the application of Programmable Logic Controller---PLC, Siemens S7-300 CPU313 and temperature sensor in the natatorium water processing system. The article has detailed introduced the S7-300 PLC structure and usage. Furthermore, it has completely complained the process of circulation water processing system and temperature regulation, as well as the concrete operation process. Comparing to the traditional one, the PLC controlling system has made the natatorium more safe and credible. Moreover, it not only can be operated easily, but also can save a lot of human resource and hardware for us too. As people have known, Programmable Logic Controller has become the developing trend of industrial automation. Due to the open and distensible market, a lot of foreign products of PLC that provide more choices for us have entered. As people have known, a good choice of PLC will make the system more perfect.Keywords:Programmable Logic Controller ;S7-300;PID temperature control目录摘要 (I)ABSTRACT (II)1绪论 (1)1.1引言 (1)1.2国内外游泳池水处理方式 (1)1.3本课题研究主要内容 (2)1.4课题研究的意义 (2)2系统概述 (4)2.1设计要求 (4)2.2控制系统简介 (4)2.3控制系统要求 (5)2.3.1水循环及过滤部分 (6)2.3.2 水质检测及加投药部分 (7)2.3.3 恒温加热系统控制 (7)3 PID温度控制 (11)3.1基本概念 (11)3.1.1 比例调节(P调节) (11)3.1.2 积分调节(I调节) (11)3.1.3 微分调节(D调节) (12)3.2PLC中的PID控制实现方法 (12)4 西门子S7-300及硬件设计 (15)4.1PLC的简介 (15)4.1.1 PLC的特点 (15)4.1.2 PLC的分类 (16)4.2PLC的基本组成 (16)4.2.1 主机 (16)4.2.2 编辑器 (18)4.2.3 I/O扩展和其他外围设备 (18)4.3PLC的基本工作原理和工作方式 (18)4.4硬件介绍 (19)4.4.1 数字量模块 (19)4.4.2 模拟量模块 (20)5操作与软件部分 (22)5.1水循环控制过程 (22)5.2恒温加热部分控制 (23)结论 (24)致谢 (25)参考文献 (26)附录 (27)1 绪论1.1 引言随着社会的不断发展人民的生活水平也在不断提高,人民对物质、精神生活不断提出新的要求,健身、游泳、等娱乐活动不断增加,游泳逐步成为一项群众性的休闲娱乐活动。
S7-300模块接线图
S7-300 通用型模拟量输入扩展模块(SM331)技术规范及接线图一、S7-300 通用型模拟量输入扩展模块(SM331)技术规范1、SM331技术规范1技术规范SM331型号6ES7 331-7KF02-0AB0 6ES7 331-7HF01-0AB0 6ES7 331-1KF01-0AB0 6ES7 331-7KB02-0AB0图片模拟量输入特性模拟量输入通道8模拟量输入,9/12/14位分辨率8模拟量输入,14位分辨率,用于等时模式下运行8模拟量输入,13位分辨率2模拟量输入,9/12/14位分辨率• 电阻测量模拟量输入点数 4 8 1所需前连接器20 针20 针40 针20 针时钟同步• 时钟同步运行否支持否否测量范围电压输入范围• 0 至+10 V• 1 至 +5 V• 1 至 +10 V• -1 V 至 +1 V• -10 V 至 +10 V • -2.5 V 至 +2.5 V • -250 mV 至 +250 mV • -5 V 至 +5 V 支持支持支持支持支持支持支持支持支持支持支持支持支持否支持支持否否支持支持支持支持支持支持支持2、SM331技术规范2图片接线图6ES7331-1KF01-0AA0 40针6ES7331-7HF01-0AB0 20针6ES7331-7KB02-0AB0 20针6ES7331-7KF02-0AB0 20针6ES7331-7NF00-0AB0 40针6ES7331-7NF10-0AB0 40针6ES7331-7PF01-0AB0 40针6ES7331-7PF11-0AB0 40针。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模拟量输入模块SM331(图)
模拟量输入模块SM331
SM331用于将现场各种模拟量传感器输出的 直流电压或电流信号转换为PLC内部处理用 的数字信号。模拟量输入模块的输入信号一 般是模拟量变送器输出的标准直流电压、电 流信号。SM331也可以直接连接不带附加放 大器的的温度传感器(热电偶或热电阻)。
S7-300 系统的实际I/O与CPU内的外设存储区(PI和PQ)相对应。
模拟量输入的标识是PIW,模拟量输出的标识是PQW。因为模拟量的 起始地址是256,所以在第一个机架的第一个 模块上,第一个通道
的地址是PIW256。最后一个模拟量的地址是766。
模拟值的表示
模拟量输入/输出模块中模拟量对应的数字称为模拟值,模拟
连接带隔离的传感器与带隔离的模拟量输入模块
使用内部补偿的热电偶与模拟量输入模块的连接
使用补偿盒的热电偶与模拟量输入模块的连接
模拟量模块的诊断
模块有故障出现时将会执行下列操作: (1) 将诊断报文送入模拟量模块的诊断区中,并传送到CPU。 (2) 模拟量模块中的故障指示灯亮 (3) 如果己经用STEP7中允许产生"诊断中断"功能,将触发一
特性。参数分为动态参数和静态参数两种。通常使用STEP7对 模拟量模块进行静态与动态参数赋值,此时CPU必须处于 “STOP”模式。当设定完所有的参数后,应将参数下载到CPU。 当CPU从“STOP”模式转换为“RUN”模式时,CPU即可将参 数传送到每个模拟量模块;如果没有使用STEP7进行参数赋值, 模块将使用默认设置。
x x+1
IN 27648
FC105 的参数
参数 EN 类型 输入 数据类 型 BOOL 存储区 I,Q,M,D,L 描述 使能输入,高电平有效
ENO
IN
输出
输入 输入 输入 输入 输出
BOOL
INT REAL REAL BOOL REAL WOR D
I,Q,M,D,L
I,Q,M,D,L,P, Constant
在不同测量范围下模拟量的表达 方式
电压 例如: 范围
测量范围 ± 10V >= 11.759 11.7589 : 10.0004 单位
电流 例如:
测量范围 4 .. 20mA >= 22.815 22.810 : 20.0005 单位
电阻 例如:
测量范围 单位 0...300Ohm >=352.778 32767 352.767 : 300.011 32511 : 27649
模拟输入量的规范化
单向 (M 0.0 = ´0´)
(传感器只提供正电压) OUT HI_LIM = 500.0
双向(M 0.0 = ´1´)
(传感器也提供负电压) OUT HI_LIM = 500.0
Δ
A
Δ
B
LO_LIM = 0.0 0
x x+1
IN 27648 -27648
LO_LIM = 0.0 0
752 to 766 624 to 638 496 to 510 368 to 382 10
机架 2
电源 模块
IM
(接收)
机架 1
电源 模块
IM
(接收)
R 电源 0 模块 CPU 槽口号 11 2
IM
(发送)
3
模拟量寻址
在第一个信号模块插槽位置的模拟量输入/输出板的地址为256 ,上图给出了模块插槽和模块地址的对应关系。每个模拟量模块自 动按16个字节的地址寄存器分配地址每个模拟量值占用2个字节。 模拟量模块的输入/输出通道从实际插槽的相同基地址开始编号。
688 to 702 560 to 574 432 to 446 304 to 318 7
704 to 718 576 to 590 448 to 462 320 to 334 8
720 to 734 592 to 606 464 to 478 336 to 350 9
736 to 750 608 to 622 480 to 494 352 to 366
ቤተ መጻሕፍቲ ባይዱ
对于上面的各种模拟量输入信号的对应关 系,需要编写相应的处理程序将PLC 内部 的数值转化为对应的实际工程量(如温度、 压力)的值,因为工艺要求是基于具体的 工程量而定的,例如“当压力大于3.5MPa 时打开排气阀”,所以不进行模拟量转换, 就无法知道当前的0~27648范围的这个数 值到底对应的压力是多少,也就无从谈起 编程实现了。
模拟量输入模块与传感器的连接
为了减少电磁干扰,对于模拟信号应使用屏蔽双绞电缆, 并且模拟信号电缆的屏蔽层应该两端接地。如果电缆两端存 在电位差,将会在屏蔽层中产生等电势耦合电流,造成对模
拟信号的干扰。在这种情况下,应该让电缆的屏蔽层一端接
地。
带隔离的模拟量输入模块
一般情况下,CPU的接地端子与M端子用短接片 连接。带隔离的模拟量输入模块的测量电路参考 点MANA与CPU模块的M端子之间没有电气连接,见 图.。如果参考电压UANA和CPU的M端存在一个电位 差UISO,必须选用带隔离的模拟量输入模块,通 过在MANA端子和CPU的M端子之间使用一根等电位 连接导线,可以确保UISO不会超过允许值。
额定范围
10.00 7.50 : -7.5 -10.00
27648 20736 : -20736 -27648
20.000 16.000 : : 4.000
3.9995 : 1.1852 <= 1.1845
27648 20736 : : 0
-1 : - 4864 - 32768
300.000 225.000 : : 0.000
M: Ground terminal 接地端 L +: Terminal for 24 VDC supply voltage 24VDC 电源接线端 UCM: Potential difference between inputs and reference potential of the MANA measuring circuit 信号输入端与MANA间的电势差 UISO: Potential difference between MANA and M terminal of CPU MANA与CPU的M端间的电势 差 I +: Measuring lead for current input 电流输入测 量端 U +: Measuring lead for voltage input 电压输入 测量端
机架 3
电源 模块
IM
(接收)
640 to 654 512 to 526 384 to 398 256 to 270 4
656 to 670 528 to 542 400 to 414 272 to 286 5
672 to 686 544 to 558 416 to 430 288 to 302 6
模拟量输入模块测量范围的设定
•模拟量输入模块的输入信号种类用安装在模块侧面的量程卡 (量程模块)来设置,量程卡安装在模拟量输入模块的侧面, 每两个通道为一组,共用一个量程卡,下图中的模块共用8个通 道,因此有4个量程卡。量程卡可以设定为“A”、“B”、“C”、
“D”4个位置,其常见的含义为:“A”为热电阻、热电偶;
模拟量输出模块
物理量
模拟 执行器
DAC
PQW ... PQW ... ::: PQW ...
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
T PQW 320 :
模拟量模块参数
• 模拟量模块具有许多特性,可以通过参数赋值,来设定模块的
“B”为电压;“C”为四线制电流;“D”为两线制电流。 • 量程卡插入输入模块后,如果量程卡上的标记C与输入模块上 的标记相对,则量程卡被设置在C位置。模块出厂时,量程卡 预设在B位置。如果需要调整量程卡,步骤如下:
将量程卡从模拟量输入模块中卸下
将量程卡插入模拟量输入模块
模拟量模块的用途
生产过程
个诊断中断,并调用OB82。 用户可以通过用户程序中的SFC, 读出详细的诊断报文。在模块诊断中,可以查看STEP7中的故 障原因 (参见STEP7的在线帮助)。 当CPU检测到错误时,不管参数如何设置,模拟量输入模块输 出模拟测量值7FFFH,它表示上溢出、故障或通道被禁止使用。
S7-300模拟量模块的寻址
模拟量输入模块SM331
模拟量输入(简称模入(AI))模块SM331 目前有三种规格型号,即8AI×l2位模块、 2AI×l2位模块和8AI×l6位模块。 SM331主要由A/D转换部件、模拟切 换开关、补偿电路、恒流源、光电隔离部 件、逻辑电路等组成。A/D转换采用积分方 法,被测模拟量的精度是所设定的积分时 间的正函数。即积分时间越长,被测值的 精度越高。SM331可选四档积分时间:2.5 ms、16.7 ms、20 ms和l00 ms,相对应 的以位表示的精度为8、12、12和14。
模拟量的规格化
一个模拟量输入信号在PLC内部已经转化为 一个数,而通常希望得到该模拟输入对应 的具体的物理量数值(如压力值、流量值 等)或对应的物理量占量程的百分比数值 等,因此就需要对模拟量输入的数值进行 转换,这称为模拟量规格(SCALING)。
不同的模拟量输入信号对应的数值是有差 异的,如下表所示为不同的电压、电流、 电阻或温度输入信号对应的数值关系。此 处仅选取部分典型信号作为示意,具体对 应关系见附录。 由表下表可以看出,额定范围内的模拟量 输入信号双极性对应范围为±27648,如 ±10V对应±27648并呈现线性关系,单极 性信号对应数字范围为0 ~27648;而对于 Pt100测温范围-200~850℃对应的数值范 围为。-2000~8500,即10倍关系。