低噪声前置放大器电路的设计方法
前置放大器的低噪声设计

Ab t a t P r ee t cd t co ' o t u i n lsv r a sr c : y o lcr e e t r u p t g a e we k, S er s o s aei w, t ep ea l e s b s di i s s i y Ot p n ert l h e so h r — mp i r i f mu t eu e n
c nut nnodrompo e e ep n eae O r- pie n i at n epn eae etT e ae atf m ojci e rv so s t,S ea l r os i c so s ts ra. h prtr o o i r ti h t r r p m f ' emp o r i r g p s sr
此前置放大器的噪声对响应率的影响很大。本文从 热释 电探测器对前置放 大器的要求入手 ,从噪声 匹配的方 法、无
源器件的选取以及放 大器的屏 蔽与接地三个 角度提 出如何降低 前置放 大器的噪 声以提 高响应率。 关键词 :热释电探 测器;前置放 大器;响应率
中图分类号 :T 2 5 N 1 文献标识码 :A 文章编号 :17 —97 2 1 0 -0 5 -0 6 2 8 0( 0 1) 2 0 1 3
对一定调制频率的光源 ,应选用窄带选频放大
人低负载电阻尼C 砭) &≤ 。此时,探测器的响应时间 常数为 见 和 c的乘积 , ̄ - L 。其中 c c [ RC h = = G,
G为器件电容 , 为场效应管的输入电容 。 同所 有探测 器一 样 ,热释 电探测 器 的探测 率 同 样受其噪声的限制 。热释电探测器必须考虑的基 本噪声源是 电阻的热噪声、由元件热力学特性决定 的温度或背景辐射噪声以及放大器噪声。放大器噪
前置低噪声放大器的研究与设计

i s l o w e r t h a n 1 n V/  ̄ / Hz . T h i s c i r c u i t c a n b e u s e d i n t h e i n s t r u me n t s o f s ma l l s i g n a 1 .
目前国内外市场上有很多高性能的低噪声运算放大器可供选用不同于文献2中所描述的其低噪声特性劣于用分立元件构成的前置放大器2这些运放已经能够达到或接近由分立元件组成的放大器的性能但运放存在一些固有的缺点首先是价格昂贵其次低噪声运放一般需要至少10v5v供电电压并且电流不小于5ma这在一些低压单电源供电的场合是很难实际使用的35
Ab s t r a c t : To d e t e c t t h e s ma l l s i g n a l o f t h e s e n s o r d e s i g n e d a l o w n o i s e p r e a mp l i f i e r b y u n a t t a c h e d c o mp o n e n t s . Co mp a r i s o n wi t h t h e a mp l i f i e r b y o p d e t a i l e d a n a l y s e s t h e p a r a me t e r s o f b i p o l a r t r a n s i s t o r a b o u t i n p u t v o l t a g e n o i s e
摘
要 :为 了检测传感器输 出的微 弱信 号 , 使用分立元件设计 了一种低 噪声前 置放 大电路。对比运放 放大 电路 , 详细
ቤተ መጻሕፍቲ ባይዱ
分 析 了 影 响 双 极 型 晶 体 管 输 入 电压 噪 声 密 度 的参 数 , 其中 I … 和 对 电路 性 能 影 响较 大 , 根 据 这 些 参 数 及 多 级 放 大 器 噪 声 理 论 设 计 了 电路 。分 析 了 电路 结 构 , 并 根 据 不 同使 用 场 合 给 出 了 不 同 的 改 进 建 议 。给 出 了 幅 频 特 性 和 噪 声 密 度 曲线 , 仿 真 和测 试 均 证 明 本 电 路 噪 声 密 度 低 于 1 n V /
一种低噪声前置放大器的电路设计

VO1 1 7 .NO 5
电
子
与
封
装
总 第1 6 9 期
2 0 1 7年 5月
ELECTR0NI CS & P A CKA GT NG
一
种低 噪声 前置放 大器 的 电路设计
王 彬 ,李 健2 , 肖姿 逸
( 1 . 中 国 电子 科 技 集 团 公 司 第 5 8研 究 所 ,江 苏 无 锡 2 1 4 0 7 2 ; 2 . 江 南 大 学 ,江 苏 无 锡 2 1 4 1 2 2 )
关键词 :低噪声 ;斩波技术 ;快速建立
中图分类号 :T N4 0 2
文献标识码 :A
文章编号 :1 6 8 1 . 1 0 7 0( 2 0 1 7 )0 5 — 0 0 2 4 . 0 4
De s i g n o f a Lo w No i s e Pr e a m pl i ie f r
Abs t r a c t :I n t h e p a pe r , a p r e a mp l i i f e r o f CSM C S T2 0 0 0 PDK p r o c e s s f e a t ur i n g l o w— n o i s e , wi d e o u t pu t r a n g e ,
1 引言
前 置放大 器因为具有提 高系统 的信噪 比、 提高信
号 传输 时抗 干扰 能 力的作 用 ,被广 泛应 用于 音频 功
2 低噪 声 前 置 放 大 器 电路 设 计
2 . 1 应用 要求 此 次设 计 的前 置放大 器主 要应 用于 输 入正 弦信 号幅 度± 2 V、 输 入信号带宽 1 0 0 Hz 、 采 样信号频率 1 0 0
光电探测中低噪声前置放大器的设计_兰羽

Uo 理论值 0V 0.22V0.44V0.66V0.88V 1.10V
Abstract:To detect faint photoelectric signals in photoelectricity detection,this article analyses the causes of the noises from a amplifiers and the best source resistance when an amplifier gains the lowest noises coefficient.It uses the methods of reverse par- allel collection of amplifier and noises-matching with the choices of source components to lower the noises from prepositional am- plifiers.Circuit installation and testing show that the parallel 10inverting amplifier signal to noise ratio increased by 3times.It puts forward how to solve the interference between Passive components and power to an amplifier. Keywords:aprepositional amplifier;noises analysis;the best resource resistance;circuit testing
接地的处理电路由于两接地点间或接地点与大2地回路中的电流使它们形成一定的地间有一定的阻抗电位差从而形成干扰源习惯称为浮地解决的办法是改并联放大器实现噪声匹配32电路调试在万能板上按照图2安装电路电路均采用集成运放第一级由1a7410个放大倍数为11同相放大器并联构成第二级对前级1第二级实际放0支并联输出反相求和
LMH低噪声前置放大器与线路驱动器电路设计

LMH低噪声前置放大器与线路驱动器电路设计
LMH6672低噪声前置放大器与线路驱动器电路设计
由于LMH6672芯片只需一个电源供电便可输出极高的驱动电流,而且失真率低,因此可以用作上行DSL线路驱动器驱动器。
LMH6672芯片用作差分输出驱动器时,可以驱动50Ω负载,达到16.8Vpp的摆幅,失真率只有-93dBc,可支持最高的上行功率,确保ADSL线路支持最高的传输率。
图3是典型的线路驱动器电路图,图中的线路驱动器通过匝数比为1:2的变压器,可驱动100Ω的双绞线电缆。
这个非反相驱动放大器的电压增益由公式(1)或(2)确定。
1 + 2×RF+/RG (1)
1 + 2×RF-/RG (2)
图中采用电容CG,将直流增益设定为1V/V。
LMH6622用作下行低噪声噪声前置放大器
由于LMH6622的噪声及失真率较低,因此可用作下行链路的低噪声前置放大器。
低噪声及低失真率这两个优点可确保接收通路具有很高的动态范围,以满足ADSL标准有关线性度及噪声的严格规定。
图4的LMH6622芯片可以实现反相加法放大器的功能,以便提供接收前置放大器通道增益,并消除驱动器的回波信号。
为了消除接收通道上的驱动器回波信号的干扰,R1+必须设定为2×R2+,而R1-也必须设定为2×R2-。
实际应用中,由于信号匹配并不理想,因此混合抑制约为12dB。
在仿真时可以改变电阻值,以便测试出接收电路的真正性能。
分立元件低噪声、低失真前置放大器工作原理分析

分立元件低噪声、低失真前置放大器工作原理分析为音响设备研制的OP放大器有以低器声见长的NE5532A、LM833A等,但这些IC受到输入阻抗、高频特性、电源电压的制约。
而采用分立元件的晶体管电路则具有按使用要求进行设计的自由度。
由于输入级采用了低噪声的并联J-FET电路,所以用在信号源输出电阻高的电路中也能获得低噪声特性。
对于双极输入型的低噪声OP放大器来说,当信号电阻降低时,噪声系数也变小。
电路工作原理输入级是由TT7构成恒流偏置的FET送去放大电路,每组各3个FET并联,以求实现低噪声。
在J-FET电路中,噪声特性不会因偏流而发生很大变化,所以可以确定减少失真值。
漏极电阻RD(即R2、R3)与该级的电压增益(AV≈GM.RD)有关,当需要较大的开路增益时,可加大漏级电阻或增加有源负载电路。
在由TTB.D组成的差动放大电路中,二极管D1用于V的温度补偿。
因为整个电路的电压增益基本上由这个级电路决定,所以增加了把差动输出转换成单极的电流密勒电路。
输出级是推挽式射极输出器,靠二极管D2和D3产生基极偏压。
所以即便在低负载阻抗的条件下也具备驱动能力,并能减少波形失真。
元件的选择在多极放大电路中,初级的噪声特性决定了整个电路S/N的大小,因此要选用低噪声的元件。
TT1~TT0选用互导GM大的低噪声FET(2SK68A)。
FET外围电阻可选用金属电阻,而不要选用炭膜电阻或实心电阻。
C1对电路的低频特性决定作用,频率越低,要求容量越大。
如果可能,应选用钽电容。
在电压增益要求不高的情况下,R6可直接接地。
由于输出级是推挽电路,在负载电阻不大的条件下也可驱动,所以TT12、TT13应选择集电极额定功耗大的三极管。
发射极电阻R10及R11取负载电阻的1/10左右。
调整由于输入级的偏流决定下一级的直流工作点,所以必须调整FET恒流电路中的源极电阻R4,该电阻应取1千欧左右,如果嫌调整麻烦,也可以将其换成2千欧的半固定电阻。
红外探测器的低噪声前置放大电路设计

第48卷第7期2018年7月激光与红外LASER&INFRAREDVol.48,No.7July,2018文章编号:1001-5078 (2018)07-0913-06 •电子电路-红外探测器的低噪声前置放大电路设计江婷12,李胜1高闽光1童晶晶1李妍1(1.中国科学院安徽光学精密机械研究所环境光学与技术重点实验室,安徽合肥230031;2.中国科学技术大学,安徽合肥230026)摘要:在红外探测器的工程应用中,前置放大电路是影响整个探测系统性能的重要组成部分。
本文从制冷型碲镉汞光导红外探测器的工作特性出发,设计了一种恒流偏置的低噪声前置放大电路。
对电路的工作原理以及噪声性能进行分析,并进行了电路仿真验证以及低噪声的性能测试。
实验结果表明,基于窄带滤波法设计的前置放大电路信噪比达到80 dB,具有60 ~120 d B的可调增益,可以有效抑制噪声并检测到10 _8A量级的微变交流信号,在信号检测方面达到了良好的检测效果。
关键词:光电导探测器;微弱信号;偏置电路;前置放大电路中图分类号:TN216 文献标识码:A DOI:10.3969/j.issn.1001-5578.2218.07.021Design of low noise preamplifier circuit for infrared detectorJIANGTing1’2,LI Sheng1’GAOMin-guang1,TONG Jing-jing1,LI YAN1(1. Key Lab of Environment Optics & Technology,Anhui Institute of Optics and Fine Mechanics,C A S,Hefei 230031,China;2. University of Science and Technology of China,Hefei 230026’China)Abstract:The preamplifier circuit can afect the performance of the detection system in the engineering a infrared detector. Based on t he working principle of the HgCdTe photoconductive infrared detector,low-noise preamplif i e r circuit was designed. The working principle and noise performance of the circuit were analyzed,and the circuitsimulation and low-noise t e s t were conducted. The experimental results show that the adjustable gai and the signal noise r a tio of the preamplifier i s80 dB based on the narrow band f iltering met suppress the noise a nd the 10 8 A A C signal can be detected. The performance reaches the desired l e v e l.K e y words:photoconductive detector;weak signal;bias circuit;preamplifier circuit1引言随着红外光谱技术的飞速发展,红外光谱仪在大 气环境监测、军事以及医学等领域得到更加广泛的应 用。
低噪声放大电路设计

低噪声放大电路设计
低噪声放大电路的设计一般遵循以下几个步骤:
1. 选择低噪声元件:在设计放大电路时,选择具有低噪声特性的元件是非常重要的。
例如,选择低噪声放大器、低噪声电阻、低噪声电容等。
2. 优化电路布局:电路布局的优化对于减小噪声干扰起着重要的作用。
应该避免布局中出现长导线、共用引线、共用地等可能引入噪声的设计。
3. 使用恰当的滤波器:在输入端或输出端添加适当的滤波器可以有效地滤除噪声干扰。
常见的滤波器包括低通滤波器、带通滤波器、高通滤波器等。
4. 降低信号放大:在设计放大电路时,尽可能降低信号的放大倍数。
由于噪声是与放大倍数成正比的,减小放大倍数可以有效地降低噪声干扰。
5. 两级放大:在设计放大电路时,可以采用两级放大的方式。
第一级放大器用于放大弱信号,第二级放大器用于放大第一级放大器的输出信号。
这种方式可以降低噪声对信号的干扰。
6. 使用差分放大器:差分放大器是一种能够抑制共模噪声的放大电路。
通过使用差分放大器,可以有效地减小噪声对信号的干扰。
7. 采用负反馈:负反馈是一种常用的方法,可以有效地降低放大电路的噪声。
通过在电路中引入负反馈,可以抑制噪声的增益,并提高电路的噪声性能。
通过以上步骤,可以设计出一个低噪声放大电路,并提高电路的噪声性能。
然而,实际的设计过程中还需要根据具体的应用需求和性能指标进行调整和优化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
低噪声前置放大器电路的设计方法
收藏此信息打印该信息添加:不详来源:未知
前置放大器在音频系统中的作用至关重要。
本文首先讲解了在为家庭音响系统或PD A设计前置放大器时,工程师应如何恰当选取元件。
随后,详尽分析了噪声的来源,为设计低噪声前置放大器提供了指导方针。
最后,以PDA麦克风的前置放大器为例,列举了设计步骤及相关注意事项。
前置放大器是指置于信源与放大器级之间的电路或电子设备,例如置于光盘播放机与高级音响系统功率放大器之间的音频前置放大器。
前置放大器是专为接收来自信源的微弱电压信号而设计的,已接收的信号先以较小的增益放大,有时甚至在传送到功率放大器级之前便先行加以调节或修正,如音频前置放大器可先将信号加以均衡及进行音调控制。
无论为家庭音响系统还是PDA设计前置放大器,都要面对一个十分头疼的问题,即究竟应该采用哪些元件才恰当?
元件选择原则
由于运算放大器集成电路体积小巧、性能卓越,因此目前许多前置放大器都采用这类运算放大器芯片。
我们为音响系统设计前置放大器电路时,必须清楚知道如何为运算放大器选定适当的技术规格。
在设计过程中,系统设计工程师经常会面临以下问题。
是否有必要采用高精度的运算放大器?
输入信号电平振幅可能会超过运算放大器的错误容限,这并非运算放大器所能接受。
若输入信号或共模电压太微弱,设计师应该采用补偿电压(Vos)极低而共模抑制比(CMRR)极高的高精度运算放大器。
是否采用高精度运算放大器取决于系统设计需要达到多少倍的放大增益,增益越大,便越需要采用较高准确度的运算放大器。
运算放大器需要什么样的供电电压?
这个问题要看输入信号的动态电压范围、系统整体供电电压大小以及输出要求才可决定,但不同电源的不同电源抑制比(PSRR)会影响运算放大器的准确性,其中以采用电池供电的系统所受影响最大。
此外,功耗大小也与内部电路的静态电流及供电电压有直接的关系。
输出电压是否需要满摆幅?
低供电电压设计通常都需要满摆幅的输出,以便充分利用整个动态电压范围,以扩大输出信号摆幅。
至于满摆幅输入的问题,运算放大器电路的配置会有自己的解决办法。
由于前置放大器一般都采用反相或非反相放大器配置,因此输入无需满摆幅,原因是共模电压(Vcm)永远小于输出范围或等于零(只有极少例外,例如设有浮动接地的单供电电压运算放大器)。
增益带宽的问题是否更令人忧虑?
是的,尤其是对于音频前置放大器来说,这是一个非常令人忧虑的问题。
由于人类听觉只能察觉大约由20Hz至20kHz频率范围的声音,因此部分工程师设计音频系统时会忽略或轻视这个“范围较窄”的带宽。
事实上,体现音频器件性能的重要技术参数如低总谐波失真(TH D)、快速转换率(slew rate)以及低噪声等都是高增益带宽放大器所必须具备的条件。
图1,建议选用的放大器
深入了解噪声
在设计低噪声前置放大器之前,工程师必须仔细审视源自放大器的噪声,一般来说,运算放大器的噪声主要来自四个方面:
热噪声(Johnson):由于电导体内电流的电子能量不规则波动产生的具有宽带特性的热噪声,其电压均方根值的正方与带宽、电导体电阻及绝对温度有直接的关系。
对于电阻及晶体
管(例如双极及场效应晶体管)来说,由于其电阻值并非为零,因此这类噪声影响不能忽视。
闪烁噪声(低频):由于晶体表面不断产生或整合载流子而产生的噪声。
在低频范围内,这类闪烁以低频噪声的形态出现,一旦进入高频范围,这些噪声便会变成“白噪声”。
闪烁噪声大多集中在低频范围,对电阻器及半导体会造成干扰,而双极芯片所受的干扰比场效应晶体管大。
射击噪声(肖特基):肖特基噪声由半导体内具有粒子特性的电流载流子所产生,其电流的均方根值正方与芯片的平均偏压电流及带宽有直接的关系。
这种噪声具有宽带的特性。
爆玉米噪声(popcorn frequency):半导体的表面若受到污染便会产生这种噪声,其影响长达几毫秒至几秒,噪声产生的原因仍然未明,在正常情况下,并无一定的模式。
生产半导体时若采用较为洁净的工艺,会有助减少这类噪声。
此外,由于不同运算放大器的输入级采用不同的结构,因此晶体管结构上的差异令不同放大器的噪声量也大不相同。
下面是两个具体例子。
双极输入运算放大器的噪声:噪声电压主要由电阻的热噪声以及输入基极电流的高频区射击噪声所造成,低频噪声电平大小取决于流入电阻的输入晶体管基极电流产生的低频噪声;噪声电流主要由输入基极电流的射击噪声及电阻的低频噪声所产生。
CMOS 输入运算放大器的噪声:噪声电压主要由高频区通道电阻的热噪声及低频区的低频噪声所造成,CMOS放大器的转角频率(corner frequency)比双极放大器高,而宽带噪声也远比双极放大器高;噪声电流主要由输入门极漏电的射击噪声所产生,CMOS放大器的噪声电流远比双极放大器低,但温度每升高10(C,其噪声电流便会增加约40%。
工程师必须深入了解噪声问题及进行大量计算,才可将这些噪声化为数字准确表达出来。
为了避免将问题复杂化,这里只选用音频技术规格最关键的几个参数。
上述方程式中的S及N均为功率。
PDA麦克风前置放大器电路
在这里我们讨论一下如何设计一款适合PDA采用的麦克风前置放大器,正如上文所述,我们必须明白信源是输入前置放大器的信号。
首先,我们必须知道以下信息:
计划采用的麦克风类型麦克风输出信号电平麦克风阻抗及指定阻抗的频率增益规定,有关增益可能受运算放大器的增益带宽积所限制输入信号频率范围噪声规定例如某种陶瓷麦克风的技术规格如下:阻抗:2.2k((以1kHz的频率操作) 输出信号:200(Vpp 音频输入频率范围:100Hz至4kHz 热噪声:2nV/(Hz 前置放大器的增益指标:500(非反相),第一级可达5倍增益,第二级可达100倍增益。
我们引用公式:
等量输入噪声(EIN)=输入参照噪声总量()×输入频率范围
输出噪声=等量输入噪声×增益=545.81nV×5=2.73uV(适用于1级增益)或545.81nV
×100=54.58uV(适用于2级增益)。
两个放大级的输出噪声总量
1伏输出电压的信噪比电平=20×log(1V÷54.58uV)≈85.3dB
电路输出噪声总量大约是每一噪声源均方根的平均均方值总和的平方根,此外输出噪声通常绝大部分来自噪声量最大的信源。
实际电路如图2所示。
图2MIC前置放大器电路图
请注意,这款电路只适用于单电源供电的设计,其中输入及输出电容器(C1及C4)只是选项,工程师可根据实际情况考虑选用。
适用与否取决于用户系统的输入与输出如何连接。
若
麦克风输出设有直流补偿,那么便需要增设C1输入电容器,以便阻塞直流电信号。
输出电容器也可发挥相同的作用。
目前市场上出售的麦克风大部分以2k(左右的高阻抗麦克风以及只有几百(的低阻抗麦克风为主,这两类麦克风都可采用上述前置放大器设计。
高阻抗高输出麦克风前置放大器较为简单,可以采用非反相或反相放大器配置。
由于其频率响应较为平坦,因此无需特别加以均衡,而且输入电平较大,放大器对噪声的要求很低,但高阻抗麦克风对来历不明的噪声及磁场极为敏感。
低阻抗低输出麦克风前置放大器也可采用非反相或反相放大器将输入信号放大,频率响应及均衡等方面的要求都与高阻抗高输出的前置放大器大致相同。
如果麦克风的输出电平较低,工程师必须注意选用低噪声的运算放大器。
如性能较好的低噪声运算放大器应该产生较低的输入参照电压噪声,而且噪声不应超过10nV/((Hz)。