华师版数学九年级下册解码专训:二次函数的图象和性质(二)
九年级数学下册27.2二次函数的图象与性质2二次函数y=ax2bxc的图象与性质(第2课时)课件华东师大版

y=a(x–h)2,它的对称轴为_直__线__x_=__h_;
h<0时,将抛物线y=ax2向_左__平移_h__个单位得到抛物线
y=a(x–h)2 ,它的对称轴为_直__线__x_=_h_.
【跟踪训练】
1.抛物线y=–(x+1)2的开口向 下 ,对称轴是 __直__线__x_=_–__1____,顶点坐标是 (–1,0) .
y
8
7
66
y 3 x2
5
44
3 22
1
-10
x --55 -4 -3 -2 -1 0 1 2 3 4 55 -1
10
-2-2
-4
y 2x 12
y
25 20
y 2x 12
10
5
-5 -4 -3 -2 –1O
-5
左移1个单位
-10
-15 -20
–25
y 2x2
x
12345
右移1个单位
y=2(x+1)2的顶点坐标为(–1,0 ) 对称轴为:直线x=–1
y 1 x2 3
y 1 x 22
3
y 1 x 22
3
的图象
y
5
4
3
2
1
O –5 –4 –3 –2 –1 –1
y 1 x 22
–2
3
–3
–4
–5
x
12345
y 1 x 22
3
y 1 x2 3
【规律方法】 抛物线y=ax2与抛物线 y=a(x–h)2 (a,h是常数,a≠0 ) 的关系:
2.(荆州·中考)若把函数y=x的图象用E(x,x)
初三二次函数的图像与性质

初三二次函数的图像与性质二次函数是初中数学中的一个重要概念。
在数学学习的过程中,我们常常会接触到二次函数,并且需要了解它的图像特点以及性质。
本文将详细介绍初三二次函数的图像和性质,并且给出相关的例题和解析。
一、二次函数的定义及一般式二次函数是指函数$y=ax^2+bx+c$,其中$a,b,c$为常数且$a\neq 0$。
它的图像是抛物线,并且开口的方向由$a$的正负决定。
当$a>0$时,抛物线开口向上;而当$a<0$时,抛物线开口向下。
二次函数的一般式为$y=ax^2+bx+c$,其中$a,b,c$为常数。
其中,$a$代表抛物线的开口方向与开口的大小,$b$影响抛物线的位置,$c$影响抛物线和$y$轴的交点。
【例题1】某二次函数的方程是$y=2x^2-3x+1$,求该二次函数的图像和性质。
解:根据给定的二次函数方程,我们可以得到$a=2$,$b=-3$,$c=1$。
由于$a>0$,所以抛物线开口向上。
考虑二次函数的图像特点,我们可以使用一些方法来绘制它的图像。
首先,我们可以找出抛物线的对称轴,对称轴的方程为$x=-\frac{b}{2a}$。
代入$a=2$,$b=-3$,我们得到$x=-\frac{-3}{2\times2}=\frac{3}{4}$。
因此,对称轴的方程为$x=\frac{3}{4}$。
接下来,我们需要计算抛物线的顶点坐标。
顶点坐标可以通过将对称轴的$x$坐标代入原函数方程计算得到。
将$x=\frac{3}{4}$代入$y=2x^2-3x+1$,我们得到$y=2(\frac{3}{4})^2-3(\frac{3}{4})+1=\frac{9}{8}-\frac{9}{4}+1=\frac{1}{8}$。
因此,顶点坐标为$(\frac{3}{4}, \frac{1}{8})$。
不难看出,根据顶点的坐标和对称轴的方程,我们可以绘制出该二次函数的图像。
它是一个开口向上的抛物线,对称轴为$x=\frac{3}{4}$,顶点坐标为$(\frac{3}{4}, \frac{1}{8})$。
九年级下册数学课件(华师版)二次函数的图象与性质

当x=h时,最小值为0.
在对称轴的左侧,y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而减小
当x=h时,最. 大值为0.
开口大小 a 越大,开口越小.
a 越小,开口越大.
1、说出下列抛物线的开口方向、顶点坐标和对称轴:
(1)y=(x+1)2 (2)y=-(x-5)2
(3)y=2(x-3)2 (4)y=- 2(x-1)2
函数y=a(x-h)2(a≠0)的图象和性质
2.当a>0时,抛物线在x轴的上方(除顶点 外),它的开口向上,并且向上无限伸展;
当a<0时,抛物线在x轴的下方(除顶点 外),它的开口向下,并且向下无限伸展.
直线x=h
3.当a>0时,在对称轴(x=h)的左侧,y随 着x的增大而减小;在对称轴(x=h)右侧 ,y随着x的增大而增大;当x=h时函数y的 值最小(是0). 当a<0时,在对称轴(x=h)的左侧,y随着x 的增大而增大;在对称轴(x=h)的右侧,y 随着x增大而减小;当x=h时,函数y的值 最大(是0).
16
2
12
观察函数 y 1 x 2与2 y 1 x2的
2
2
图象,它们有什么关系?
8
y 1 x2 2
4
2
x
-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 -2
பைடு நூலகம்
描点,连线 y
20
函数 与 的 y 1 x 22 2
y 1 x2 2
图象有什么关系?说出它
26.2 二次函数的图象与性质(3)
y x2
二次函数y=ax2的性质
y x2
1.抛物线y=ax2的顶点是原点,对称轴是y轴.
华师大版数学九年级下册26.2《二次函数的图象与性质》教学设计

华师大版数学九年级下册26.2《二次函数的图象与性质》教学设计一. 教材分析《二次函数的图象与性质》是华师大版数学九年级下册第26章第2节的内容。
本节内容主要介绍二次函数的图象与性质,包括二次函数的顶点、开口、对称轴等概念,以及如何通过图象来判断二次函数的性质。
学生通过本节的学习,应该能够理解二次函数的图象与性质,并能够运用这些知识解决实际问题。
二. 学情分析九年级的学生已经学习了函数的基础知识,对函数的概念、定义、图像等有一定的了解。
但是,对于二次函数的图象与性质,学生可能还比较陌生,需要通过实例来理解和掌握。
此外,学生的空间想象能力和抽象思维能力还有待提高,因此,在教学过程中,需要注重培养学生的这些能力。
三. 教学目标1.知识与技能:使学生理解二次函数的图象与性质,能够通过图象来判断二次函数的性质。
2.过程与方法:通过观察、操作、猜测、验证等活动,培养学生的空间想象能力和抽象思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的探究精神。
四. 教学重难点1.重点:二次函数的图象与性质。
2.难点:如何通过图象来判断二次函数的性质。
五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法。
通过设置问题,引导学生观察、操作、猜测、验证,从而理解二次函数的图象与性质。
同时,学生进行小组合作,培养学生的团队协作能力。
六. 教学准备1.准备相关的教学案例和实例。
2.准备教学PPT,包括二次函数的图象与性质的讲解、实例分析等。
3.准备纸笔,用于学生进行绘图和记录。
七. 教学过程1.导入(5分钟)通过一个实际问题,引出二次函数的图象与性质的概念。
例如:某商场进行促销活动,打折后的价格可以表示为一个二次函数,如何根据价格来判断促销活动是否优惠?2.呈现(10分钟)利用PPT,呈现二次函数的图象与性质的定义和概念,包括顶点、开口、对称轴等。
同时,通过实例来展示这些概念的应用。
3.操练(10分钟)让学生分组进行绘图和分析,每组选择一个二次函数,画出它的图象,并判断它的性质。
数学九年级下华东师大版27.2二次函数的图象与性质(2) 教案

27.2 二次函数的图象与性质(2)教学目标:1、使学生能利用描点法正确作出函数y =a x 2+c 的图象.2、让学生经历二次函数y =a x 2+c 性质探究的过程,理解二次函数y =a x 2+c 的性质及它与函数y =a x 2的关系. 重点难点:会用描点法画出二次函数y =ax 2+c 的图象,理解二次函数y =ax 2+c 的性质,理解函数y =ax 2+c 与函数y =ax 2的相互关系是教学重点.正确理解二次函数y =ax 2+c 的性质,理解抛物线y =ax 2+c 与抛物线y =ax 2的关系是教学的难点.教学过程: 一、知识回顾1、二次函数221x y =的图象开口 ,顶点坐标是 ,对称轴是 . 2、二次函数241x y =的图象开口 ,当x > 0时,y 随x 的增大而 ;当x < 0时,y 随x 的增大而 ;当x = 0时,函数y 有最 值是 .3、二次函数23x y -=的图象开口 ,当x > 0时,y 随x 的增大而 ;当x < 0时,y 随x 的增大而 ;当x = 0时,函数y 有最 值是 .4、已知点A (2,1y ),B (4,2y )在二次函数23x y -=的图象上,则1y 2y .二、分析问题,解决问题:二次函数y=a x 2与y=a x 2+c 的图象有什么关系?活动1 在同一平面直角坐标系画出函数y =x 2、y =x 2+1与 y =x 2-1的图象. x … -3 -2 -1 0 1 2 3 … y =x 2…… y =x 2+1 … … y =x 2-1 ……(2)描点:用表里各组对应值作为点的坐标,在平面直角坐标系中描点.(3)连线:用光滑曲线顺次连接各点,得到函数y =x 2、y =x 2+1与 y =x 2-1的图象. 观察图象回答下列问题: 函数 开口方向对称轴顶点坐标y =x 2y =x 2+1 y =x 2-1(2)抛物线 y =x +1是由抛物线y =x 沿y 轴向 平移 个单位长度得到的;抛物线y =x 2-1是由抛物线y =x 2沿y 轴向 平移 个单位长度得到的;(3)你认为是什么决定了会这样平移?活动2在同一直角坐标系内画出下列二次函数的图象: x 221y =、221y x 2+= 、2-21y x2= ,观察三条抛物线的相互关系,并分别指出它们的开口方 向及对称轴、顶点坐标.你能说出抛物线c ay x2+=的开口方向及对称轴、顶点坐标吗?解:(1)列表:(2)描点:用表里各组对应值作为点的坐标,在平面直角坐标系中描点. (3)连线:用光滑曲线顺次连接各点,得到函数x 221y =、221y x 2+= 、2-21y x2=的图象.观察图象回答下列问题 函数开口方向对称轴顶点坐标x 221y =221y x 2+=2-21y x 2=(2)抛物线22y x 2+=是由抛物线x 22y =沿y 轴向 平移 个单位长度得到的;抛物线2-21y x 2=是由抛物线x 221y =沿y 轴向 平移 个单位长度得到的;三、规律总结二次函数y =ax 2与y =ax 2+c 的图象的关系:二次函数y =ax 2+c 的图象可以由y =ax 2的图象上下平移得到:当c > 0 时,向上平移|c |个单位得到. 函数开口方向对称轴顶点坐标y =ax 2y =ax 2+c四、练习 1.把抛物线x221y =向下平移2个单位,可以得到抛物线 ,再向上平移5个单位,可以得到抛物线 ;2.抛物线322--=x y 的开口 ,对称轴是 ,顶点坐标是 ,当x 时,y 随x 的增大而增大, 当x 时, y 随x 的增大而减小.3.函数y =3x 2+5与y =3x 2的图象的不同之处是( )A.对称轴B.开口方向C.顶点D.形状4.对于函数y =-x 2+1的图象,顶点是 ,当x 时,函数值y 随x 的增大而增大;当x 时,函数值y 随x 的增大而减小;当x 时,函数取得最 值,为 . 5.将抛物线231x y =向下平移2个单位得到的抛物线的解析式为 ,再向上平移3个单位得到的抛物线的解析式为 ,并分别写出这两个函数的顶点坐标 、 .6.已知抛物线y=2 x 2–1上有两点(x 1,y 1) ,(x 2,y 2 )且x 1<x 2<0,则y 1 y 2 (填“<”或“>”) 五、小结:六、课后拓展:1.二次函数c ax y +=2()0≠a 中,若当x 取x 1、x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值等于 .2.任给一些不同的实数k ,得到不同的抛物线k x y +=2,当k 取0,1±时,关于这些抛物线有以下判断:①开口方向都相同;②对称轴都相同;③形状相同;④都有最低点.其中判断正确的是 . 3.将抛物线122-=x y 向上平移4个单位后,所得的抛物线是 ,当x = 时,该抛物线有最 (填大或小)值,是 . 4.函数y=-23x 2+3的图象,当x <0时,经过了第____象限;若图象上有两点(x 1, y 1),(x 2, y 2),且满足x 1>x 2>0,则y 1 ____ y 2 (填>,<或=);若只满足条件x 1>x 2,则能否判断y 1 、y 2的大小关系?5.已知函数:221x y -=, 3212+-=x y 和1212--=x y . (1)分别画出它们的图象;(2)说出各个图象的开口方向,对称轴和顶点坐标;(3)说出函数6212+-=x y 的图象的开口方向、对称轴和顶点坐标; (4)试说明函数3212+-=x y 、1212--=x y 、6212+-=x y 的图象分别有抛物线221x y -=作怎样的平移才能得到?。
九年级数学下册27.2二次函数的图象与性质2.2二次函数y=ax2bxc的图象与性质第2课时课件华东师大版

4.函数 y 1 x 32的图象是由 y 1 x2 的图象向____平移____
2
2
个单位得到的,顶点坐标是_______.当x____时,函数值y随x的增
大而减小;当x____时,函数值y随x的增大而增大;当x____时,函
数取得____值,其值为______.
【解析】函数 y 1 的x 图3象2 是由
抛物线y=a(x-h)2与y=ax2的平移 【例1】已知抛物线y=a(x-h)2向左平移2个单位后,所得抛物线 为y=-2(x+5)2,试求a,h的值. 【解题探究】 (1)抛物线左右平移对a的值有影响吗?a的值为多少? 答:抛物线左右平移对a的值没有影响,a=-2.
(2)对于抛物线平移的问题可以(填“可以”或“不可以”)转化 为抛物线顶点的平移. (3)y=a(x-h)2的顶点坐标为(h,0),y=-2(x+5)2的顶点坐标为 (-5,0),将点(h,0)向左平移2个单位后为(h-2,0),所以h-2=-5, 得h=-3. (4)综上可知a=-2,h=-3.
【规范解答】 (1)函数y=6(x+4)2的顶点坐标为(-4,0),对称轴为直线x=-4; ………………………………………………………………2分 (2)向右平移3个单位后的关系式为y=6(x+1)2,顶点坐标为 (-1,0),对称轴为直线x=-1;………………………………4分 (3)因为函数y=6(x+1)2的图象开口向上,所以当x≥-1时,y随x的 增大而增大;当x≤-1时,y随x的增大而减小.……………6分
函数y=a(x-h)2的图象和性质 【例2】(6分)已知函数y=6(x+4)2, (1)直接写出它的顶点坐标及对称轴; (2)直接写出向右平移3个单位后的关系式、顶点坐标及对称 轴; (3)平移后当x取何值时,y随x的增大而增大?当x取何值时,y随x 的增大而减小? 特别提醒:左右平移时注意h值的增减变化.
新华师版初中数学九年级下册第12讲 二次函数的图象与性质(重点资料).doc

知识点四:二次函数与一元二次方程以及不等式ห้องสมุดไป่ตู้
5二次函数与一元二次方程
二次函数y=a2+b+c(a≠0)的图象与轴交点的横坐标是一元二次方程a2+b+c=0的根
当Δ=b2-4ac>0,两个不相等的实数根;
当Δ=b2-4ac=0,两个相等的实数根;
b2-4ac>0时,抛物线与轴有2个交点;
b2-4ac=0时,抛物线与轴有1个交点;
b2-4ac<0时,抛物线与轴没有交点
知识点三:二次函数的平移
4平移与解析式的关系
注意:二次函数的平移实质是顶点坐标的平移,因此只要找出原函数顶点的平移方式即可确定平移后的函数解析式
失分点警示:
抛物线平移规律是“上加下减,左加右减”,左右平移易弄反
3二次函数的图象和性质
图象
(1)比较二次函数函数值大小的方法:①直接代入求值法;②性质法:当自变量在对称轴同侧时,根据函数的性质判断;当自变量在对称轴异侧时,可先利用函数的对称性转化到同侧,再利用性质比较;④图象法:画出草图,描点后比较函数值大小
失分点警示
(2)在自变量限定范围求二次函数的最值时,首先考虑对称轴是否在取值范围内,而不能盲目根据公式求解
例:当0≤≤5时,抛物线y=2+2+7的最小值为7
开口
向上
向下
对称轴
=
顶点坐标
增减性
当> 时,y随的增大而增大;当< 时,y随的增大而减小
当> 时,y随的增大而减小;当< 时,y随的增大而增大
最值
= ,y最小=
= ,y最大=
3系数a、b、c
26.2.2 第2课时 二次函数y=a(x-h)2的图象与性质(课件)九年级数学下册(华东师大版)

向下 直线 x = h (h,0)
最值 增减性
当 x = h 时,y最小值 = 0 当 x = h 时,y最大值 = 0
当 x<h 时,y 随 x 的 当 x<h 时,y 随 x 的 增大而减小;x>h 时,增大而增大;x>h 时, y 随 x 的增大而增大. y随 x 的增大而减小.
练一练 若抛物线 y=3(x+ 2 )2 的图象上有三个点
C BO x 2 -1 2
知识点3 二次函数 y = ax2 与 y = a(x - h)2 (a≠0) 的关系
想一想
y y 1 x 12
2
抛物线 y 1 x 12,y 1 x 12
2
2
与抛物线 y 1 x2 有什么关系?
−4
−2 -2
2 4x
2
形状、大小、开口方向都相同,
5.已知A(-1,y1),B(-2,y2),C(3,y3)三点都在二 次函数y=a(x+1)2(a<0)的图象上,则y1,y2,y3的大 小关系是_y_3_<__y_2_<__y1___.
课堂总课结堂小结
复习 平移规律: y=ax2+k 自变量 左加右减, y = ax2 括号外 保持不变.
探索 y =a(x±h)2的 图象及性质
向上
对称轴 y轴
直线 x = 2
顶点坐标 (0,0) (2,0)
试一试 画出二次函数y
1 2
x
1
2,
-4
y
O
-2
2
x 4
y 1 x 1 2 的图象,并考察它们
-2
2
-4
的开口方向、对称轴和顶点.
y
1 x 12
-6
y 1 x 12
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华师版数学九年级下册解码专训
二次函数
c bx ax y ++=2的图象和性质 一、明确学习目标
1、会用描点法画二次函数)0(2≠++=a c bx ax y 图象;会用配方法将二次函数c bx ax y ++=2的解析式写成k h x a y +-=2)(的形式;通过图象能熟练地掌握二次函数c bx ax y ++=2的性质.
2、经历探究c bx ax y ++=2与k h x a y +-=2)(的图象及性质紧密联系的过程,能运用二次函数的图象和性质解决简单的实际问题,深刻理解数学建模思想以及数形结合的思想.
3、通过合作交流,激发学习数学的兴趣,感受数学的价值.
二、自主预习
预习教材,自学“思考”,掌握将一般式化成顶点式的方法,完成自主预习区。
三、合作探究
(1)提出问题 你能作出2162
12+-=x x y 的图象吗? 学生独立完成.
教师点拨:先将此函数解析式化成顶点式,再解其他问题,在画函数图象时,要在顶点的两边对称取点,画出的抛物线才能准确反映这个抛物线的特征.
自主归纳:填空
①二次函数k h x a y +-=2)(的顶点坐标是_______,对称轴是________,当a _______时,开口向上,此时二次函数有最________,当x ______时,y 随x 的增大而增大,当x _______时,y 随x 的增大而减小;当a _______时,开口向下,此时二次函数有最______值,当x ________时,y 随x 的增大而增大,当x ________时,y 随x 的增大而减小.
②用配方法将c bx ax y ++=2化成k h x a y +-=2)(的形式,则h =______, k =_______,则二次函数c bx ax y ++=2的图象的顶点坐标是___________,对称轴是_____________,当x =_______时,二次函数c bx ax y ++=2有最大(最小)值,当a _________时,函数y 有最______值,当a _______时,函数y 有最_______
值.
(2)小组讨论合作交流
例1 将下列二次函数写成顶点式k h x a y +-=2)(的形式,并写出其开口方向,顶点坐标,对称轴. ①;2162
12+-=x x y ②;221222---=x x y
学生独立解答后,小组间交流.
教师点拨:第②小题注意h 的符号;配方法是数学里的一个重要方法,需多加练习,熟练掌握;抛物线的顶点坐标也可以根据公式直接求解.
四、当堂检测
(1)基础练习
(2)提升练习
用总长为60的篱笆围成的矩形场地,矩形面积S 随矩形一边长L 的变化而变化,L 是多少时,场地的面积S 最大?
[提示:①S 与L 有何函数关系.②举一例说明S 随L 的变化而变化;③怎样求S 的最大值呢?]
教师点拨:二次函数在几何方面的应用特别广泛,要注意自变量的取值范围的确定,同时所画的函数图象只能是抛物线的一部分.。