新人教版九年级下数学二次函数单元试题及答案
(必考题)初中数学九年级数学下册第二单元《二次函数》测试卷(有答案解析)

一、选择题1.关于二次函数22y x x =-+的最值,下列叙述正确的是( ) A .当2x =时,y 有最小值0. B .当2x =时,y 有最大值0. C .当1x =时,y 有最小值1D .当1x =时,y 有最大值12.已知关于x 的二次三项式()()2121m x m x m +--+的值恒为正,则m 的取值范围是( ) A .18m >B .1m >-C .118m -<<D .1m 18<<3.如图,现要在抛物线y =x (﹣x +2)上找点P (m ,n ),针对n 的不同取值,所找点P 的个数,四人的说法如下,甲:若n =﹣1,则点P 的个数为2;乙:若n =0,则点P 的个数为1;丙:若n =1,则点P 的个数为1;丁:若n =2,则点P 的个数为0.其中说法正确的有( )A .0个B .1个C .2个D .3个4.如图是二次函数y =mx 2+nx +k 图象的一部分且过点P (3,0),二次函数图象的对称轴是直线x =1,下列结论正确的是( )A .n 2﹣4mk <0B .mk >0C .n =2mD .m ﹣n +k =05.二次函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)中的x 与y 的部分对应值如表: x ﹣1 0 1 3 y ﹣1353则代数式﹣2a(4a +2b +c )的值为( ) A .92 B .152C .9D .156.已知二次函数2(2)1y mx m x =+--(m 为常数,且0m ≠),( )A .若0m >,则1x <,y 随x 的增大而增大B .若0m >,则1x >,y 随x 的增大而减小C .若0m <,则1x <,y 随x 的增大而增大D .若0m <,则1x >,y 随x 的增大而减小7.如图,抛物线y =ax 2+bx +c 的对称轴是x =1,下列结论:①abc >0;②b 2﹣4ac >0; ③8a +c <0; ④5a +b +2c >0,正确的是( )A .①②③B .②③④C .①②④D .②③8.如图,抛物线22y x x m =-+交x 轴于点(),0A a ,(),0B b ,交y 轴于点C ,抛物线的顶点为D ,下列四个结论:①无论m 取何值,2CD =恒成立;②当0m =时,ABD △是等腰直角三角形;③若2a =-,则6b =;④()11,P x y ,()22,Q x y 是抛物线上的两点,若121x x ,且122x x +>,则12y y <.正确的有( )A .①②③④B .①②④C .①②D .②③④9.对于抛物线22()1y x =-+,下列说法错误的是( ) A .抛物线的开口向上 B .抛物线与x 轴有两个交点 C .抛物线的对称轴是2x =D .抛物线的顶点坐标是(2,1)10.二次函数2(0)y ax bx c a =++≠的图象如图所示,对称轴是直线1x =,下列结论:①0ab <;②24b ac >;③20a b c ++<;④30a c +<.其中正确的是( )A .①②④B .②④C .①②③D .①②③④11.如图,抛物线2y ax bx c =++与x 轴交于,A B 两点,与y 轴交于点(0,1)C -,点A 在(4,0)-与(3,0)-之间(不包含这两点),抛物线的顶点为,D 对称轴是直线2x =-.有下列结论:①0abc <;②若点()1283,;,3M y N y ⎛--⎫ ⎪⎝⎭是抛物线上两点,则12y y >;③13a >-;④若1,a =-则ABD △是等边三角形.其中正确的个数是( )A .1B .2C .3D .412.将抛物线()2214y x =--+向右平移3个单位,再向下平移2个单位,得到抛物线的解析式为( ) A .()2241y x =-++ B .()2221y x =--+ C .()2246y x =--+D .()2242y x =--+二、填空题13.如图所示,二次函数2(0)y ax bx c a =++≠的图像与x 轴交于点()3,0,对称轴为直线1x =.则方程20cx bx a ++=的两个根为_____.14.已知函数y b =的图象与函数23|1|43y x x x =----的图象恰好有四个交点,则b 的取值范围是______.15.抛物线()20y ax bx c a =++≠的部分图象如图所示,其与x 轴的一个交点坐标为()4,0-,对称轴为1x =-,则0y >时,x 的取值范围________.16.有五张正面分别标有数字32112---,,,,的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a ,则使关于以x为自变量的二次函数22(1)2y x a x a =-++-的图象不经过点(1,0)的概率是____.17.抛物线212133y x x =-++与x 轴交于点A B 、,与y 轴交于点C ,则ABC 的面积为 _______.18.二次函数224y x x =-++的最大值是______.19.抛物线2y ax bx c =++上部分点的横坐标x ,纵坐标y 的对应值如表所示,下列说法:x··· 3-2-1- 0 1 ··· y···6-466···①抛物线与轴的交点为0,6;②抛物线的对称轴是在轴右侧;③在对称轴左侧,y 随x 增大而减小;④抛物线一定过点()3,0.上述说法正确的是____(填序号).20.已知A (0,y 1),B (1,y 2),C (4,y 3)是抛物线y =x 2﹣3x 上的三点,则y 1,y 2,y 3的大小关系为____.(用“<”符号连接)三、解答题21.已知抛物线239y x kx k =-+-.求证:无论k 为何值,该二次函数的图象与x 轴都有交点.22.某跳水运动员在进行跳水训练时,身体(看成一点)在空中的运动路线是如图所示的一条抛物线.已知跳板AB 长为2米,跳板距水面CD 高BC 为3米,训练时跳水曲线在离起跳点水平距离1米时达到距水面最大高度4米,现以CD 为横轴,CB 为纵轴建立直角坐标系.(1)求这条抛物线的解析式; (2)求运动员落水点与点C 的距离.23.如图,已知矩形ABCD 的周长为36cm ,矩形绕它的一条边CD 旋转形成一个圆柱.设矩形的一边AB 的长为cm(0)x x >,旋转形成的圆柱的侧面积为2cm S .(1)用含x 的式子表示:矩形的另一边BC 的长为______cm ;旋转形成的圆柱的底面圆的周长为______cm . (2)求S 关于x 的函数解析式及自变量x 的取值范围; (3)求当x 取何值时,矩形旋转形成的圆柱的侧面积最大;(4)若矩形旋转形成的圆柱的侧面积等于218cm π,则矩形的长是______cm ,宽是______cm .24.已知函数()()1210,()y x m x m y ax m a =+--=+≠在同一平面直角坐标系中.(1)若1y 经过点()12-,,求1y 的函数表达式; (2)若2y 经过点()1,1m +,判断1y 与2y 图象交点的个数,说明理由;(3)若1y 经过点1,02⎛⎫ ⎪⎝⎭,且对任意x ,都有12y y >,请利用图象求a 的取值范围. 25.如图,抛物线223y x x =--与x 轴交于A 、B 两点.(1)抛物线与x 轴的交点坐标为______; (2)求抛物线与坐标轴围成的ABC 的面积;(3)设(1)中的抛物线上有一个动点P ,当点P 在该抛物线上滑动到什么位置时,满足6PAB S =△,并求出此时P 点的坐标.26.如图,在平面直角坐标系中,二次函数25y ax bx =++的图象交x 轴于点A ,B (点A 在点B 的左侧),交y 轴于点C ,//CD x 轴交抛物线于点D .已知点A 的横坐标为1-,4CD =.(1)求该二次函数的表达式.(2)已知点E 在抛物线上且位于直线CD 的上方,//EF CD 交抛物线于点F (点F 在点E 的右侧),FG x ⊥轴于点G ,交CD 于点H ,4EF HD =,求点E 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先将二次函数配方成()211y x =--+,即可求解. 【详解】解:()()2221221y x x x x x =-+=----+=,二次函数的图象开口向下,当1x =时,y 有最大值1, 故选:D . 【点睛】本题考查二次函数的图象与性质,将二次函数解析式化为顶点式是解题的关键.2.A解析:A 【分析】根据二次三项式()()2121m x m x m +--+的值恒为正,可设()()2121m x x y m m +--+=,从而得到1m +>0且∆<0,进而即可求得m 的取值范围. 【详解】解:设()()2121m x x y m m +--+=,∵关于x 的二次三项式()()2121m x m x m +--+的值恒为正,∴()()2121m x m x m +--+>0,∴在函数()()2121m x x y m m +--+=中,1m +>0,且()()22141m m m ∆=--⎡⎤-+⎣⎦<0,解得:m >18故选:A 【点睛】本题考查二次函数的应用,解题的关键是明确题意,利用数形结合的思想,熟练掌握二次函数的性质.3.D解析:D 【分析】把P 点的坐标代入函数的解析式,再根据根的判别式或解方程逐个判断即可. 【详解】解:甲:当n =﹣1时,m (﹣m +2)=﹣1, 整理得:m 2﹣2m ﹣1=0,△=(﹣2)2﹣4×1×(﹣1)=8>0, 方程有两个不相等的实数根,即此时点P 的个数为2,故甲的说法正确; 乙:当n =0时,m (﹣m +2)=0, 解得:m =0或2,即此时点P 的个数为2,故乙的说法错误; 丙:当n =1时,m (﹣m +2)=1, 整理得:m 2﹣2m +1=0, △=(﹣2)2﹣4×1×1=0, 方程有两个相等的实数根,即此时点P 的个数为1,故丙的说法正确; 丁:当n =2时,m (﹣m +2)=2, 整理得:m 2﹣2m +2=0, △=(﹣2)2﹣4×1×2=﹣4<0, 方程没有实数根,即此时点P 的个数为0,故丁的说法正确; 所以正确的个数是3个, 故选:D . 【点睛】本题考查了二次函数的图象上点的坐标特征和一元二次方程的根的判别式、解一元二次方程,能熟记根的判别式的内容是解此题的关键.4.D解析:D 【分析】根据抛物线与x 轴有两个交点可对A 进行判断;由抛物线开口向上得m >0,由抛物线与y 轴的交点在x 轴下方得k <0,则可对B 进行判断;根据抛物线的对称轴是x =1对C 选项进行判断;根据抛物线的对称性得到抛物线与x 轴的另一个交点为(−1,0),所以m−n +k =0,则可对D 选项进行判断. 【详解】解:A .∵抛物线与x 轴有两个交点, ∴n 2﹣4mk >0,所以A 选项错误; B .∵抛物线开口向上, ∴m >0,∵抛物线与y 轴的交点在x 轴下方, ∴k <0,∴mk <0,所以B 选项错误;C .∵二次函数图象的对称轴是直线x =1, ∴﹣2nm=1, ∴n =﹣2m ,所以C 选项错误;D .∵抛物线过点A (3,0),二次函数图象的对称轴是x =1, ∴抛物线与x 轴的另一个交点为(﹣1,0), ∴m ﹣n +k =0,所以D 选项正确; 故选:D . 【点睛】本题考查了二次函数的图象与系数的关系:二次函数y =ax 2+bx +c (a≠0)的图象为抛物线,当a >0,抛物线开口向上;对称轴为直线2bx a=-;抛物线与y 轴的交点坐标为(0,c );当b 2−4ac >0,抛物线与x 轴有两个交点;当b 2−4ac =0,抛物线与x 轴有一个交点;当b 2−4ac <0,抛物线与x 轴没有交点.5.B解析:B 【分析】由当x=0和x=3时y 值相等,可得出二次函数图象的对称轴为直线x=32,进而可得出2b a -的值,由x=1时y=5,可得出当x=2时y=5,即4a+2b+c=5,再将2b a -=32及4a+2b+c=5代入2ba-(4a+2b+c )中即可求出结论. 【详解】解:∵当x =0和x =3时,y 值相等,∴二次函数图象的对称轴为直线x =32, ∴3=22b a -. ∵当x =1时,y =5,∴当x =2×32﹣1=2时,y =5, ∴4a +2b +c =5.∴2b a -(4a +2b +c )=32×5=152. 故选:B . 【点睛】本题考查了二次函数图象上点的坐标特征以及二次函数的性质,利用二次函数的性质及二次函数图象上点的坐标特征,找出2ba-和(4a+2b+c )的值是解题的关键. 6.D解析:D 【分析】先求出二次函数图象的对称轴,然后根据m 的符号分类讨论,结合图象的特征即可得出结论. 【详解】该二次函数图象的对称轴为直线21122m x m m-=-=-+, 若0m >,对于22m x m-=-无法判断其符号,故A 、B 选项不一定正确; 若0m <,则202m x m -=-<,即22m m--<1,且抛物线的开口向下, ∴当1x >时,y 随x 的增大而减小,故选:D . 【点睛】此题考查的是二次函数的图象及性质,解决此题的关键是分类讨论确定对称轴的位置,再结合开口方向进行综合分析.7.B解析:B 【分析】由函数图像与对称轴的方程结合可判断①,由抛物线与x 轴有两个交点,可判断②,由抛物线的对称轴为:1,2bx a=-= 可得2,b a =-结合图像可得当2x =-时,42y a b c =-+<0, 可判断③,由图像可得当2x =时,4+2y a b c =+>0,当1x =-时,y a b c =-+>0,两式相加可得:52a b c ++>0,可判断④,从而可得答案. 【详解】 解:图像开口向下, a ∴<0,12bx a==->0, b ∴>0,函数图像与y 轴交于正半轴,c ∴>0,abc ∴<0,故①不符合题意; 抛物线与x 轴有两个交点,24b ac ∴->0, 故②符合题意; 抛物线的对称轴为:1,2bx a=-= 2,b a ∴=-当2x =-时,42y a b c =-+<0,()422a a c ∴-⨯-+<0,8a c ∴+<0,故③符合题意;当2x =时,4+2y a b c =+>0,当1x =-时,y a b c =-+>0,两式相加可得:52a b c ++>0,故④符合题意; 故选:.B 【点睛】本题考查的是抛物线的图像与系数之间的关系,二次函数的性质,掌握以上知识是解题的关键.8.B解析:B 【分析】①先求出C 、D 的坐标,再根据两点距离公式求得CD ,便可判断; ②当m=0时,可得抛物线与x 轴的两个交点坐标和顶点坐标即可判断; ③根据抛物线与x 轴的一个交点坐标和对称轴即可得另一个交点坐标即可判断; ④根据二次函数图象当x 1<1<x 2,且x 1+x 2>2,根据离对称越远的点的纵坐标就越大得出结论. 【详解】解:①∵y=x 2-2x+m=(x-1)2+m-1, ∴C (0,m ),D (1,m-1), ∴,②当m=0时,抛物线与x 轴的两个交点坐标分别为A (0,0)、B (2,0),顶点D (1,-1),∴,∴△ABD 是等腰直角三角形,故②正确;③当a=-2时,抛物线与x 轴的一个交点坐标为(-2,0),∵对称轴x=1,∴另一个交点坐标为(4,0),∴b=4,故③错误;④观察二次函数图象可知:当x 1<1<x 2,且x 1+x 2>2,则1-x 1<x 2-1∴y 1<y 2.故④正确.故选:B .【点睛】本题考查了二次函数图象与系数的关系、二次函数图象上点的坐标特征、抛物线与x 轴的交点、等腰直角三角形,解决本题的关键是综合利用以上知识.9.B解析:B【分析】根据抛物线的性质逐条判断即可.【详解】解:抛物线22()1y x =-+是二次函数的顶点式,由此可知,抛物线开口向上,对称轴是2x =,顶点坐标是(2,1),故A 、C 、D 正确,不符合题意;∵抛物线顶点在第一象限,开口向上,∴抛物线与x 轴没有交点,故B 错误,符合题意;故选:B .【点睛】本题考查了二次函数图象的性质,解题关键是熟知抛物线顶点式的意义,根据顶点位置和开口确定与x 轴是否有交点. 10.C解析:C【分析】根据函数的图像分别确定各项系数的正负,再由对称轴和与x 轴的交点即可解题.∵抛物线开口向上,∴a>0,∵抛物线与y 轴的交点在x 轴下方,∴c<0,抛物线的对称轴为直线x=-b 2a =10>,即02<b a0a >0b ∴<∴ab<0,所以①正确;∵抛物线与x 轴有2个交点,∴△=b 2-4ac>0,所以②正确;∵x=1时,y<0,∴a+b+c<0,而c<0,∴a+b+2c<0,所以③正确;∵抛物线的对称轴为直线x=-b 2a =1, ∴b=-2a ,而x=-1时,y>0,即a-b+c>0,∴a+2a+c>0,即30a c +>所以④错误.故选C .【点睛】本题考查了二次函数的图像与性质,属于简单题,熟悉二次函数的图像性质是解题关键. 11.B解析:B【分析】根据二次函数的图象与系数的关系即可求出答案.【详解】解:①由开口可知:a <0,∴对称轴22b x a=-=-, ∴b<0,由抛物线与y 轴的交点可知:c<0,∴abc <0,故①正确;②∵对称轴22b x a =-=-,a <0, 在对称轴左边,y 随x 的增大而增大,∵8323-<-<-, ∴12y y <,故②错误;③当1x =-,20y ax bx c a b c =++=-+>,∵对称轴22b x a=-=-,抛物线与y 轴的交点C(0,-1), ∴4b a =,1c =-,∴410a a -->,解得:13a <-,故③错误;④∵1a =-,1c =-,∴44b a ==-,∴抛物线的解析式为()224123y x x x =---=-++, ∴顶点D 的坐标为(-2,3),解方程()2230x -++=得:23x =-±,∴23AB =,根据抛物线的对称性,BE=3,DE=3,∴DB=()223323+=,∴DB=AD=AB=23,∴ABD △是等边三角形.故④正确;故选:B .【点睛】本题考查了二次函数的图象与性质、二次函数解析式的求法、等边三角形的判定等知识,解题的关键是熟练掌握二次函数的图象与性质,属于中考常考题型.12.D解析:D【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线y=-2(x-1)2+4向右平移3个单位,再向下平移2个单位长度后得到抛物线的解析式为:y=-2(x-1-3)2+4-2,即y=-2(x-4)2+2;故选:D .【点睛】此题主要考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.二、填空题13.【分析】根据题意和二次函数的性质可以得到二次函数的图像与轴的另一个交点然后得到的解然后再变形即可得到方程的两个根;【详解】∵二次函数的图象与x 轴交于点对称轴为直线∴该函数与x 轴的另一个交点为∴当时可 解析:11x =-,213x =【分析】根据题意和二次函数的性质,可以得到二次函数2(0)y ax bx c a =++≠的图像与x 轴的另一个交点,然后得到20ax bx c ++=的解,然后再变形,即可得到方程的两个根;【详解】∵二次函数2(0)y ax bx c a =++≠的图象与x 轴交于点()3,0,对称轴为直线1x =, ∴该函数与x 轴的另一个交点为()1,0-,∴当0y =时,20ax bx c =++,可得:11x =-,23x =,当20ax bx c ++=,0x ≠时,可得2110a b c x x ⎛⎫⎛⎫++= ⎪ ⎪⎝⎭⎝⎭, 设1t x=,可得20ct bt a ++=, ∴11t =-,213t =, 由上可得,方程20cx bx c++=的两个根为11x =-,213x =; 故答案为:11x =-,213x =. 【点睛】本题主要考查了二次函数与一元二次方程的应用,准确分析计算是解题的关键. 14.【分析】根据绝对值的意义分两种情形化简绝对值后根据图像确定b 的范围即可【详解】当x≥1时y=;当x <1时y=;∴二图像的交点为(1-6)y=的最小值为画图像如下根据图像可得直线与之间的部分有个交点∴解析:2564b -<<- 【分析】 根据绝对值的意义,分两种情形化简绝对值,后根据图像确定b 的范围即可.【详解】当x≥1时,y=27x x -;当x <1时,y=26x x --;∴227(1)6(1)x x x y x x x ⎧-≥=⎨--<⎩, 二图像的交点为(1,-6), y=26x x --的最小值为254-, 画图像如下,根据图像,可得直线6y =-与254y =-之间的部分有4个交点, ∴b 的取值范围为254-<b <-6, 故填254-<b <-6. 【点睛】 本题考查了图像的交点问题,利用分类思想,数形结合思想,最值思想画出图像草图是解题的关键.15.或【分析】根据抛物线与x 轴的一个交点坐标和对称轴由抛物线的对称性可求抛物线与x 轴的另一个交点再根据抛物线的增减性可求当y <0时x 的取值范围【详解】解:∵抛物线y=ax2+bx+c (a≠0)与x 轴的一解析:4x <-或2x >【分析】根据抛物线与x 轴的一个交点坐标和对称轴,由抛物线的对称性可求抛物线与x 轴的另一个交点,再根据抛物线的增减性可求当y <0时,x 的取值范围.【详解】解:∵抛物线y=ax 2+bx+c (a≠0)与x 轴的一个交点坐标为(-4,0),对称轴为x=-1, ∴抛物线与x 轴的另一个交点为(2,0),由图象可知,当y >0时,x 的取值范围是x <-4或x >2.故答案为:x <-4或x >2.【点睛】本题考查了抛物线与x 轴的交点,二次函数的性质,关键是得到抛物线与x 轴的另一个交点.16.【分析】把点的坐标代入解析式转化为a 的一元二次方程确定方程的根从给出的数字中扣除方程的根就是符合题意的a 值计算概率即可【详解】当二次函数的图象经过点时得解得所以符合题意的a 值有-3-12共三个所以二 解析:35【分析】把点的坐标代入解析式,转化为a 的一元二次方程,确定方程的根,从给出的数字中扣除方程的根就是符合题意的a 值,计算概率即可.【详解】当二次函数22(1)2y x a x a =-++-的图象经过点(1,0)时,得 220a a +-=,解得 122,1a a =-=,所以符合题意的a 值有-3,-1,2,共三个,所以二次函数22(1)2y x a x a =-++-的图象不经过点(1,0)的概率是35, 故答案为:35. 【点睛】 本题考查了简单事件的概率计算、二次函数,利用二次函数的图象过点的意义,判定符合题意的a 值是解题的关键.17.2【分析】由与x 轴交于点AB 即y=0求出x 即得到图象与x 轴的交点坐标与y 轴交于点C 即x=0求出y 得到与y 轴的交点坐标得出ABAC 的长度从而得出△ABC 的面积;【详解】∵与x 轴交于点AB 则解得:即交点解析:2【分析】由212133y x x =-++与x 轴交于点A 、B ,即y=0,求出x ,即得到图象与x 轴的交点坐标,与y 轴交于点C ,即x=0,求出y ,得到与y 轴的交点坐标,得出AB 、AC 的长度,从而得出△ABC 的面积;【详解】 ∵212133y x x =-++与x 轴交于点A 、B , 则2121=033x x -++, 解得:11x =- ,23x = ,即交点坐标分别为(-1,0),(3,0); ∵212133y x x =-++与y 轴交于点C , 将x=0代入得y=1,∴ 点C(0,1),∴ △ABC 的面积为:1141222AB OC ⨯⨯=⨯⨯= , 故答案为:2.【点睛】本题主要考查了二次函数与坐标轴的交点坐标求法,进而得出有关三角形的面积,正确得出有关坐标是解题的关键. 18.【分析】利用二次函数的配方法确定最值即可【详解】∵∵a=-1<0∴二次函数有最大值且最大值为5;故答案为:5【点睛】本题考查了二次函数的最值问题熟练运用配方法确定二次函数的最值是解题的关键解析:【分析】利用二次函数的配方法确定最值即可.【详解】∵224y x x =-++2(24)x x =---2[(1)14]x =----2(1)5x =--+,∵a= -1<0,∴二次函数224y x x =-++有最大值,且最大值为5;故答案为:5.【点睛】本题考查了二次函数的最值问题,熟练运用配方法确定二次函数的最值是解题的关键. 19.①②④【分析】由表格中数据x=0时y=6x=1时y=6;可判断抛物线的对称轴是x=05根据函数值的变化判断抛物线开口向下再由抛物线的性质逐一判断【详解】解:由表格中数据可知x=0时y=6x=1时y=解析:①②④.【分析】由表格中数据x=0时,y=6,x=1时,y=6;可判断抛物线的对称轴是x=0.5,根据函数值的变化,判断抛物线开口向下,再由抛物线的性质,逐一判断.【详解】解:由表格中数据可知,x=0时,y=6,x=1时,y=6,①抛物线与y轴的交点为(0,6),正确;②抛物线的对称轴是x=0.5,对称轴在y轴的右侧,正确;③由表中数据可知在对称轴左侧,y随x增大而增大,错误.④根据对称性可知,抛物线的对称轴是x=0.5,点(-2,0)的对称点为(3,0),即抛物线一定经过点(3,0),正确;正确的有①②④.故答案为①②④.【点睛】主要考查了二次函数的性质.要熟练掌握函数的特殊值对应的特殊点.解题关键是根据表格中数据找到对称性以及数据的特点求出对称轴,图象与x,y轴的交点坐标等.20.y2<y1<y3【分析】根据二次函数的解析式得出图象的开口向上对称轴是直线x=根据x>时y随x的增大而增大即可得出答案【详解】解:∵y=x2﹣3x∴图象的开口向上对称轴是直线x=∵A(0y1)B(1解析:y2<y1<y3【分析】根据二次函数的解析式得出图象的开口向上,对称轴是直线x=32,根据x>32时,y随x的增大而增大,即可得出答案.【详解】解:∵y=x2﹣3x,∴图象的开口向上,对称轴是直线x=32.∵A(0,y1),B(1,y2),C(4,y3)是抛物线y=x2﹣3x上的三点,且0<1<32<4,∴y2<y1<y3.故答案为:y2<y1<y3.【点睛】本题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能熟练地运用二次函数的性质进行推理是解此题的关键.三、解答题21.证明见详解.【分析】令y=0,构造一元二次方程239=0x kx k -+-,由1,,39a b k c k ==-=-,判别式()22123660k k k ∆=-+=-≥即可.【详解】解:令y=0,239=0x kx k -+-,∵1,,39a b k c k ==-=-, ()()()222=4139123660k k k k k ∴∆--⨯⨯-=-+=-≥,∴二次函数的图象与x 轴都有交点.【点睛】本题考查二次函数与x 轴的交点问题,掌握二次函数与x 轴交点问题转化为y=0时,一元二次方程有实根问题,理解二次函数和一元二次方程之间的关系式解此题的关键,此题是一个比较典型的题目.22.(1)y =﹣(x ﹣3)2+4;(2)5米【分析】(1)建立平面直角坐标系,列出顶点式,代入点A 的坐标,求得a 的值,则可求得抛物线的解析式;(2)令y =0,得关于x 的方程,求得方程的解并根据题意作出取舍即可.【详解】解:(1)如图所示,建立平面直角坐标系,由题意可得抛物线的顶点坐标为(3,4),点A 坐标为(2,3),设抛物线的解析式为y =a (x ﹣3)2+4,将点A 坐标(2,3)代入得:3=a (2﹣3)2+4,解得:a =﹣1,∴这条抛物线的解析式为y =﹣(x ﹣3)2+4;(2)∵y =﹣(x ﹣3)2+4,∴令y =0得:0=﹣(x ﹣3)2+4,解得:x 1=1,x 2=5,∵起跳点A 坐标为(2,3),∴x 1=1,不符合题意,∴x =5,∴运动员落水点与点C 的距离为5米.【点睛】本题考查了二次函数在实际问题中的应用,数形结合并熟练掌握运用待定系数法求抛物线的解析式是解题的关键.23.(1)(18)x -,2(18)x π-;(2)2=236(018)S x x x ππ-+<<;(3)9x =;(4)(9+,(9-【分析】(1)根据矩形的性质,圆的周长公式求解即可.(2)根据圆柱的侧面积公式求解即可.(3)利用二次函数的性质求解即可.(4)构建方程求解即可.【详解】解:(1)BC=12(36-2x )=(18-x )cm , 旋转形成的圆柱的底面圆的周长为2π(18-x )cm .故答案为:(18)x -,2(18)x π-;(2)22(18)236(018)S x x x x x πππ=-⋅=-+<<(3)222362(9)162S x x x ππππ=-+=--+∵-2π<0,∴当9x =时,矩形旋转形成的圆柱的侧面积最大:(4)由题意:-2πx 2+36πx=18π,∴x 2-18x+9=0,解得或(舍弃),∴矩形的长是()cm ,宽是()cm .故答案为:(9+,(9-.【点睛】本题考查圆柱的计算,二次函数的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.24.(1)212y x x =--;(2)当1m =-时,图像1y 与2y 有一个交点;当1m ≠-时,图像1y 与2y 有两个交点,理由:见详解;(3)01a <<或10a << 【分析】(1)将()1,2-代入1y ,解关于m 的方程即可求解;(2)将点()1,1m +代入2y 求出a ,由解析式1y 和2y 联立方程组消去y 得到关于x 的一元二次方程,根据一元二次方程根的情况判断1y 与2y 交点的个数即可;(3)将1,02⎛⎫ ⎪⎝⎭代入1y 求出m 的值,把m 的值代入1y 与2y ,结合图像,根据对任意x ,都有12y y >即可求解.【详解】解:(1)将()1,2-代入1y ,得()()2111m m -=+--,解得,122,1m m =-= ,()()121y x x ∴=-+,即 212y x x =--;(2)当1m =-时,图像1y 与2y 有一个交点;当1m ≠-时,图像1y 与2y 有两个交点. 理由如下:2y 经过点()1,1m +,1m a m ∴+=+,1a ,()()121,y x m x m y x m =+--=+∴联立方程组()()1y x m x m y x m ⎧=+--⎨=+⎩,消去y ,得()2202x x m m -+=- ()()222242484410m m m m m =++=++=+≥△∴方程()2202x x m m -+=-有实数根据,当1m =-时,0=, 方程()2202x x m m -+=-有两个相等的实数根,1y 与2y 有一个交点;当1m ≠-时,0>,方程()2202x x m m -+=-有两个不相等的实数根,1y 与2y 有两个交点;综上所术,当1m =-时,图像1y 与2y 有一个交点;当1m ≠-时,图像1y 与2y 有两个交点;(3)1y 经过点1,02⎛⎫ ⎪⎝⎭, ∴ 110122m m =+--⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭, 解得,12m =-, 2121,122y x y ax ⎛⎫ ⎪⎝⎭∴=-=-联立方程组2 121212y xy ax⎧⎛⎫=-⎪ ⎪⎪⎝⎭⎨⎪=-⎪⎩,消去y得,()2314x a x++=-,若方程有两个相等的实数根,图像1y与2y有一个交点,则()231404a=+-⨯=△,解,得31a=±-,如图所示,对任意x,都有12y y>,031a∴<<或310a<<,【点睛】本题是二次函数与一次函数的综合题,考查了待定系数法求函数的解析式,二次函数与一次函数图像的交点与一元二次方程根的判别式的关系及利用图像求不等式的解集,关键在于正确理解二次函数与一次函数图像的交点与一元二次方程的关系以及数形结合的思想.25.(1)()1,0-或()3,0;(2)6;(3)点P的坐标为()17,3、()17,3、()0,3-、()2,3-.【分析】(1)令y=0,转化为一元二次方程,方程的根就是与x轴交点的横坐标;(2)求出AB的长度,OC的长度,按公式计算即可;(3)利用面积公式,抛物线的解析式转化成一元二次方程求解即可.【详解】解:(1)当0y=时,2230x x--=,解得11x=-,23x=,∴抛物线与x 轴的交点坐标为()1,0-或()3,0,故答案为:()1,0-或()3,0.(2)由(1)点()1,0A -,()3,0B ,()0,3C-, ∴()314AB =--=,3OC =, ∴14362ABC S =⨯⨯=△. (3)∵点()1,0A -,点()3,0B ,()222314y x x x =--=--,∴此抛物线有最小值,此时4y =-,()314AB =--=,∵6PAB S =△,抛物线上有一个动点P ,∴点P 的纵坐标的绝对值为6234⨯=, ∴2233x x --=或2233x x --=-, 解得,117x =,217x =,30x =,42x =,∴点P 的坐标为()17,3、()17,3-、()0,3-、()2,3-.【点睛】本题考查了二次函数与坐标轴的交点,抛物线上的内接三角形的面积,动点问题,熟练掌握性质,并能灵活运用是解题的关键.26.(1)245y x x =-++;(2)265,39E ⎛⎫ ⎪⎝⎭ 【分析】(1)根据抛物线的对称性,可得22b a -=,把()1,0A -代入函数解析式,进而即可得到答案;(2)设点()2,45F m m m -++,则4HD m =-,24EF m =-,结合4EF HD =,列出方程,即可得到答案.【详解】(1)∵4CD =,由对称性得:抛物线对称轴为:直线22b x a=-=, 把()1,0A -代入得,50a b -+=, 解得:14a b =-⎧⎨=⎩, ∴二次函数的表达式为:245y x x =-++;(2)设点()2,45F m m m -++,则4HD m =-, 由二次函数图象的对称性可得:()2224EF m m =-=-,∵4EF HD =,∴()2444m m -=-,解得103m =, ∴8243EF m =-=, ∴42233E x =-=.把23E x =代入,得2226545339E y ⎛⎫=-+⨯+= ⎪⎝⎭. ∴265,39E ⎛⎫ ⎪⎝⎭. 【点睛】本题主要考查二次函数的图像和性质,掌握待定系数法,二次函数图像的对称性以及函数图像上点的坐标特征,是解题的关键.。
人教版初三数学二次函数单元测试题及答案

人教版初三数学二次函数单元测试题及答案1.下列关系式中,属于二次函数的是(x为自变量)()A。
y = 2x + 1B。
y = x^3C。
y = -x^2 + 2x - 3D。
y = 3x - 42.函数y = x^2 - 2x + 3的图像的顶点坐标是()A。
(1,-4)B。
(-1,2)C。
(1,2)D。
(0,3)3.抛物线y = 2(x - 3)^2的顶点在()A。
第一象限B。
第二象限C。
x轴上D。
y轴上4.抛物线的对称轴是()A。
x = -2B。
x = 2C。
x = -4D。
x = 45.已知二次函数y = ax^2 + bx + c的图像如图所示,则下列结论中,正确的是()A。
ab。
0,c。
0B。
ab。
0,c < 0C。
ab。
0D。
ab < 0,c < 06.二次函数y = ax^2 + bx + c的图像如图所示,则点在第___象限()A。
一B。
二C。
三D。
四7.如图所示,已知二次函数y = ax^2 + bx + c(a ≠ 0)的图像的顶点P的横坐标是4,图像交x轴于点A(m,0)和点B,且m。
4,那么AB的长是()A。
4 + mB。
mC。
2m - 8D。
8 - 2m8.若一次函数y = ax + b的图像经过第二、三、四象限,则二次函数y = ax^2 + bx的图像只可能是()无法确定9.已知抛物线和直线在同一直角坐标系中的图像如图所示,抛物线的对称轴为直线x = -1,P1(x1,y1),P2(x2,y2)是抛物线上的点,P3(x3,y3)是直线上的点,且-1 < x1 < x2,x3 < -1,则y1,y2,y3的大小关系是()A。
y1 < y2 < y3B。
y2 < y3 < y1C。
y3 < y1 < y2D。
y2 < y1 < y310.把抛物线y = x^2 - 2x + 3的图像向左平移2个单位,再向上平移3个单位,所得抛物线的函数关系式是()A。
人教版九年级下册数学全册测试卷(含答案)

二次函数测试题一、填空题(每空2分,共32分)1.二次函数y=2x 2的顶点坐标是 ,对称轴是 .2.函数y=(x -2)2+1开口 ,顶点坐标为 ,当 时,y 随x 的增大而减小.3.若点(1,0),(3,0)是抛物线y=ax 2+bx+c 上的两点,则这条抛物线的对称轴是 . 4.一个关于x 的二次函数,当x=-2时,有最小值-5,则这个二次函数图象开口一定 . 5.二次函数y=3x 2-4x+1与x 轴交点坐标 ,当 时,y>0.6.已知二次函数y=x 2-mx+m -1,当m= 时,图象经过原点;当m= 时,图象顶点在y 轴上.7.正方形边长是2cm ,如果边长增加xcm ,面积就增大ycm 2,那么y 与x 的函数关系式是________________. 8.函数y=2(x -3)2的图象,可以由抛物线y=2x 2向 平移 个单位得到. 9.当m= 时,二次函数y=x 2-2x -m 有最小值5.10.若抛物线y=x 2-mx+m -2与x 轴的两个交点在原点两侧,则m 的取值范围是 . 二、选择题(每小题3分,共30分)11.二次函数y=(x -3)(x+2)的图象的对称轴是( )A.x=3B.x=-3C.12x =- D. 12x =12.二次函数y=ax 2+bx+c 中,若a>0,b<0,c<0,则这个二次函数的顶点必在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 13.若抛物线y=0.5x 2+3x+m 与x 轴没有交点,则m 的取值范围是( )A.m≤4.5B.m≥4.5C.m>4.5D.以上都不对 14.二次函数y=ax 2+bx+c 的图如图所示,则下列结论不正确的是( )A.a<0,b>0B.b 2-4ac<0 C.a -b+c<0 D.a -b+c>0 15.函数是二次函数m x m y m+-=-22)2(,则它的图象( )A.开口向上,对称轴为y 轴B.开口向下,顶点在x 轴上方C.开口向上,与x 轴无交点D.开口向下,与x 轴无交点 16.一学生推铅球,铅球行进高度y(m)与水平距离x(m)之间的关系是35321212++-=x x y ,则铅球落地水平距离为( ) A.53m B.3m C.10m D.12m 17.抛物线y=ax 2+bx+c 与y 轴交于A 点,与x 轴的正半轴交于B 、C 两点,且BC=2,S ΔABC =4,则c 的值( )A.-5B.4或-4C.4D.-4 (第14题)18.二次函数y=ax2+bx+c的图象如图所示,则此函数解析式为()A.y=-x2+2x+3B.y=x2-2x-3C.y=-x2-2x+3D.y= -x2-2x-319.函数y=ax2+bx+c和y=ax+b在同一坐标系中大致图象是()(第18题)20.若把抛物线y=x2+bx+c向左平移2个单位,再向上平移3个单位,得到抛物线y=x2,则()A.b=-2,c=3B.b=2,c=-3C.b=-4,c=1D.b=4,c=7三、计算题(共38分)21.已知抛物线y=ax2+bx+c与x轴交点的横坐标分别为-1,2,且抛物线经过点(3,8),求这条抛物线的解析式。
九年级 数学二次函数单元测试题及答案

九年级数学二次函数单元测试题及答案二次函数单元测评一、选择题(每题3分,共30分)1.下列关系式中,属于二次函数的是()A。
y=2x+1B。
y=3x-2C。
y=x2-4x+3D。
y=1/x2.函数y=x2-2x+3的图象的顶点坐标是()A。
(1,-4)B。
(-1,2)C。
(1,2)D。
(0,3)3.抛物线y=2(x-3)2的顶点在()A。
第一象限B。
第二象限C。
x轴上D。
y轴上4.抛物线的对称轴是()A。
x=-2B。
x=2C。
x=-4D。
x=45.已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中,正确的是()A。
ab>0,c>0B。
ab>0,c<0C。
ab0D。
ab<0,c<06.二次函数y=ax2+bx+c的图象如图所示,则点在第二象限()7.如图所示,已知二次函数y=ax2+bx+c(a≠0)的图象的顶点P的横坐标是4,图象交x轴于点A(m,0)和点B,且m>4,那么AB的长是()A。
4+mB。
mC。
2m-8D。
8-2m8.若一次函数y=ax+b的图象经过第二、三、四象限,则二次函数y=ax2+bx的图象只可能是()无法确定9.已知抛物线和直线在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=-1,P1(x1,y1),P2(x2,y2)是抛物线上的点,P3(x3,y3)是直线上的点,且-1<x1<x2,x3<-1,则y1,y2,y3的大小关系是()B。
y2<y3<y110.把抛物线的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是()C。
y=(x+2)2+3二、填空题(每题4分,共32分)11.二次函数y=x2-2x+1的对称轴方程是x=1.12.若将二次函数y=x2-2x+3配方为y=(x-h)2+k的形式,则y=(x-1)2+2.13.若抛物线y=x2-2x-3与x轴分别交于A、B两点,则AB的长为4.选B.3.考点:二次函数解析式的确定.选C.4.考点:二次函数图象的性质.选D.5.考点:二次函数解析式的确定.选B.6.考点:二次函数图象的性质.选A.7.考点:二次函数图象的性质.选C.8.考点:二次函数图象的性质.选B.9.考点:二次函数图象的性质.选D.10.考点:二次函数图象的性质.选C.二、填空题14.抛物线经过点A(-1,0)和B(3,0),解析式为y=x^2+1.15.解析式为y=-3x^2+18x-9.16.最高点距地面20m.17.解析式为y=-(x-2)^2+3.18.点为(-1,b^2).三、解答题19.(1)对称轴方程为x=0,点A关于对称轴对称的点A'为A'(0,4),点B(4,0)关于对称轴对称的点B'为B'(-4,0).2)解析式为y=-x^2-4.20.(1)解得x1=-1,x2=-7,代入二次函数解析式得y=x^2-3x+2.2)平移后的顶点为P(2,-2),交点为C(4,0),△POC的面积为4.21.(1)解析式为y=-x^2+6x+5.2)△MCB的面积为12.22.设单价为x元,销售量为y件,根据题意得到方程组:x=2.5+(13.5-x)/200x=2.5+((13.5-x-1)*700)/200解得x=11.5,销售量为900件,获利为(11.5-2.5)*900=8100元,故销售单价为11.5元时可以获利最大。
九年级数学二次函数测试题含答案(精选5套)

九年级数学 二次函数 单元试卷(一)时间90分钟 满分:100分一、选择题(本大题共10小题,每小题3分,共30分) 1.下列函数不属于二次函数的是( )A.y=(x -1)(x+2)B.y=21(x+1)2C. y=1-3x 2D. y=2(x+3)2-2x 22. 函数y=-x 2-4x+3图象顶点坐标是( )A.(2,-1)B.(-2,1)C.(-2,-1)D.(2, 1)3. 抛物线()12212++=x y 的顶点坐标是( )A .(2,1)B .(-2,1)C .(2,-1)D .(-2,-1)4. y=(x -1)2+2的对称轴是直线( )A .x=-1B .x=1C .y=-1D .y=1 5.已知二次函数)2(2-++=m m x mx y 的图象经过原点,则m 的值为 ( ) A . 0或2 B . 0 C . 2 D .无法确定6. 二次函数y =x 2的图象向右平移3个单位,得到新的图象的函数表达式是( )A. y =x 2+3B. y =x 2-3C. y =(x +3)2D. y =(x -3)27.函数y=2x 2-3x+4经过的象限是( )A.一、二、三象限B.一、二象限C.三、四象限D.一、二、四象限 8.下列说法错误的是( )A .二次函数y=3x 2中,当x>0时,y 随x 的增大而增大B .二次函数y=-6x 2中,当x=0时,y 有最大值0 C .a 越大图象开口越小,a 越小图象开口越大D .不论a 是正数还是负数,抛物线y=ax 2(a ≠0)的顶点一定是坐标原点9.如图,小芳在某次投篮中,球的运动路线是抛物线=-15x 2+3.5的一部分,若命中篮圈中心,则他与篮底的距离l 是( )A .3.5mB .4mC .4.5mD .4.6m10.二次函数y=ax 2+bx +c 的图象如图所示,下列结论错误的是( ) A .a >0. B .b >0. C .c <0. D .abc >0.(第9题) (第10题)3.05m xyx y o二、填空题(本大题共4小题,每小题3分,共12分)11.一个正方形的面积为16cm 2,当把边长增加x cm 时,正方形面积为y cm 2,则y 关于x 的函数为 。
(典型题)初中数学九年级数学下册第二单元《二次函数》测试题(含答案解析)

一、选择题1.一次函数y =ax +b 与二次函数y =ax 2+bx +c 在同一坐标系中的图象可能是( ) A . B .C .D .2.已知二次函数()222y mx m x =+-,它的图象可能是( ) A . B .C .D .3.关于二次函数22y x x =-+的最值,下列叙述正确的是( )A .当2x =时,y 有最小值0.B .当2x =时,y 有最大值0.C .当1x =时,y 有最小值1D .当1x =时,y 有最大值14.如图,二次函数()20y ax bx c a =++≠图象的顶点为D ,其图像与x 轴的交点A 、B 的横坐标分别为-1,3,与y 轴负半轴交于点C .在下面四个结论中:①0a b c ++<; ②13a c =-; ③只有当12a =时,ABD △是等腰直角三角形; ④使ACB △为等腰三角形的a 值可以有两个.其中正确的结论有 A .1个 B .2个 C .3个 D .4个5.抛物线221y x =--的顶点坐标是( )A .(2,1)--B .(2,1)C .(0,1)-D .(0,1) 6.如图是二次函数y =mx 2+nx +k 图象的一部分且过点P (3,0),二次函数图象的对称轴是直线x =1,下列结论正确的是( )A .n 2﹣4mk <0B .mk >0C .n =2mD .m ﹣n +k =0 7.已知二次函数2(2)1y mx m x =+--(m 为常数,且0m ≠),( )A .若0m >,则1x <,y 随x 的增大而增大B .若0m >,则1x >,y 随x 的增大而减小C .若0m <,则1x <,y 随x 的增大而增大D .若0m <,则1x >,y 随x 的增大而减小 8.已知二次函数y =x 2﹣4x +m 2+1(m 是常数),若当x =a 时,对应的函数值y <0,则下列结论中正确的是( )A .a ﹣4<0B .a ﹣4=0C .a ﹣4>0D .a 与4的大小关系不能确定9.如图,抛物线2y ax bx c =++的顶点位于第二象限,对称轴是直线1x =-,且抛物线经过点(1,0).下面给出了五个结论:①0abc >;②240a b c -+>;③40a c +<;④13a b c -=;⑤326320a b c --<.其中结论正确的有( )A .5个B .4个C .3个D .2个10.如图1,在等腰直角BAC 中,90BAC ∠=︒,AB AC =,点P 为AB 的中点,点M 为BC 边上一动点,作45PMN ∠=︒,射线MN 交AC 边于点N .设BM x =,CN y =,y 与x 的函数图象如图2,其顶点为(),m n ,则m n +的值为( )A .4B .33C .222+D .25+ 11.函数k y x=与()20y kx k k =-≠在同一直角坐标系中的图象大致是下图中的( ) A . B . C . D . 12.已知函数223y x x =+-及一次函数y x m =-+的图象如图所示,当直线y x m =-+与函数223y x x =+-的图象有2个交点时,m 的取值范围是( )A .3m <-B .31m -<<C .134m >或3m <-D .31m -<<或134m > 二、填空题13.如果抛物线y=x 2-6x+c-2的顶点到x 轴的距离是4,则c 的值等于_________. 14.将二次函数y =﹣(x ﹣k )2+k +1的图象向右平移1个单位,再向上平移2个单位后,顶点恰好在直线y =2x +1上,则k 的值为_____.15.已知二次函数2(0)y ax bx ca =++≠的自变量x 与函数值y 之间满足下列数量关系: x 01 2 3 y7 5 7 13 则代数式的值为.16.将抛物线21:23C y x x =-+向左平移一个单位长度,得到抛物线2C ,抛物线2C 与抛物线3C 关于y 轴对称,则抛物线3C 的表达式为____.17.抛物线212133y x x =-++与x 轴交于点A B 、,与y 轴交于点C ,则ABC 的面积为 _______.18.已知二次函数()20y ax bx c a =++≠的图象如图,有下列5个结论:①0abc <;②30a c +>;③420a b c ++>;④20a b +=;⑤24b ac >.其中正确的结论的有__________________(填正确的序号)19.如图,在正方形ABCD 中,点E 是BC 边上的动点,过点E 作AE 的垂线交CD 边于点F ,设BE x =,FD y =,y 关于x 的函数关系图像如图所示,则m =________.20.教练对小明推铅球的录像进行技术分析,如图,发现铅球行进高度()y m 与水平距离()x m 之间的关系为()21184105y x =--+ ,由此可知铅球推出的距离_____ m .三、解答题21.已知抛物线239y x kx k =-+-.求证:无论k 为何值,该二次函数的图象与x 轴都有交点.22.当自变量4x =时,二次函数的值最小,最小值为3-,且这个函数的图像与x 轴的一个交点的横坐标为1.(1)求这个二次函数的表达式;(2)求这个函数的图像与y 轴交点的坐标.23.某商店将标价为100元/台的品牌学习机在网上直播间销售,两次降价后,价格为81元/台,并且两次降价的百分率相同.(1)求该品牌学习机每次降价的百分率;(2)从第二次降价后的第1天算起,第x 天的销量及网上直播间销售支出劳务费用的相关信息如表所示: 时间(天)x 销量(台)150﹣x 网上直播间售支出劳务费用(元) 3x 2﹣50x +600x (天)的利润为y (元),求y 与x 之间的函数解析式,并求出第几天时销售利润最大,最大利润是多少? 24.如图1,抛物线26y ax bx =++与x 轴交于点A (2,0)B (6,0),与y 轴交于点C ,连接AC ,BC .(1)求抛物线的表达式;(2)求ACB ∠的正切值;(3)如图2,过点C 的直线交抛物线于点D ,若45ACD ∠=︒,求点D 的坐标.25.如图,有四张背面完全相同的卡片A ,B ,C ,D ,其中正面分别写着四个不同的函数表达式,将四张卡片洗匀正面朝下随机放在桌面上.(1)从四张卡片中随机摸出一张,摸出的卡片上的函数y 随x 的增大而减小的概率是______;(2)小亮和小强用这四张卡片做游戏,规则如下:两人同时从四张卡片中各随机抽出一张,若抽出的两张卡片上的函数增减性相同,则小亮胜;若抽出的两张卡片上的函数增减性不同,则小强胜.这个游戏公平吗?请说明理由.26.2020年是国家实施精准扶贫、实现贫困人口全面脱贫的决胜之年.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售,在销售的30天中,第一天卖出20千克,为了扩大销售,采取降价措施,以后每天比前一天多卖出4千克,第x 天的售价为y 元/千克,y 关于x 的函数解析式为()()76120,2030,mx m x x y n x x ⎧-≤<⎪=⎨≤≤⎪⎩为正整数为正整数且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售蓝莓的成本是18元/千克,每天的利润是W 元(利润=销售收入-成本).(1)m =______,n =______;(2)求销售蓝莓第几天时,当天的利润最大?最大利润是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先由一次函数y ax b =+的图象得到a 、b 的正负,再与二次函数2y ax bx c =++的图象的开口方向、对称轴位置相比较即可做出判断.【详解】解:A 、由抛物线可知,a <0,x =﹣2b a <0,得b <0,由直线可知,a >0,b >0,故本选项错误;B 、由抛物线可知,a <0,x =﹣2b a <0,得b <0,由直线可知,a <0,b <0,故本选项正确;C 、由抛物线可知,a >0,x =﹣2b a >0,得b <0,由直线可知,a >0,b >0,故本选项错误;D 、由抛物线可知,a <0,x =﹣2b a<0,得b <0,由直线可知,a <0,b >0,故本选项错误.故选:B .【点睛】本题主要考查一次函数的图象、二次函数2y ax bx c =++的图象与性质,熟练掌握两函数图象与解析式的系数的关系是解答的关键. 2.B解析:B【分析】分m >0,m <0两种情形,判断对称轴与x=14的位置关系即可. 【详解】∵()222y mx m x =+-, ∴抛物线一定经过原点,∴选项A 排除;∵()222y mx m x =+- , ∴对称轴为直线x=22224m m m m ---=⨯, ∵24m m --14=24m m m --=24m-, 当m >0时,抛物线开口向上,24m -<0, ∴对称轴在直线x=14的左边,B 选项的图像符合;C 选项的图像不符合;当m <0时,抛物线开口向下,24m->0, ∴对称轴在直线x=14的右边, D 选项的图像不符合;故选B.【点睛】 本题考查了二次函数的图像,熟练掌握抛物线经过原点的条件,抛物线对称轴的位置与定直线的关系的判定是解题的关键.3.D解析:D【分析】先将二次函数配方成()211y x =--+,即可求解.【详解】解:()()2221221y x x x x x =-+=----+=, 二次函数的图象开口向下,当1x =时,y 有最大值1,故选:D .【点睛】本题考查二次函数的图象与性质,将二次函数解析式化为顶点式是解题的关键. 4.D解析:D【分析】先根据图象与x 轴的交点A ,B 的横坐标分别为﹣1,3确定出AB 的长及对称轴,再由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】解:①由抛物线的开口方向向上可推出a >0,∵图像与x 轴的交点A 、B 的横坐标分别为-1,3,∴对称轴x =1,∴当x =1时,y <0,∴a +b +c <0;故①正确;②∵点A 的坐标为(﹣1,0),∴a ﹣b +c =0,又∵b =﹣2a ,∴a ﹣(﹣2a )+c =0,∴c =﹣3a ,∴13a c =-∴结论②正确.③如图1,连接AD ,BD ,作DE ⊥x 轴于点E , ,要使△ABD 是等腰直角三角形,则AD =BD ,∠ADB =90°,∵DE ⊥x 轴,∴点E 是AB 的中点,∴DE =BE ,即|244ac b a -|()312--==2,又∵b =﹣2a ,c =﹣3a ,∴|()()24324a a a a⨯---|=2,a >0, 解得a 12=, ∴只有当a 12=时,△ABD 是等腰直角三角形, 结论③正确 ④要使△ACB 为等腰三角形,则AB =BC =4,AB =AC =4,或AC =BC ,Ⅰ、当AB =BC =4时,在Rt △OBC 中,∵OB =3,BC =4,∴OC 2=BC 2﹣OB 2=42﹣32=16﹣9=7,即c 2=7,∵抛物线与y 轴负半轴交于点C ,∴c <0,c 7=-,∴a 73c =-=.Ⅱ、当AB =AC =4时,在Rt △OAC 中,∵OA =1,AC =4,∴OC 2=AC 2﹣OA 2=42﹣12=16﹣1=15,即c 2=15,∵抛物线与y 轴负半轴交于点C ,∴c <0,c=,∴a 3c =-= Ⅲ、当AC =BC 时,∵OC ⊥AB ,∴点O 是AB 的中点,∴AO =BO ,这与AO =1,BO =3矛盾,∴AC =BC 不成立.∴使△ACB 为等腰三角形的a . 结论④正确.故答案选:D【点睛】二次函数y =ax 2+bx +c 系数符号的确定:(1)a 由抛物线开口方向确定:开口方向向上,则a >0;否则a <0;(2)b 由对称轴和a 的符号确定:由对称轴公式x 2b a=-判断符,(3)c 由抛物线与y 轴的交点确定:交点在y 轴正半轴,则c >0;否则c <0;(4)b 2﹣4ac 由抛物线与x 轴交点的个数确定:①2个交点,b 2﹣4ac >0;②1个交点,b 2﹣4ac =0;③没有交点,b 2﹣4ac <0.5.C解析:C【分析】根据题目中的函数解析式可以直接写出该抛物线的顶点坐标.【详解】解:∵y=-2x 2-1,∴该抛物线的顶点坐标为(0,-1),故选:C .【点睛】本题考查了二次函数的性质,解答本题的关键是明确题意,利用二次和函数的性质解答. 6.D解析:D【分析】根据抛物线与x 轴有两个交点可对A 进行判断;由抛物线开口向上得m >0,由抛物线与y 轴的交点在x 轴下方得k <0,则可对B 进行判断;根据抛物线的对称轴是x =1对C 选项进行判断;根据抛物线的对称性得到抛物线与x 轴的另一个交点为(−1,0),所以m−n +k =0,则可对D 选项进行判断.【详解】解:A .∵抛物线与x 轴有两个交点,∴n 2﹣4mk >0,所以A 选项错误;B .∵抛物线开口向上,∴m >0,∵抛物线与y 轴的交点在x 轴下方,∴k <0,∴mk <0,所以B 选项错误;C .∵二次函数图象的对称轴是直线x =1,∴﹣2n m=1, ∴n =﹣2m ,所以C 选项错误;D .∵抛物线过点A (3,0),二次函数图象的对称轴是x =1,∴抛物线与x 轴的另一个交点为(﹣1,0),∴m ﹣n +k =0,所以D 选项正确;故选:D .【点睛】本题考查了二次函数的图象与系数的关系:二次函数y =ax 2+bx +c (a≠0)的图象为抛物线,当a >0,抛物线开口向上;对称轴为直线2b x a=-;抛物线与y 轴的交点坐标为(0,c );当b 2−4ac >0,抛物线与x 轴有两个交点;当b 2−4ac =0,抛物线与x 轴有一个交点;当b 2−4ac <0,抛物线与x 轴没有交点.7.D解析:D【分析】先求出二次函数图象的对称轴,然后根据m 的符号分类讨论,结合图象的特征即可得出结论.【详解】 该二次函数图象的对称轴为直线21122m x m m -=-=-+, 若0m >,对于22m x m -=-无法判断其符号,故A 、B 选项不一定正确; 若0m <,则202m x m -=-<,即22m m--<1,且抛物线的开口向下,∴当1x >时,y 随x 的增大而减小,故选:D .【点睛】此题考查的是二次函数的图象及性质,解决此题的关键是分类讨论确定对称轴的位置,再结合开口方向进行综合分析.8.A解析:A【分析】画出函数图象,利用图象法解决问题即可;【详解】解:∵抛物线的对称轴为422x -=-=, 抛物线与x 轴交于点A 、B .如图,设点A 、B 的横坐标分别为12x x 、,124x x +=,2121x x m =+,∴()()()22212121241641x x x x x x m -=+-=-+, ∵210m +>,∴()212x x -的最小值为16, ∴AB <4,∵当自变量x 取a 时,其相应的函数值y <0,∴可知a 表示的点在A 、B 之间,∴40a -<,故选:A .【点睛】本题考查了二次函数的性质,根据题意画出图形,利用数形结合求解是解答此题的关键. 9.A解析:A【分析】由二次函数的图象即可判断a 、b 、c 的符号,即可判断①;由对称轴和与x 轴交点坐标即可求出c=-3a 和b=2a ,即可判断②③④;把()()()2232332632632236126=61a b c a a a a a a a a --=-⨯-⨯-=-+-变形之后即可判断⑤;【详解】∵由图象可知开口向下,∴a <0,∵对称轴为x=-1,∴ b <0,抛物线与y 轴的交点在原点上方,∴ c >0,∴ abc >0,故①正确;∵ 抛物线经过点(1,0),对称轴为x=-1,∴ 抛物线与x 轴的另一交点时是(-3,0),∴ a+b+c=0,∵对称轴为x=-1,∴ b=2a ,∴ a+2a+c=0,即c=-3a , ()24443150a b c a a a a -+=-+⨯-=-> ,故②正确;4430a c a a a +=-=< ,故③正确;123a b a a a c -=-=-= ,故④正确; ()()()2232332632632236126=61a b c a a a a a a a a --=-⨯-⨯-=-+- ,∵ ()21a -≥0,由图象得:1a ≠ , ∴32632a b c --<0,故⑤正确;故选:A .【点睛】本题考查了二次函数图象的性质、对称轴以及函数值的求法,正确掌握二次函数的性质是解题的关键.10.C解析:C【分析】首先由函数图象可直接得出4BC =,然后当M 运动至BC 中点时,y 的值最大,此时即为AC 的长,从而在等腰直角三角形中分别计算即可.【详解】根据函数图象知,当4x =时,0y =,即:4BC =,当M 运动至BC 中点时,y 的值最大,此时y 的值即为AC 的长,∵△ABC 为等腰直角三角形,M 为BC 的中点,∴△AMC 为等腰直角三角形,且122AM MC BC ===, ∴AC ==,即:函数图象中,222,m n ==,∴222m n +=+,故选:C .【点睛】本题考查二次函数的实际应用之动态几何问题,理解二次函数的基本性质以及等腰直角三角形的性质是解题关键.11.B解析:B【分析】根据k>0,k<0,结合反比例函数及二次函数图象及其性质分类讨论.【详解】解:分两种情况讨论:①当k>0时,反比例函数k y x=在一、三象限,而二次函数()20y kx k k =-≠开口向上,与y 轴交点在原点下方,故C 选项错误,B 选项正确; ②当k<0时,反比例函数k y x=在二、四象限,而二次函数()20y kx k k =-≠开口向下,与y 轴交点在原点上方,故A 选项与D 选项错误.故选B .【点睛】 本题考查了反比例函数图象性质和二次函数图象性质.关键是根据k>0,k<0,结合反比例函数及二次函数图象及其性质分类讨论.12.D解析:D【分析】作出函数223y x x =+-及一次函数y x m =-+的图象,根据图象性质讨论即可求出. 【详解】解:如图:函数223y x x =+-,当0y =时,1x =或3-, ()()3010A B ∴-,,,,当31x -<<时,223y x x =--+,当直线过点A 时,1个交点,此时()03m =--+,即3m =-,当3m >-时,有2个交点,当直线过点B 时,有3个交点,此时01m =-+,即1m =, ∴1m <时有2个交点,31m ∴-<<,当直线与抛物线相切时,有3个交点,223y x x y x m⎧=--+∴⎨=-+⎩, 由()1430m =--+=, 解得:134m =, 134m ∴>时有2个交点, 综上所述,31m -<<或134m >. 【点睛】 本题考查了一次函数与二次函数的交点问题,熟练掌握二次函数的性质是解题的关键.二、填空题13.7或15【分析】根据题意可知抛物线顶点纵坐标是±4化成顶点式求解即可【详解】解:∵抛物线y=x2-6x+c-2的顶点到x 轴的距离是4∴抛物线顶点纵坐标是±4抛物线y=x2-6x+c-2化成顶点式为:解析:7或15.【分析】根据题意可知,抛物线顶点纵坐标是±4,化成顶点式求解即可.【详解】解:∵抛物线y=x2-6x+c-2的顶点到x轴的距离是4,∴抛物线顶点纵坐标是±4,抛物线y=x2-6x+c-2化成顶点式为:y=(x-3)2+c-11,c-11=4,c=15,c-11=-4,c=7,故答案为:7或15.【点睛】本题考查了抛物线的顶点坐标,解题关键是理解到x轴的距离是纵坐标的绝对值,注意:分类讨论.14.0【分析】先求出二次函数y=﹣(x﹣k)2+k+1的图象平移后的顶点坐标再将它代入y=2x+1即可求出k的值【详解】解:∵二次函数y=﹣(x﹣k)2+k+1的顶点坐标为(kk+1)∴将y=﹣(x﹣k解析:0【分析】先求出二次函数y=﹣(x﹣k)2+k+1的图象平移后的顶点坐标,再将它代入y=2x+1,即可求出k的值.【详解】解:∵二次函数y=﹣(x﹣k)2+k+1的顶点坐标为(k,k+1),∴将y=﹣(x﹣k)2+k+1的图象向右平移1个单位,向上平移2个单位后顶点坐标为(k+1,k+3).根据题意,得k+3=2(k+1)+1,解得k=0.故答案是:0.【点睛】本题考查了二次函数图象与几何变换,一次函数图象上点的坐标特征,难度适中.根据点的平移规律:右加左减,上加下减正确求出二次函数y=−(x−k)2+k+1的图象平移后的顶点坐标是解题的关键.15.91【分析】观察表格可知:x=0时y=7x=2时y=7即可求得抛物线的对称轴为直线x==1根据抛物线的对称性求得x=-1时y=13从而求得4a+2b+c=7a-b+c=13【详解】解:观察表格可知:解析:91【分析】观察表格可知:x=0时,y=7,x=2时,y=7,即可求得抛物线的对称轴为直线x=022=1,根据抛物线的对称性求得x=-1时,y=13,从而求得4a+2b+c=7,a-b+c=13.【详解】解:观察表格可知:x=0时,y=7,x=2时,y=7,∴抛物线的对称轴为直线x=022+=1, ∵x=3时,y=13,∴x=-1时,y=13,∴4a+2b+c=7,a-b+c=13,∴(4a+2b+c )(a-b+c )的值为91,故答案为91.【点睛】本题考查二次函数图象上的点的特征,解题的关键是灵活运用所学知识解决问题,属于中考常考题型. 16.【分析】根据抛物线的解析式得到顶点坐标根据顶点式及平移前后二次项的系数不变可得抛物线的顶点坐标而根据关于y 轴对称的两条抛物线的顶点的纵坐标相等横坐标互为相反数由此可得到抛物线所对应的函数表达式【详解 解析:22y x =+【分析】根据抛物线1C 的解析式得到顶点坐标,根据顶点式及平移前后二次项的系数不变可得抛物线 2C 的顶点坐标,而根据关于y 轴对称的两条抛物线的顶点的纵坐标相等,横坐标互为相反数,由此可得到抛物线3C 所对应的函数表达式.【详解】抛物线1C :2223=(1)2y x x x =-+-+, ∴抛物线1C 的顶点为(1,2),向左平移一个单位长度,得到抛物线2C ,∴抛物线2C 的顶点为(0,2),抛物线2C 与抛物线3C 关于y 轴对称,∴抛物线3C 的开口方向相同,顶点为(0,2),∴抛物线3C 的解析式为22y x =+.故答案为22y x =+.【点睛】本题主要考查了二次函数的图像的平移问题,只需看顶点坐标是如何平移得到的即可,关于y 轴对称的两条抛物线的顶点的纵坐标相等,横坐标互为相反数,难度适中. 17.2【分析】由与x 轴交于点AB 即y=0求出x 即得到图象与x 轴的交点坐标与y 轴交于点C 即x=0求出y 得到与y 轴的交点坐标得出ABAC 的长度从而得出△ABC 的面积;【详解】∵与x 轴交于点AB 则解得:即交点解析:2【分析】由212133y x x =-++与x 轴交于点A 、B ,即y=0,求出x ,即得到图象与x 轴的交点坐标,与y 轴交于点C ,即x=0,求出y ,得到与y 轴的交点坐标,得出AB 、AC 的长度,从而得出△ABC 的面积;【详解】 ∵212133y x x =-++与x 轴交于点A 、B , 则2121=033x x -++, 解得:11x =- ,23x = ,即交点坐标分别为(-1,0),(3,0); ∵212133y x x =-++与y 轴交于点C , 将x=0代入得y=1,∴ 点C(0,1),∴ △ABC 的面积为:1141222AB OC ⨯⨯=⨯⨯= , 故答案为:2.【点睛】本题主要考查了二次函数与坐标轴的交点坐标求法,进而得出有关三角形的面积,正确得出有关坐标是解题的关键. 18.①③④⑤【分析】根据函数图象开口向下可以得a <0顶点在y 轴右侧得到b >0与y 轴交于正半轴得c >0从而可以判断①是否正确再根据二次函数图象具有对称性和二次函数的性质可以判断其他各小题是否正确本题得以解 解析:①③④⑤【分析】根据函数图象开口向下可以得a <0,顶点在y 轴右侧得到b >0,与y 轴交于正半轴得c >0,从而可以判断①是否正确,再根据二次函数图象具有对称性和二次函数的性质可以判断其他各小题是否正确,本题得以解决.【详解】解:由图象可得,a <0,b >0,c >0,∴abc <0,故①正确;∵抛物线的对称轴为1x =,即12b a-=, ∴2b a =-,∴20a b +=,故④正确;当1x =-时,0y a b c =-+<,则30a c +<,故②错误;∵抛物线的对称轴为1x =,则2x =和0x =时的函数值相等,故2x =时,420y a b c =++>,故③正确;∵此抛物线与x 轴有两个交点,∴240b ac ->,∴24b ac >,故⑤正确,故答案为:①③④⑤.【点睛】本题考查了二次函数图象与系数的关系,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质和数形结合的思想解答.19.2【分析】设正方形的边长为a 则CFEC 均可用a 表示证明△ABE ∽△ECF 写出比例式找到y 与x 之间的函数式根据二次函数的最值求法结合所给函数图象求出a 值而后可求m 值【详解】设正方形的边长为a 则CF=a解析:2【分析】设正方形的边长为a ,则CF 、EC 均可用a 表示,证明△ABE ∽△ECF ,写出比例式找到y 与x 之间的函数式,根据二次函数的最值求法,结合所给函数图象,求出a 值,而后可求m 值.【详解】设正方形的边长为a ,则CF=a-y .∵∠BAE+∠AEB=90°,∠FEC+∠AEB=90°,∴∠BAE=∠CEF .又∠B=∠C ,∴△ABE ∽ECF , ∴BE FC AB EC =,x a y a a x-=-, 整理得:21y x x a a =-+, 当2a x =时,y 有最小值34a , 从所给函数图象上看,当x m =时,y 有最小值3, ∴334a =, 解得:4a =, ∴22a x m ===. 故答案为:2.【点睛】 本题主要考查了动点问题产生的函数图象、相似三角形的判定和性质,解题的关键是动中找静,会阅读图象信息.20.10【分析】根据铅球落地时高度y=0实际问题可理解为当y=0时求x 的值即可【详解】解:令函数式中y=00=解得x1=10x2=-2(舍去)即铅球推出的距离是10m 故答案为:10【点睛】本题考查了二次解析:10【分析】根据铅球落地时,高度y=0,实际问题可理解为当y=0时,求x 的值即可.【详解】 解:令函数式()21184105y y x ==--+中,y=0, 0=()21184105x --+, 解得x 1=10,x 2=-2(舍去),即铅球推出的距离是10m .故答案为:10.【点睛】本题考查了二次函数的应用,取函数或自变量的特殊值列方程求解是解题的关键.三、解答题21.证明见详解.【分析】令y=0,构造一元二次方程239=0x kx k -+-,由1,,39a b k c k ==-=-,判别式()22123660k k k ∆=-+=-≥即可.【详解】解:令y=0,239=0x kx k -+-,∵1,,39a b k c k ==-=-, ()()()222=4139123660k k k k k ∴∆--⨯⨯-=-+=-≥,∴二次函数的图象与x 轴都有交点.【点睛】本题考查二次函数与x 轴的交点问题,掌握二次函数与x 轴交点问题转化为y=0时,一元二次方程有实根问题,理解二次函数和一元二次方程之间的关系式解此题的关键,此题是一个比较典型的题目.22.(1)()21433y x =--;(2)70,3⎛⎫ ⎪⎝⎭ 【分析】(1)根据题意可设二次函数顶点式,再将()1,0代入求解即可;(2)令0x =即可得到结果;【详解】(1)∵当自变量4x =时,二次函数的值最小,最小值为3-, ∴顶点坐标为()4,3-, 可设顶点式为()243y a x =--, 将()1,0代入得:930a -=, 解得:13a =, ∴这个二次函数的表达式为()21433y x =--; (2)∵()21433y x =--, ∴令0x =时,1716333y =⨯-=, ∴与y 轴的交点坐标为70,3⎛⎫ ⎪⎝⎭; 【点睛】本题主要考查了待定系数法求解二次函数解析式,准确计算是解题的关键.23.(1)10%;(2)y=2330+2400x x -+,第5天销售利润最大,最大利润是2475元. 【分析】(1)根据题意,可以列出相应的方程,从而可以求得相应的百分率;(2)根据题意和表格中的数据,可以求得y 与x 之间的函数解析式,然后利用二次函数的性质可以求出第几天时销售利润最大,最大利润是多少. 【详解】解:(1)设该品牌学习机每次降价的百分率为x ,根据题意得2100(1)81x -=解得,10.110%x ==,2 1.9x =(舍去) 答:该品牌学习机每次降价的百分率为10%; (2)结合表格数据,根据题意得,()()28115061150350600y x x x x ⎡⎤=---+-+⎣⎦=()2201503+50600x x x ---=23000600330x x --+ =2330+2400x x -+ =23(5)2475x --+∴当x=5时,y 有最大值,最大值是2475 答:第5天销售利润最大,最大利润是2475元. 【点睛】本题考查二次函数的应用、一元二次方程的应用,解答本题的关键是明确题意,利用二次函数的性质和方程的知识解答. 24.(1)21462y x x =-+;(2)12;(3)D 57,2⎛⎫ ⎪⎝⎭【分析】(1)直接将点A 、B 的坐标代入26y ax bx =++ 中求得a 、b 的值即可;(2)过点A 作AE AC ⊥点A ,交BC 于点E ,过点E 做EF x ⊥轴于点F ,证出EF BF =.设EF BF x ==,则4AF x =-,证出AOC EFA ∽△△.求出1x =.即可求出12AE EF AC OA ==. (3)过点A 作AM AC ⊥于点A ,交CD 于点M ,过点M 做MN x ⊥轴于点N .证出AOC MNA ≌△△,求出点M (8,2)直线MC 的解析式162y x =-+,列方程组求出点D 坐标(7,52) 【详解】(1)∵点A(2,0)和点B(6,0)在26y ax bx =++,∴ 将点A(2,0)和点B(6,0)代入26y ax bx =++得:426036660a b a b ++=⎧⎨++=⎩ , 解得:124a b ⎧=⎪⎨⎪=-⎩ , ∴21462y x x =-+; (2)解:过点A 作AE AC ⊥点A ,交BC 于点E ,过点E 做EF x ⊥轴于点F , ∵AE ⊥AC ,EF ⊥AB , ∴∠EFB=90°, ∵B(6,0),C(0,6), ∴△OBC 为等腰直角三角形, ∴∠B=45°,∴△BEF 为等腰直角三角形, ∴EF=BF ,设EF BF x ==,则4AF x =-, ∵∠CAO+∠EAF=90°,∠AEF+∠EAF=90°, ∴∠CAO=∠AEF , ∴AOC EFA ∽△△, ∴AF EFOC AO= ,即462x x-=,解得:1x=.∴tan ACB∠=12AE EFAC OA==.(3)解:过点A作AM AC⊥于点A,交CD于点M,过点M做MN x⊥轴于点N.∵∠ACD=45°,∠CAM=90°,∴△CAM为等腰直角三角形,∴CA=AM,又∵∠CAO+∠MAB=90°,∠AMN+∠MAB=90°,∴∠CAO=∠AMN,在△AOC和△MNA中⎧⎪⎨⎪⎩∠COA=∠ANM∠CAO=∠AMNCA=AM,∴AOC MNA≌△△(AAS),∴ MN=OA=2,AN=OC=6,∴ M(8,2),∴设直线MC的解析式为:y kx b=+,将C(0,6),M(8,2),代入得:682bk b=⎧⎨+=⎩,解得:126kb⎧=-⎪⎨⎪=⎩,∴直线MC的解析式162y x=-+,∴2146 2162y x xy x⎧=-+⎪⎪⎨⎪=-+⎪⎩解得:6xy=⎧⎨=⎩(舍去)752xy=⎧⎪⎨=⎪⎩∴D(7,52);【点睛】本题考查了相似三角形与全等三角形的性质与判定,二次函数的解析式,二次函数与一次函数的交点问题,等腰直角三角形的性质;熟练掌握知识点是解题的关键;25.(1)12;(2)不公平,见解析【分析】(1)先判断出A、B、C、D四个卡片上的函数增减性,在结合概率的定义即可求解(2)根据题意用列表法分别求出小亮和小强同时抽到函数增减性相同的概率,和增减性不同的概率,二者进行比较即可【详解】(1)卡片A上的函数为12y x=-,为减函数,y随x的增大而减小;卡片B上的函数为()1y xx=-<,为增函数,y随x的增大而增大;卡片C上的函数为()230y x x=->,为增函数,y随x的增大而增大;卡片D上的函数为5y x=-,为减函数,y随x的增大而减小;所以从四张卡片中随机摸出一张,摸出的卡片上的函数y随x的增大而减小的概率为2142=(2)不公平.理由如下,根据题意列表得:卡片A卡片B卡片C卡片D 卡片A AB AC AD卡片B AB BC BD卡片由表可知总共有12中等可能的结果,抽出的两张卡片上的函数增减性相同的概率为41123= ;抽出的两张卡片上的函数增减性不同的概率是82123=, 2133>, ∴不公平. 【点睛】本题考查了函数的性质,概率和游戏的公平性,掌握列表或树状图法展示等可能的结果是解题关键. 26.(1)12m =-,25n =;(2)当18x =时,968W =最大. 【分析】(1)根据题意将第12天的售价、第26天的售价代入即可得; (2)在(1)的基础上分段表示利润,讨论最值. 【详解】解:(1)第12天的售价为32元/件,代入76y mx m =-得321276m m =-,解得12m =-,当地26天的售价为25元/千克时,代入y n =,则25n =, 故答案为:12m =-,25n =. (2)由(1)第x 天的销售量为()2041x +-即416x +. 当120x ≤<时,()()22141638182723202189682W x x x x x ⎛⎫=+-+-=-++=--+ ⎪⎝⎭,∴当18x =时,968W =最大.当2030x ≤≤时,()()416251828112W x x =+-=+, ∵280>,∴W 随x 的增大而增大, ∴当30x =时,952W =最大. ∵968952>,∴当18x =时,968W =最大. 【点睛】本题考查了一次函数的应用,二次函数的应用,弄清题意,找准题中的数量关系,运用分类讨论思想是解题的关键.。
新人教版九年级下数学二次函数单元试题及答案

九年级数学(人教版)下学期单元试卷(一)内容:26.1 满分:100分一、选择题(本大题共10小题,每小题3分,共30分)1.下列函数不属于二次函数的是( )A.y=(x -1)(x+2)B.y=21(x+1)2C. y=1-3x 2D. y=2(x+3)2-2x 2 2. 函数y=-x 2-4x+3图象顶点坐标是( )A.(2,-1)B.(-2,1)C.(-2,-1)D.(2, 1)3. 抛物线()12212++=x y 的顶点坐标是( ) A .(2,1) B .(-2,1) C .(2,-1) D .(-2,-1)4. y=(x -1)2+2的对称轴是直线( )A .x=-1B .x=1C .y=-1D .y=15.已知二次函数)2(2-++=m m x mx y 的图象经过原点,则m 的值为 ( )A . 0或2B . 0C . 2D .无法确定6. 二次函数y =x 2的图象向右平移3个单位,得到新的图象的函数表达式是( )A. y =x 2+3B. y =x 2-3C. y =(x +3)2D. y =(x -3)27.函数y=2x 2-3x+4经过的象限是( )A.一、二、三象限B.一、二象限C.三、四象限D.一、二、四象限8.下列说法错误的是( )A .二次函数y=3x 2中,当x>0时,y 随x 的增大而增大B .二次函数y=-6x 2中,当x=0时,y 有最大值0C .a 越大图象开口越小,a 越小图象开口越大D .不论a 是正数还是负数,抛物线y=ax 2(a ≠0)的顶点一定是坐标原点9.如图,小芳在某次投篮中,球的运动路线是抛物线y =-15x 2+3.5的一部分,若命中篮 圈中心,则他与篮底的距离l 是( )A .3.5mB .4mC .4.5mD .4.6m10.二次函数y=ax 2+bx +c 的图象如图所示,下列结论错误的是( )A .a >0.B .b >0.C .c <0.D .abc >0.(第9题二、填空题(本大题共4小题,每小题3分,共1211.一个正方形的面积为16cm 2,当把边长增加x cm 的函数为 。
九年级数学二次函数测试题含答案(精选5套)

九年级数学二次函数测试题含答案(精选5套)九年级数学二次函数测试题含答案(精选5套)第一套:1. 将函数 $y = 2x^2 - 3x - 2$ 化简为标准形式,并求出它的顶点坐标。
答案:将函数化简为标准形式得到 $y = 2(x-\frac{3}{4})^2 -\frac{33}{8}$,顶点坐标为 $(\frac{3}{4}, -\frac{33}{8})$。
2. 求函数 $y = -x^2 + 4x + 1$ 的零点。
答案:将函数化简为标准形式得到 $y = -(x-2)^2 + 5$,令 $y = 0$,解得 $x = 2 \pm \sqrt{5}$,即零点为 $x_1 = 2 + \sqrt{5}$ 和 $x_2 = 2 -\sqrt{5}$。
3. 给定函数 $y = x^2 - 6x + 5$,求其对称轴的方程式。
答案:对称轴的方程式为 $x = \frac{-b}{2a}$,代入 $a = 1$ 和 $b = -6$ 得到 $x = \frac{6}{2} = 3$。
4. 若函数 $y = ax^2 + bx - 9$ 与 $y = -x^2 + 7x$ 有相同的图像,求$a$ 和 $b$ 的值。
答案:由于两个函数有相同的图像,所以它们的系数相等。
比较两个函数的对应系数得到 $a = -1$ 和 $b = 7$。
5. 已知函数 $y = x^2 - 4x + 5$ 的图像上存在一点 $(h, k)$,使得 $x= h - 3$ 时,$y = 2k + 12$,求点 $(h, k)$ 的坐标。
答案:将 $x = h - 3$ 代入函数得到 $y = (h-3)^2 - 4(h-3) + 5$。
代入$y = 2k + 12$ 得到 $(h-3)^2 - 4(h-3) + 5 = 2k + 12$。
整理得到 $(h-3)^2 -4(h-3) - 2k - 7 = 0$。
由于该方程为二次方程,必然存在实数解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学(人教版)下学期单元试卷(一)内容:26.1 满分:100分一、选择题(本大题共10小题,每小题3分,共30分) 1.下列函数不属于二次函数的是( )A.y=(x -1)(x+2)B.y=21(x+1)2C. y=1-3x 2D. y=2(x+3)2-2x 22. 函数y=-x 2-4x+3图象顶点坐标是( )A.(2,-1)B.(-2,1)C.(-2,-1)D.(2, 1)3. 抛物线()12212++=x y 的顶点坐标是( )A .(2,1)B .(-2,1)C .(2,-1)D .(-2,-1)4. y=(x -1)2+2的对称轴是直线( )A .x=-1B .x=1C .y=-1D .y=1 5.已知二次函数)2(2-++=m m x mx y 的图象经过原点,则m 的值为 ( ) A . 0或2 B . 0 C . 2 D .无法确定6. 二次函数y =x 2的图象向右平移3个单位,得到新的图象的函数表达式是( )A. y =x 2+3B. y =x 2-3C. y =(x +3)2D. y =(x -3)27.函数y=2x 2-3x+4经过的象限是( )A.一、二、三象限B.一、二象限C.三、四象限D.一、二、四象限 8.下列说法错误的是( )A .二次函数y=3x 2中,当x>0时,y 随x 的增大而增大B .二次函数y=-6x 2中,当x=0时,y 有最大值0 C .a 越大图象开口越小,a 越小图象开口越大D .不论a 是正数还是负数,抛物线y=ax 2(a ≠0)的顶点一定是坐标原点9.如图,小芳在某次投篮中,球的运动路线是抛物线y =-15x 2+3.5的一部分,若命中篮圈中心,则他与篮底的距离l 是( )A .3.5mB .4mC .4.5mD .4.6m10.二次函数y=ax 2+bx +c 的图象如图所示,下列结论错误的是( ) A .a >0. B .b >0. C .c <0. D .abc >0.(第9题) (第10题)3.05m xyx y o二、填空题(本大题共4小题,每小题3分,共12分)11.一个正方形的面积为16cm 2,当把边长增加x cm 时,正方形面积为y cm 2,则y 关于x 的函数为 。
12.若抛物线y =x 2-bx +9的顶点在x 轴上,则b 的值为 。
13.抛物线y=x 2-2x-3关于x 轴对称的抛物线的解析式为 。
14.如图所示,在同一坐标系中,作出①23x y =②221x y =③2x y =的图象,则图象从里到外的三条抛物线对应的函数依次是 (三、(本题共2小题,每小题5分,满分10分)15.一个二次函数,它的对称轴是y 轴,顶点是原点,且经过点(1,-3)。
(1)写出这个二次函数的解析式;(2)图象在对称轴右侧部分,y 随x 的增大怎样变化? (3)指出这个函数有最大值还是最小值,并求出这个值。
16.拱桥的形状是抛物线,其函数关系式为231x y -=,当水面离桥顶的高度为325m 时,水面的宽度为多少米?四、(本题共2小题,每小题5分,满分10分)17.已知二次函数的顶点坐标为(4,-2),且其图象经过点(5,1),求此二次函数的解析式。
xyo18.用长为20cm的铁丝,折成一个矩形,设它的一边长为xcm,面积为ycm2。
(1)求出y与x的函数关系式。
(2)当边长x为多少时,矩形的面积最大,最大面积是多少?五、(本题共2小题,每小题6分,满分12分)19.在平面直角坐标系中,△AOB的位置如图5所示.已知∠AOB=90°,AO=BO,点A的坐标为(-3,1)。
(1)求点B的坐标;(2)求过A,O,B三点的抛物线的解析式;(3)设点B关于抛物线的对称轴l的对称点为B l,求△AB1 B的面积。
20.影响刹车距离的最主要因素是汽车行驶的速度及路面的摩擦系数。
有研究表明,晴天在某段公路上行驶时,速度v(km/h)的汽车的刹车距离s(m)可以由公式s=0.01v2确定;雨天行驶时,这一公式为s=0.02v2。
(1)如果汽车行驶速度是70 km/h,那么在雨天行驶和在晴天行驶相比,刹车距离相差多少米?(2)如果汽车行驶速度分别是60 km/h与80 km/h,那么同在雨天行驶(相同的路面)相比,刹车距离相差多少?(3)根据上述两点分析,你想对司机师傅说些什么?六、(本大题满分8分)21.已知二次函数y =(m 2-2)x 2-4mx +n 的图象的对称轴是x =2,且最高点在直线y =21x +1上,求这个二次函数的解析式。
七、(本大题满分8分)22.已知抛物线y =ax 2+6x -8与直线y =-3x 相交于点A(1,m)。
(1)求抛物线的解析式;(2)请问(1)中的抛物线经过怎样的平移就可以得到y =ax 2的图象? 八、(本大题满分10分)23.某地要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA ,O 恰好在水面中心,安装在柱子顶端A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA 的任一平面上,抛物线的形状如图(1)和(2)所示,建立直角坐标系,水流喷出的高度y(米)与水平距离x(米)之间的关系式是y =-x 2+2x+54,请你求: (1)柱子OA 的高度为多少米?(2)喷出的水流距水平面的最大高度是多少?(3(1)九年级数学(人教版)下学期单元试卷(二)内容:26.2—26.3 满分:100分一、选择题(本大题共10小题,每小题3分,共30分) 1.抛物线22-=x y 的顶点坐标为( )A .(2,0)B .(-2,0)C .(0,2)D .(0,-2) 2.二次函数y=(x -3)(x +2)的图象的对称轴是( ) A .x=3. B .x=-2. C .x=12-D .x=12. 3.已知抛物线y=x 2-8x +c 的顶点在x 轴上,则c 的值是( )A .16.B .-4.C .4.D .8.4.童装专卖店销售一种童装,若这种童装每天获利y (元)与销售单价x (元)满足关系y=-x 2+50x -500,则要想获得最大利润每天必须卖出( )A .25件B .20件C .30件D .40件5.二次函数y =x 2-2x+1与x 轴的交点个数是( )A .0B .1C .2D .3 6.若A(-134,y 1)、B(-1,y 2)、C(53,y 3)为二次函数y=-x 2-4x+5的图象上的三点,则y 1、y 2、y 3的大小关系是( )A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 2<y 1<y 3.7.把抛物线y =2x 2先向左平移3个单位,再向上平移4个单位,所得抛物线的函数表达式为( )A .y =2(x+3)2+4B .y =2(x+3)2-4C .y =2(x -3)2-4D .y =2(x -3)2+4 8.某大学的校门是一抛物线形水泥建筑物(如图所示),大门的地面宽度为8m ,两侧距地面4米高处各有一个挂校名匾用的铁环,两铁环的水平距离为6 m ,则校门的高为(精确到0.1 m ,水泥建筑物的厚度忽略不计)( )A .5.1 mB .9 mC .9.1 mD .9.2 m 9.二次函数c bx ax y ++=2的图象如图所示,则abc ,ac b 42-,b a +2,c b a ++这四个式子中,值为正数的有( ) A .1个 B .2个 C .3个 D .4个10.已知函数y=x 2-2x -2的图象如图2示,根据其中提供的信息,可求得使y ≥1成立的x 的取值范围是( )A .-1≤x ≤3B .-3≤x ≤1C .x ≥-3D .x ≤-1或x ≥3y =x 2-2x -2x y o -2-1-1-2-3124123Ox y -1 1(第8题) (第9题) (第10题)二、填空题(本大题共4小题,每小题3分,共12分) 11.抛物线2)3(94-=x y 与x 轴的交点为A ,与y 轴的交点为B ,则△AOB 的面积为 12.某二次函数的图象与x 轴交于点(-1,0),(4,0),且它的形状与抛物线y =-x 2形状相同。
则这个二次函数的解析式为 。
13.二次函数y =x 2-2x -3与x 轴两交点之间的距离为 。
14.已知点A(x 1,5),B(x 2,5)是函数y =x 2-2x+3上两点,则当x =x 1+x 2时,函数值y = 三、(本题共2小题,每小题5分,满分10分)15.已知二次函数y =-x 2+2x +m 的部分图象如图所示,请你确定关于x 的一元二次方程-x 2+2x +m=0的解。
16.已知二次函数y=-x 2+4x -3,其图像与y 轴交于点B,与x 轴交于A, C 两点。
求△ABC 的周长和面积。
四、(本题共2小题,每小题5分,满分10分)17.如图是抛物线形拱桥,拱顶离水面2m ,水面宽度4m ,水面下降1m ,水面宽度增加多少?y xO 1 318.某商场以80元/件的价格购进西服1000件,已知每件售价为100元时,可全部售出。
如果定价每提高1%,则销售量就下降0.5%,问如何定价可使获利最大(总利润=总收入-总成本)?五、(本题共2小题,每小题6分,满分12分)19.二次函数y=ax2+bx+c(a≠0,a,b,c是常数)中,自变量x与函数y的对应值如下表:(1)判断二次函数图象的开口方向,并写出它的顶点坐标。
(2)一元二次方程ax2+bx+c=0(a≠0,a,b,c是常数)的两个根x1,x2的取值范围是下列选项中的哪一个。
①-12<x1<0,32<x2<2 ;②-1<x1<-12,2<x2<52;③-12<x1<0,2<x2<52;④-1<x1<-12,32<x2<2。
20.在直角坐标平面内,二次函数图象的顶点为A(1,-4),且过点B(3,0)。
(1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x轴的另一个交点的坐标。
六、(本大题满分8分)21.方芳在一次投掷铅球时,刚出手时铅球离地面的35m ,铅球运行的水平距离为4m 时,达 到最高,高度为3m ,如图所示:(1)请确定这个抛物线的顶点坐标; (2)求抛物线的函数关系式;(3)方芳这次投掷成绩大约是多少?七、(本大题满分8分) 22.二次函数y =ax 2+bx+c(a ≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax 2+bx+c =0的两个根。
(2)写出不等式ax 2+bx+c >0的解集。
(3)写出y 随x 的增大而减小的自变量x 的取值范围。