呼吸运动调节的实验证明

合集下载

呼吸运动的调节实验报告

呼吸运动的调节实验报告

呼吸运动的调节实验报告
实验目的,通过实验观察呼吸运动对人体生理的调节作用,了解呼吸运动对身
体的影响。

实验材料,实验室、呼吸运动监测仪器、实验人员。

实验步骤:
1. 实验前,实验人员需放松身心,保持心情愉快,以减少外界因素对实验结果
的影响。

2. 实验人员在实验室内进行呼吸运动监测,监测仪器记录呼吸频率、深度和节
律等数据。

3. 实验人员进行不同强度的运动,如快走、慢跑等,监测呼吸运动的变化。

4. 实验人员进行深呼吸、浅呼吸等不同呼吸方式,观察呼吸运动对身体的影响。

实验结果:
1. 在进行不同强度的运动后,呼吸频率和深度明显增加,呼吸节律也发生变化。

2. 深呼吸能够增加氧气的摄入量,使人感到清新、振奋,有助于提高工作效率。

3. 浅呼吸则导致氧气摄入量减少,容易出现头晕、乏力等症状。

实验结论:
通过本次实验,我们得出了以下结论:
1. 呼吸运动对人体生理具有重要调节作用,能够根据身体需要进行自我调节。

2. 适当的运动能够增加呼吸频率和深度,提高氧气摄入量,有利于身体健康。

3. 合理的呼吸方式对身体健康至关重要,应当注意培养良好的呼吸习惯。

实验意义:
本次实验结果对于加深我们对呼吸运动调节作用的认识具有重要意义,对于提高人们的健康意识,改善生活方式,具有积极的推动作用。

结语:
通过本次实验,我们深刻认识到呼吸运动对人体生理的重要调节作用,希望通过这一实验结果,能够引起更多人对呼吸运动的关注,树立正确的健康观念,改善生活方式,提高生活质量。

愿我们的实验成果能够给大家带来启发和帮助,谢谢!。

呼吸运动调节实验报告结论

呼吸运动调节实验报告结论

呼吸运动调节实验报告结论呼吸运动调节实验报告结论呼吸是人体生命活动中不可或缺的一部分,它通过调节氧气和二氧化碳的交换,维持了我们身体的正常运作。

为了更好地了解呼吸运动的调节机制,我们进行了一项实验,通过观察呼吸频率和深度在不同情况下的变化,得出了以下结论。

首先,我们观察到呼吸频率和深度受到多种因素的影响。

在实验中,当我们进行了剧烈运动后,呼吸频率明显增加,同时呼吸深度也增加。

这是因为运动使我们的身体需要更多的氧气,而呼吸系统通过增加呼吸频率和深度来满足这一需求。

另外,我们还发现情绪的变化也会对呼吸产生影响。

在实验中,当被试者处于紧张或兴奋的状态下,呼吸频率也会增加,而呼吸深度则可能有所变化。

这表明情绪状态对呼吸的调节有一定的影响。

其次,我们观察到呼吸运动的调节还与体内化学平衡有关。

在实验中,我们通过改变呼吸气体中的氧气和二氧化碳浓度,发现这对呼吸频率和深度产生了明显的影响。

当氧气浓度降低或二氧化碳浓度升高时,呼吸频率会增加,而呼吸深度则可能减小。

这是因为体内化学感受器能够感知到血液中氧气和二氧化碳的变化,并通过神经传递信号来调节呼吸运动,以维持体内化学平衡。

此外,我们还观察到呼吸运动的调节与大脑的皮层活动密切相关。

在实验中,我们通过观察被试者在进行认知任务时的呼吸变化,发现呼吸频率和深度会受到认知负荷的影响。

当认知任务变得更加复杂和困难时,呼吸频率可能会增加,而呼吸深度则可能减小。

这表明大脑皮层的活动与呼吸调节之间存在一定的联系,进一步说明了呼吸运动的复杂性。

综上所述,通过这次呼吸运动调节实验,我们得出了几个结论。

首先,呼吸频率和深度受到多种因素的影响,包括运动、情绪和体内化学平衡。

其次,体内化学平衡对呼吸的调节起着重要作用,通过感知氧气和二氧化碳的变化来调节呼吸运动。

最后,大脑的皮层活动与呼吸调节之间存在一定的联系,认知任务的负荷也会对呼吸产生影响。

这些结论对我们进一步了解呼吸运动的调节机制具有重要意义。

呼吸运动调节实验报告

呼吸运动调节实验报告

一、实验目的1. 掌握呼吸运动调节的基本原理和方法。

2. 观察血液中化学因素(PCO2、PO2、[H])改变对呼吸运动(呼吸频率、节律、通气量)的影响及机制。

3. 学习气管插管术和神经血管分离术。

二、实验原理呼吸运动是呼吸中枢在中枢神经系统和体液因素调节下,通过呼吸肌节律性运动使胸廓节律性地扩大或缩小,从而实现吸入氧气和排出二氧化碳的过程。

呼吸运动调节机制主要包括化学因素调节、神经调节和体液调节。

三、实验材料与仪器1. 实验动物:家兔2. 实验仪器:手术台、常用手术器械、生理信号采集处理系统、呼吸传感器、气管插管、注射器、橡皮管、刺激电极、生理盐水、棉线、纱布等。

四、实验步骤1. 家兔麻醉:取一只家兔,称重后,用剪刀剪去耳缘静脉上的毛。

用20ml注射器由耳缘静脉缓慢推注25%氨基甲酸乙酯(1g/kg体重)进行麻醉。

2. 气管插管:在兔颈部进行气管插管,连接呼吸传感器,记录呼吸频率和通气量。

3. 呼吸运动调节实验:a. 观察正常呼吸曲线:记录家兔在正常条件下的呼吸频率、节律和通气量。

b. 观察CO2吸入对呼吸运动的影响:通过气管插管向家兔吸入一定浓度的CO2,观察呼吸频率、节律和通气量的变化。

c. 观察N2吸入对呼吸运动的影响:通过气管插管向家兔吸入一定浓度的N2,观察呼吸频率、节律和通气量的变化。

d. 观察无效腔增大对呼吸运动的影响:通过手术方法扩大家兔的无效腔,观察呼吸频率、节律和通气量的变化。

e. 观察肺牵张反射对呼吸运动的影响:剪断家兔双侧迷走神经,观察呼吸频率、节律和通气量的变化。

4. 实验结束:完成所有实验步骤后,将家兔恢复至正常状态,进行解剖观察。

五、实验结果与分析1. 正常呼吸曲线:家兔在正常条件下的呼吸频率约为60-80次/分钟,节律均匀,通气量适中。

2. CO2吸入对呼吸运动的影响:吸入CO2后,家兔呼吸频率明显加快,节律变浅,通气量增加。

这是因为CO2是一种化学刺激物质,能够刺激中枢神经系统,使呼吸中枢兴奋,从而增加呼吸频率和通气量。

呼吸运动调节实验报告

呼吸运动调节实验报告

呼吸运动调节实验报告实验目的:探究呼吸运动的调节机制,进一步了解呼吸系统的功能和调节过程。

实验原理:呼吸运动的调节主要依赖于呼吸中枢和周围感受器的信号传递。

呼吸中枢位于延髓的呼吸中枢区,受到化学和神经因素的调节。

主要包括呼气中枢和吸气中枢。

呼气中枢对肺泡内的二氧化碳浓度敏感,当二氧化碳浓度升高时,呼气中枢被刺激,使呼气动作增强。

吸气中枢则对氧气浓度敏感,当氧气浓度降低时,吸气中枢被刺激,使吸气动作增强。

此外,呼吸中枢还受到来自周围感受器的信息输入,如呼吸肌肌肉内的运动感受器和肺部的伸展感受器。

这些感受器通过神经传递的方式将信息传递给呼吸中枢,调节呼吸运动。

实验材料:实验步骤:1.将小白鼠放置在呼吸运动调节实验装置中,固定其头部。

2.用细针在小白鼠胸壁上插入呼吸感受器电极,并连接到放大器上,记录呼吸信号。

3.调节装置中的刺激器,通过电压刺激呼吸中枢。

4.分别对吸气中枢和呼气中枢进行刺激,记录呼吸信号的变化。

5.调整呼吸中枢刺激的强度和频率,观察呼吸运动的调节效果。

实验结果:实验中观察到,在对吸气中枢进行刺激的情况下,小白鼠的吸气运动明显增强,呼吸深度和频率均增加。

而对呼气中枢进行刺激时,小白鼠的呼气运动明显增强,呼气深度和频率均增加。

当调节刺激强度和频率时,呼吸运动的效果也会相应改变。

实验讨论:根据实验结果可知,对吸气中枢和呼气中枢进行刺激可以分别增强吸气和呼气运动。

这表明呼吸运动主要受到呼吸中枢的调节。

而呼吸中枢受到来自化学和神经因素的调节,调节的目的是为了保持机体气体交换的平衡。

当机体内的二氧化碳浓度升高时,呼气中枢被刺激,使呼气动作增强,从而排出过多的二氧化碳。

而当机体内的氧气浓度降低时,吸气中枢被刺激,使吸气动作增强,从而摄入更多的氧气。

此外,来自周围感受器的信息也会对呼吸运动产生影响。

运动感受器和肺部的伸展感受器会通过神经传递的方式将信息传递给呼吸中枢,使机体能够根据需要调节呼吸运动。

实验结论:呼吸运动主要受到呼吸中枢的调节,呼气中枢和吸气中枢分别对应呼吸过程中的呼气和吸气动作。

呼吸运动调节实验报告

呼吸运动调节实验报告

呼吸运动调节实验报告
目录
1. 实验目的
1.1 呼吸运动调节的意义
1.2 实验原理
1.2.1 正常呼吸过程
1.2.2 呼吸调节机制
1.2.3 实验设备
1.2.4 实验步骤
1.3 实验结果分析
1.3.1 实验现象观察
1.3.2 数据收集与分析
1.4 实验结论及意义
1. 实验目的
开展呼吸运动调节实验,探究呼吸运动对人体的重要性及呼吸调节的相关机制。

1.1 呼吸运动调节的意义
研究呼吸运动调节的意义,有助于更深刻地理解呼吸系统在维持人体正常功能中的重要性。

1.2 实验原理
1.2.1 正常呼吸过程
通过呼吸运动,人体吸入氧气,排出二氧化碳,完成气体交换,维持细胞健康。

1.2.2 呼吸调节机制
呼吸调节包括神经调节和化学调节两种主要机制,分别负责响应不同的生理需求。

1.2.3 实验设备
实验中使用的设备包括呼吸频率计、肺活量计等,用于记录和测量呼
吸运动数据。

1.2.4 实验步骤
详细介绍实验中的步骤,包括准备实验材料、进行实验操作等。

1.3 实验结果分析
1.3.1 实验现象观察
观察实验过程中呼吸运动的变化,记录并分析相关数据。

1.3.2 数据收集与分析
对实验结果进行数据收集和分析,探讨呼吸运动对人体的影响。

1.4 实验结论及意义
总结实验结果,阐述呼吸运动调节对人体健康和生理功能的重要性。

呼吸运动的调节实验报告

呼吸运动的调节实验报告

呼吸运动的调节实验报告实验目的:了解呼吸运动的调节机制。

实验原理:呼吸运动是由呼吸中枢调节的,主要通过调节呼吸肌肉的收缩与放松来实现。

呼吸中枢位于延髓和脑干,由神经元组成。

呼吸中枢对于呼吸运动的调节主要有两种方式,一种是主动调节,另一种是被动调节。

主动调节是指呼吸中枢根据体内外环境的变化主动调整呼吸运动的深度和频率。

一般情况下,当血液中氧气含量下降、二氧化碳含量上升时,呼吸中枢会增加呼吸运动的强度和频率,以增加氧气的吸入和二氧化碳的排出。

反之,当血液中氧气含量提高、二氧化碳含量降低时,呼吸中枢会减少呼吸运动的强度和频率。

被动调节是指呼吸中枢受到一些身体反射的调节。

其中最重要的是呼吸化学感受器的作用。

呼吸化学感受器散布在主动脉体和延髓等部位,能感受到血液中氧气和二氧化碳的浓度变化。

当血液中二氧化碳浓度上升时,呼吸化学感受器会通过神经传递给呼吸中枢,使其增加呼吸运动的强度和频率。

反之,当血液中二氧化碳浓度降低时,呼吸化学感受器会减少刺激,呼吸中枢相应减少呼吸运动的强度和频率。

此外,还有一些其他的反射机制,如肺组织器官和呼吸肌的反射。

实验方法:1. 实验器材:呼吸运动测量仪、呼吸频率计、磁力键、呼吸波形检测系统等。

2. 实验步骤:(1)使用呼吸运动测量仪测量实验对象的呼吸运动。

(2)使用呼吸频率计测量实验对象的呼吸频率。

(3)使用磁力键刺激呼吸化学感受器,观察实验对象的呼吸反应。

(4)使用呼吸波形检测系统观察实验对象的呼吸波形。

实验结果:实验对象的呼吸运动和呼吸频率会随着呼吸化学感受器的刺激而变化。

当磁力键刺激呼吸化学感受器时,实验对象的呼吸频率会增加。

呼吸波形也会发生相应的变化。

实验结论:呼吸运动受到呼吸中枢的主动和被动调节。

主动调节主要是根据体内外环境的变化来调整呼吸运动的深度和频率。

被动调节主要是通过呼吸化学感受器等身体反射来调节呼吸运动。

实验结果表明,刺激呼吸化学感受器可以使呼吸频率增加,呼吸波形也会发生相应的变化。

呼吸运动的调节 实验报告

呼吸运动的调节 实验报告

呼吸运动的调节实验报告呼吸运动的调节实验报告引言:呼吸是人类生命活动中至关重要的一环,它通过提供氧气和排除二氧化碳来维持我们的生命。

呼吸运动的调节是由呼吸中枢在大脑干中控制的。

本实验旨在探究不同条件下呼吸运动的调节机制,并通过实验结果来进一步了解呼吸系统的功能。

实验设计:实验采用了动物模型,选择小白鼠作为实验对象。

首先,我们将小白鼠分成两组,一组为实验组,另一组为对照组。

实验组小白鼠会在一定时间内进行高强度运动,而对照组小白鼠则保持静止状态。

在实验进行期间,我们使用呼吸监测仪器来记录小白鼠的呼吸频率和呼吸深度,并在实验结束后进行数据分析。

实验结果:通过实验数据的分析,我们发现实验组小白鼠在运动期间呼吸频率明显增加,而呼吸深度也相应增加。

这与我们的预期结果相符,说明呼吸运动的调节机制能够根据身体的需求进行调整。

而对照组小白鼠的呼吸频率和呼吸深度则保持相对稳定。

讨论:通过本实验的结果,我们可以得出结论:呼吸运动的调节是由呼吸中枢在大脑干中控制的。

在高强度运动期间,身体需要更多的氧气供应和排除更多的二氧化碳,因此呼吸中枢会通过增加呼吸频率和呼吸深度来满足这些需求。

这一调节机制的存在,保证了我们在剧烈运动等高氧消耗情况下仍能正常呼吸。

此外,我们还观察到呼吸运动的调节可能受到其他因素的影响。

例如,情绪和心理状态的变化可能会导致呼吸频率的改变。

这与我们日常生活中的体验相符,当我们感到紧张或激动时,呼吸会变得更快更浅。

这种现象表明,呼吸运动的调节机制与我们的情绪和心理状态密切相关。

结论:在本实验中,我们通过对小白鼠的观察和数据分析,探究了呼吸运动的调节机制。

实验结果表明,呼吸中枢能够根据身体的需求调整呼吸频率和呼吸深度,以满足氧气供应和二氧化碳排除的要求。

此外,我们还发现呼吸运动的调节可能受到情绪和心理状态的影响。

这些研究结果对我们深入了解呼吸系统的功能和调节机制具有重要意义。

总结:通过本实验,我们对呼吸运动的调节机制有了更深入的了解。

呼吸运动调节实验报告

呼吸运动调节实验报告

呼吸运动调节实验报告呼吸运动调节实验报告一、实验目的了解呼吸运动的调节机制。

二、实验原理呼吸运动是由呼吸中枢在脑干调控下进行的。

呼吸中枢由延髓内的呼吸节律生成区和脊髓内的呼吸节律传导区组成。

呼吸节律生成区通过调控脊髓内的呼吸节律传导区,使肺部肌肉产生适当的收缩和松弛,从而实现正常呼吸。

呼吸节律生成区受到多种调节因素的影响,包括血液中的氧气、二氧化碳浓度以及神经系统的调控。

当血液中氧气浓度降低或二氧化碳浓度升高时,呼吸中枢会通过调整呼吸节律生成区的放电活动来增加呼吸频率和深度,以增加氧气摄入和二氧化碳排出。

此外,神经系统的调控也会对呼吸运动产生影响。

实验中,我们可以通过不同的刺激手段来观察呼吸运动的调节情况,如改变呼吸频率和深度,以及呼气时间和吸气时间的比例。

三、实验设备和药品1. 实验动物(可以是小鼠、大鼠或兔子等)2. 呼吸运动调节实验装置(包括呼吸频率、呼气时间和吸气时间的调节装置)3. 麻醉药物四、实验步骤1. 安静环境下,给实验动物注射适量麻醉药物使其进入麻醉状态。

2. 将实验动物固定在实验装置上,调节装置的参数,使呼吸频率、吸气时间和呼气时间保持正常水平。

3. 观察实验动物的呼吸运动,记录呼吸频率、深度以及呼气时间和吸气时间的比例。

4. 分别对实验动物进行不同刺激,如给予高浓度氧气、低浓度氧气、高浓度二氧化碳等,观察呼吸运动的变化。

5. 持续观察一段时间后,停止刺激,再次观察呼吸运动的恢复情况。

六、实验结果通过实验观察和记录,可以得出呼吸运动调节的结果,如呼吸频率、深度以及呼气时间和吸气时间的比例的变化。

七、实验结论根据实验结果可以得出呼吸运动调节的结论,如不同刺激对呼吸运动的影响,呼吸运动的调节机制等。

八、实验注意事项1. 实验过程中应注意保证实验动物的安全和健康,减少对其造成的伤害。

2. 麻醉药物的使用应符合相关规定,确保实验动物的麻醉状态。

3. 实验环境应保持安静、恒定,以免对实验结果产生干扰。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

呼吸运动调节的实验证明
一、实验目的
1、掌握描记呼吸运动的方法
2、掌握气管插管术
3、观察并分析肺牵张反射等不同因素对呼吸运动的影响及其作用机理
二、实验原理
1、呼吸运动是一种节律性运动,呼吸的频率和深度能随内、外环境条件的改变而改变,这都
依靠神经系统的反射性调节来实现。

2、由于无效腔的存在,每次吸入的新鲜空气不能都到达肺泡进入气体交换。

增大无效腔,减
少了肺泡通气量,降低了气体更新率,导致血中二氧化碳增加、氧分压下降。

气道加长,使呼吸气道阻力增大,从而使呼吸加深加快。

3、减少O2的浓度后,肺泡PO2↓,PaO2 ↓,PaCO2不变,轻度缺氧时,外周化学感受器兴
奋加强,同时延髓呼吸中枢抑制减弱,导致呼吸肌活动加强;严重缺氧时,外周化学感受器兴奋减弱,同时延髓呼吸中枢抑制加强,导致呼吸肌活动减弱。

4、吸入气中二氧化碳浓度增加会使呼吸运动加强:
5、静脉注射乳酸后对呼吸运动的影响:
6、迷走神经在呼吸中的作用:
迷走神经
牵张感受器延髓吸气切断机制兴奋,抑制吸气,加速了吸气和呼气的交替,使呼吸频率增加
切断双侧迷走神经后电刺激迷走神经中枢端:
以中等强度电刺激一侧迷走神经中枢端,一般可导致呼吸运动暂停
因为肺牵张反射包括肺扩张后反射性地引起吸气动作的抑制,或者是肺缩小后反射性地抑制呼气动作,使吸气加强。

这两种反射的传人纤维都经迷走神经兴奋,产生传入冲动到呼吸中枢,导致呼吸运动的改变。

由于电刺激引起的传入冲动持续性的传到呼吸中枢,抑制呼吸运动,故出现呼吸暂停现象。

7、哌替啶可降低呼吸中枢对CO2的敏感性,从而抑制呼吸。

尼可刹米可选择性的直接兴奋芫
荽呼吸中枢和颈总动脉和主动脉化学感受器,使呼吸加深加快;同时尼可刹米也能提高呼吸中枢对CO2的敏感性,直接对抗哌替啶的抑制作用。

三、实验动物
家兔
四、实验材料
手术台、剪毛剪、手术刀、手术剪、眼科剪、手术镊、止血钳、台秤、气管插管、80cm 橡皮管、注射器、钠石灰瓶、纱布、棉线、RM-6240多道生理信号采集处理系统、呼吸换能器、刺激电极、5%水合氯醛酒精溶液、3%乳酸溶液、生理盐水、碳酸钙、盐酸、哌替啶(也可用杜冷丁)、尼可刹米。

五、方法与步骤
(一)兔气管插管手术
1、麻醉与保定取兔称重,用5%水合氯醛酒精溶液按4ml/kg体重静脉麻醉,仰卧绑定。

2、气管插管手术颈部剪毛,沿颈部正中做3~4cm长的切口,钝性分离皮下组织和肌肉,分
离气管和两侧的迷走神经,穿线备用。

用眼科剪在气管上朝向心方向剪一切口,插入Y 型气管插管,两侧分别连接短橡胶管。

(二)仪器连接及参数设置
1、连接呼吸换能器导线连接于RM-6240多道生理信号采集处理系统放大器通道1插孔,另
一侧将呼吸带绑缚于实验动物胸部呼吸起伏明显处。

刺激器连接于刺激输出插孔。

2、参数设置
(1)打开外置仪器的电源,双击计算机屏幕上的RM-6240多道生理信号采集处理系统图标进入实验系统
(2)按照“实验\呼吸\呼吸运动调节”路径进入实验程序
(3)在示波状态下选择一通道,点击其他通道的“生物电”选择下拉菜单中的“关闭”,关闭其它通道。

(4)参数设置:采样频率800hz,通道模式“呼吸运动”,扫描速度1/div,灵敏度5mv,时间常数“直流”,滤波常数10hz,刺激参数“正电压刺激”,串联刺激,强度2,波宽1ms,延时0ms,重复次数1
(5)点击“开始记录”按钮即可开始记录。

(三)实验项目
1、描记正常呼吸曲线,记录呼吸频率、呼吸深度。

结果预测:呼吸正常平稳。

2、增大无效腔气管插管一侧接一段80cm橡皮管,观察呼吸运动的变化。

结果预测:呼吸加深加快
3、窒息夹闭橡皮管,观察呼吸运动的变化情况,结果明显后去掉橡皮管,恢复正常呼吸。

4、向鼻腔中注射冷水几滴,刺激鼻腔粘膜,观察对呼吸的影响。

结果预测:呼吸加深加快。

5、增加吸入气体中CO2的浓度将充气的胶皮手套套在气管插管的一侧管上,持续呼吸以缓
慢增加吸入气体中CO2的浓度,观察呼吸运动的变化。

结果预测:呼吸加深加快
6、减少吸入气体中O2的浓度将气管插管侧管通过一只钠石灰瓶与盛有空气的球胆相连,
使动物呼吸球胆中的空气。

经过一段时间后球胆中的氧气明显减少,但CO2并不增多,观察此时呼吸运动的变化。

待呼吸变化明显后,恢复正常呼吸。

结果预测:呼吸先加强后减弱
7、牵张反射将事先装有空气(约20ml)的注射器经橡皮管与气管套管的一侧相连,在吸气
相之末立即向肺内打气,观察呼吸运动有何变化?待呼气运动平稳之后,再于呼气相之末立即抽去肺内气体(约20ml),观察呼吸运动有何变化?分析变化产生的机理。

结果预测:向肺内打气,呼吸运动暂时停止在呼气状态;抽去肺内气体,呼吸运动暂时停止在呼气状态
8、增加血液中H+的浓度经耳缘静脉快速注入3%乳酸1~2ml,观察呼吸运动的变化。

结果预测:呼吸加深加快。

9、待呼吸曲线恢复正常之后,由兔耳缘静脉注射50g/L哌替啶,缓慢注射,同时密切观察家
兔呼吸曲线,一旦出现抑制立即停止给药。

出现严重明显的抑制波形时,由耳缘静脉注射250g/L尼可刹米。

观察并记录呼吸变化。

结果预测:注射哌替啶后呼吸减慢或停止;注射尼可刹米后,呼吸恢复正常。

10、迷走神经的作用
(1)切断一侧迷走神经,观察呼吸运动的变化。

再将另一侧迷走神经结扎后在离中端剪断,观察呼吸运动又有何变化。

结果预测:呼吸频率增加。

(2)重复第6项实验,比较呼吸变化有什么区别。

结果预测:剪断迷走神经后,在缺氧状态下,呼吸频率和强度不发生变化
(3)以2~3V电压连续刺激迷走神经向终端,观察呼吸运动的变化。

结果预测:呼吸运动暂停
(四)实验后打印实验相关数据。

相关文档
最新文档