A铝合金力学性能标准整理分析

合集下载

结构用铝合金材料力学性能

结构用铝合金材料力学性能

附录A结构用铝合金材料力学性能常见结构用铝合金板、带材力学性能(标准值)可按衣A-1采用,结构用铝合金棒、管、型材力学性能(标准值)可按衣A-2采用。

结构用铝合金板、带、棒、管、型材的化学成分可按衣A-3采用。

表A-1结构用铝合金板' 带材力学性能标准值注:1.伸长率标准值中,A适用于厚度不大T- 12.5mm的板林A适用于原度大于12.5mm的板材。

»2.表中焊接折减系数的数值适用干材料焊接后存放的环境温度大于10D 存放时间大于3d(6XXX系列)或30d(7XXX系列)的情况。

3.表中焊接折减系数的数值适用于皿度不超过15mm的MIG焊.以及3xxx系列.5xxx系列合金和8011A ft佥M度不超过6mm的TIG焊。

对T 6xxx系列和7xxx系列合金圧度不超过6mm的TIG焊.焊接折械系数的数值必须乘以0.8,当M 度超过上述规定.如无试验结果或国内外相关规范规定.3xxx系列、5xxx系列合金和8011A ft佥焊接折蔽系数的数值必效乘以0.9. 6xxx系列和7xxx系列合金焊接折减系数的数值必须乘状态不需进行上述折减。

0焊〉。

对T TIG (0.64焊〉或MIG (0.8 以.表A・2结构用铝合金棒、管、型材力学性能标准值适用于川度(或直的板(或棒)材.A注:1.伸长率标准值中.A适用于用度(或直径)不大T12.5mmx> 12.5mm的板(或棒)材,径)大于系6XXX (2.表屮焊接折减系数的数值适用于材料焊接后存放的环境温度大TIO'C,存放时间大J- 3d系列〉的情况:列〉或30d (7XXX8011A系列合金和MIG烙以及3xxx系列、5xxx3.表中焊接折减系数的数值适用于艸度不超过15mm的焊接折械系敌的7xxx系列介佥悼度不超过6mmTIG焊.合金川度不超过6mm的TIG焊。

对『6xxx系列和系列合。

当厚度超过上述规定.如无试验结果或国内外相关规范规定.3xxx 系列.5xxx的数值必须乘以0.8 系列介金焊接折减系数的数值必须乘0.9. 6xxx系列和7xxx金和8011A介佥焊接折械系数的数值必须孃以TIG焊九对于0状态不需进行上述折减;以0.8 (MIG焊)或0.64 <结构用铝合金板.帯.棒.笛\型材的化学成分表心3。

en ac46500铝合金标准

en ac46500铝合金标准

《探讨en ac46500铝合金标准》1. 引言en ac46500铝合金作为一种常见的合金材料,其标准对于相关行业具有重要意义。

本文将从深度和广度的角度,全面评估en ac46500铝合金标准,并就该主题展开讨论。

2. en ac46500铝合金标准的基本概念en ac46500铝合金,顾名思义,是根据国际标准组织(ISO)制定的标准所得到的铝合金。

这一标准主要对该铝合金的化学成分、力学性能、加工性等方面进行了规定,以保证其在工程实践中的可靠性和稳定性。

3. en ac46500铝合金标准的适用范围en ac46500铝合金标准主要适用于航空航天、汽车制造、电子通信等领域。

该标准对于不同行业的应用需求进行了考量,确保了enac46500铝合金在各个领域的适用性和通用性。

4. en ac46500铝合金标准的技术要求根据en ac46500铝合金标准的技术要求,该合金的化学成分需要符合一定的范围;其力学性能包括抗拉强度、屈服强度、延伸率等也有相应的要求;加工性、热处理性等方面也有详细的规定。

5. en ac46500铝合金标准的应用推广en ac46500铝合金标准的颁布实施,对推动相关行业的发展具有积极的意义。

因为标准的制定能够提高产品的质量和性能,在国际市场上具有更好的竞争力。

6. 个人观点与理解在我看来,en ac46500铝合金标准的制定不仅仅是为了保障产品的质量和安全,更是为了促进产业结构的升级和智能制造的发展。

这一标准的实施将对相关领域产生深远的影响,有利于推动整个行业的发展。

7. 总结en ac46500铝合金标准的制定与实施,对于相关行业具有重要的意义。

通过本文的探讨,相信读者对en ac46500铝合金标准有了更深入的了解。

同时也希望本文能够为行业的发展和产品的质量提升提供一些思路和参考。

在本文中,我们对en ac46500铝合金标准进行了全面评估,并据此撰写了一篇有价值的文章。

6005a屈服强度

6005a屈服强度

6005a屈服强度6005a铝合金是一种常用的铝合金材料,具有优异的力学性能和加工性能,广泛应用于各种工业领域。

其中,屈服强度是6005a铝合金材料重要的力学性能指标之一,下面将对6005a铝合金的屈服强度进行详细介绍。

一、6005a铝合金的基本特性6005a铝合金是一种具有中等强度的铝合金材料,主要由铝、镁和硅等元素组成。

它具有良好的耐腐蚀性、可焊性和加工性能,适用于各种复杂的加工和成型工艺。

6005a铝合金的强度和韧性之间取得了很好的平衡,因此在各种应用场景下都具有较好的表现。

二、屈服强度的定义和意义屈服强度是指材料在受到外力作用时,开始发生塑性变形的最小应力值。

对于6005a铝合金而言,屈服强度是其重要的力学性能指标之一。

它反映了材料在受到外力作用时抵抗变形的能力,也是衡量材料承受载荷能力的重要标志之一。

在实际应用中,屈服强度是材料设计和选材的重要依据之一。

如果材料的屈服强度不足,那么在受到外力作用时很容易发生塑性变形,导致结构失效。

因此,在选择材料时需要根据实际应用场景和要求来确定所需的屈服强度值。

三、影响6005a铝合金屈服强度的因素1.合金元素:6005a铝合金的屈服强度受合金元素的影响较大。

例如,增加镁元素的含量可以提高材料的强度和硬度,但也会降低材料的韧性;增加硅元素的含量可以提高材料的流动性和加工性能,但也会对材料的强度产生一定的影响。

2.热处理工艺:热处理工艺是影响6005a铝合金屈服强度的重要因素之一。

通过合理的热处理工艺可以改善材料的组织和性能,提高材料的屈服强度。

例如,固溶处理和时效处理是提高6005a铝合金强度和硬度的常用方法。

3.加工工艺:加工工艺也会对6005a铝合金的屈服强度产生影响。

例如,冷加工可以提高材料的强度和硬度,但也会降低材料的韧性;热加工可以改善材料的塑性和韧性,但也会对材料的强度产生一定的影响。

4.材料缺陷:材料缺陷也会对6005a铝合金的屈服强度产生影响。

铝合金材料力学性能测试及分析

铝合金材料力学性能测试及分析

铝合金材料力学性能测试及分析随着工业制造技术的不断发展,铝合金材料由于其优良的物理性能和机械性能,正在被越来越广泛地应用于汽车、航空航天、建筑等众多领域。

铝合金材料的力学性能测试及分析是对材料质量进行评估和选择的重要手段。

因此,本文将详细介绍铝合金材料力学性能测试及分析的相关内容。

一、铝合金材料力学性能测试的内容1. 静力学性能测试静力学性能测试主要包括拉伸性能和压缩性能测试。

拉伸实验是指在一定的试验条件下,通过施加拉力来测试材料的抗拉强度、屈服强度、断裂伸长率等力学性能指标。

而压缩实验是通过施加压缩力来测试材料的抗压强度、屈服压力等性能指标。

这些测试可以帮助评估铝合金材料的强度、韧性和抗变形能力,为材料的进一步应用提供有力的保障。

2. 动力学性能测试动力学性能测试主要包括冲击实验和疲劳实验。

冲击实验是通过施加高能量的冲击载荷,测试材料的抗冲击性能,以评估其在意外撞击等情况下的耐久能力。

而疲劳实验则是通过循环应力加载,测试材料的疲劳寿命和疲劳损伤机制,以评估其在长期使用时的耐久性能。

3. 硬度测试硬度测试是评估材料硬度的重要方法,可以通过多种方式进行,如布氏硬度、维氏硬度、洛氏硬度等。

硬度测试的主要目的是评估材料的抗划伤和抗磨损能力,为材料的设计和应用提供参考依据。

二、铝合金材料力学性能测试的方法1. 拉伸试验方法拉伸试验通常采用万能试验机进行,采用不同的夹具和夹持形式。

常用的夹具包括拉杆式夹具、平板式夹具和圆环式夹具。

夹具的选择与试件形状和尺寸有关,需根据具体情况进行选择。

2. 压缩试验方法压缩试验采用的夹具主要包括平板式夹具和球形夹具。

平板式夹具适用于长方形试件和方形试件的压缩实验,而球形夹具适用于圆形或球形试件的压缩实验。

3. 冲击试验方法冲击试验可以采用冲击试验机或冲击弓进行。

其中,冲击试验机属于高能量冲击载荷载荷,适用于厚度较大且较硬的材料,而冲击弓适用于薄板材料或塑料材料等。

4. 疲劳试验方法疲劳试验通常采用床式疲劳试验机进行,采用不同的试验方法,如振动法、单轴拉伸法、等幅间歇法等。

A系列铝合金

A系列铝合金

A系列铝合金
Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】
A356系列铝合金一、化学成分化学成分
A356.2铸造铝合金锭化学成分执行标准:ASTM, Si:65.-7.5,Mg:
0.30-0.45,Ti《0.2,Fe《0.12,Mn《0.05,Cu《0.1,Zn《0.05 ,Al余量
二、A356铝合金的力学性能
在室温条件下对铸造A356铝合金的平均屈服强度、断裂强度、延伸率和断面收缩率分别为216.64MPa,224MPa,1.086%和0.194%,合金的拉伸屈服强度随离浇道口平面距离的增加而减小,而断裂强度则是先减小然后再增大,延伸率随高度变化不明显。

把356.2合金之不纯份减少,改良机械性性质者(比356.2合金伸长率更好)。

有极佳之铸造性及高强度,伸长率适用于薄部材及要耐压性之地方。

三、优点
具有流动性好,无热裂倾向,线收缩小,气密性好等良好的铸造性能,比重小,耐蚀性良好,易气焊,随铸件壁厚增加强度降低的程度小,铸态下使用,变质后机械性能提高。

四、产品形状
标准制品形状,砂模、金属模铸件。

五、主要用途
代表的用途,各种外壳,航空机泵部品,航空机接头,汽车变速器,带轮,燃料箱,要最高耐热性支应力部材,其他机械工具部品。

6a02铝合金 检测标准

6a02铝合金 检测标准

6a02铝合金检测标准
6a02铝合金是一种常用的铝合金材料,常用于航空航天、汽车、船舶和其他工业领域。

为了确保6a02铝合金的质量和性能,需要进
行一系列的检测和测试,以确保其符合相关的标准和规定。

首先,对6a02铝合金进行化学成分的分析。

通过对铝合金中各
种元素含量的检测,可以确保合金的成分符合标准要求,从而保证
其在使用过程中的稳定性和可靠性。

其次,需要对6a02铝合金进行力学性能测试。

包括拉伸强度、
屈服强度、延伸率等指标的测试,以评估合金在受力时的性能表现,确保其符合设计要求。

另外,还需要对6a02铝合金进行硬度测试。

通过对合金表面硬
度的测试,可以评估其抗磨损性能和耐用性,以确保其在实际使用
中能够承受一定的压力和摩擦。

除此之外,还需要对6a02铝合金进行金相组织分析。

通过对合
金的显微组织结构进行观察和分析,可以评估其晶粒大小、相分布
及晶界特征,从而了解合金的组织性能和热处理效果。

最后,对6a02铝合金进行表面质量检测。

包括表面平整度、表面清洁度、氧化膜厚度等指标的测试,以确保合金表面的质量符合要求,满足相关的标准和规定。

总之,通过对6a02铝合金的化学成分、力学性能、硬度、金相组织和表面质量等方面的检测,可以全面评估合金的质量和性能,确保其符合相关的标准和规定,为其在各个领域的应用提供可靠的保障。

铝合金材料AA_6061_T6和AA_6061_OA的动态拉伸力学性能

铝合金材料AA_6061_T6和AA_6061_OA的动态拉伸力学性能

第22卷第324期2007年8月实 验 力 学J OU RNAL OF EXPERIM EN TAL M ECHANICSVol.22No.324Aug.2007文章编号:100124888(2007)03&0420305209Dynamic T ensile Deformation of AluminumAlloy60612T6and60612OA3Xin Tang1,Vikas Prakash1,John Lewandowski2(1.Depart ment of Mechanical and Aerospace Engineering;2.Depart ment of Materials Science and Engineering,Case Western Reserve University,Cleveland,O H,4410627222E2mail:xintang2@,vikas.prakash@ and john.lewandowski@)Abstract:Aluminum2based sandwich panels wit h textile cores possess high stiff ness and strengt h at low weight.Recent works have documented t he energy absorbing characteristics of t hese materials at low st rain rates.However,very little information exist s on t he energy absorption of t hese st ruct ures at high st rain rates.In order to address t his,t he behavior of t heir individual constit uent s over a range of strain rates is first needed.In t his paper t he quasi2 static and dynamic tension deformation behaviors of aluminum alloy6061in two different heat t reat ment s-T6and over2aged(OA)-are reported at bot h room and low test temperat ures.K eyw ords:high2st rain2rate experiment;Split2Hop kinson Tension Bar(SH TB);Al260612T6 and OA;lower2t han2room temperat ure test s0 IntroductionThe design of blast resistant struct ures is of importance for navy and military applications. Compared to several ot her solutions such as honeycomb core and corrugated core st ruct ures[1~4],t he open2cell tet rahedral sandwich struct ures,comp rising of t hin aluminum faceplates wit h tet rahedral t russ lattice cores,att ract great interest because of t heir low weight,relatively high st rengt h and excellent corro sio n resistance.These st ruct ures are of interest in blast resistant struct ures where high specific energy absorption is critical[5~14].To obtain better understanding of t heir st ruct ural response at high strain rate,a caref ul examination of t he behavior of t heir element s(constit uent materials) under high strain rate loading is required.In t he present st udy,t he quasi2static and dynamic tension response of aluminum alloy Al26061are investigated at temperat ures down to-170℃.1 Experimental w ork1.1 MaterialsThe chemical compositions of aluminum alloy Al26061used in t he p resent st udy are given in Table 3收稿日期:2007201216基金项目:The aut hor would like to acknowledge financial support from t he Office of Naval Research grant#ONR2N0014203212 0351and material supply from ALCOA and Professor H.G.Wadley of t he University of Virginia.通讯作者:Xin Tang,1998B.S.Mechanical Engineering,USTC.2006M.S Mechanical Engineering,Case Western Reserve Uni2 versity.Now,P H.D.student,Mechanical Engineering,University of Illinois at Urbana2Champaign.1.In t he p resent st udy ,two different heat t reat ment s ,T6and over 2aged (OA ),were selected for Al 26061.The as 2received Al 26061material was in T6condition.It was heat 2t reated at 2600C for 10hours t hen followed by air cooling at room temperat ure to obtain t he over 2aged condition.The remaining half of Al 26061was tested in t he T6condition.Table 1 Chemical Composition (wt.%)of Al 26061ElementAl Cu Mg Si Cr Fe Mn Ti Zn wt.%980.15~0.40.5~1.20.4~0.80.04~0.350.7max 0.15max 0.15max 0.25max1.2 Q u asi 2static tension testingAn INSTRON 1125tension machine wit h load capacity 20kN and deformation rate 2mm /minute was employed in t he quasi 2static tension testing.Static tensile p roperties of Al 26061were measured on t he standard round 2ended ,miniat ure dog 2bone tensile specimens.The tensile specimens have a 35mm gage lengt h and a 5mm diameter.The st rain in t he specimen was measured wit h an axial INSTRON extensometer (0.5inches )attached to t he specimen gage section.Before t he experiment s ,t he gage section was polished wit h water based diamond slurry wit h particles down to 3μm in size to reduce st ress concentration.1.3 Dynamic tension testing :the Split 2H opkinson T ension B ar (SHTB)The schematic set of t he SH TB facility [15~18]in t he Depart ment of Mechanical and Aerospace Engineering at CWRU is shown in Figure 1.It consist s of an air operated gas gun ,incident bar ,t ransmitted bar ,striker ,moment um t rap ,shock absorber ,and st rain gage circuit s to measure st rain signals in t he bars.The gun barrel is a 75mm diameter and 1.33m long standard pipe.It contains an Al 27075hollow st riker wit h 25.4mm inner diameter ,35.9mm ,outer diameter and 0.609m long.The st riker is equipped wit h two Teflon bearings ,and it s inner surface ,which rides on t he incident bar ,is honed to minimize f riction.The t ransfer flange at t he right end of t he incident bar is used to t ransfer t he incoming comp ressive st ress wave into a tensile st ress wave.Two 2×2×0.5mm 3cork p ulse shapers [19]were placed around t he impact surface of t he t ransfer flange to allow experiment s to be performed at nearly constant st rainrate.Figure 1 Schematic of the Split 2Hopkinson Tension Bar (SH TB )at CWRUIn t he experiment ,t he gas gun launches t he t ubular striker to impact t he incident bar.The t ransfer flange t ransfers t he incoming elastic comp ressive st ress wave into t he elastic tensile stresswave εi (t )which t ravels t hrough t he incident bar toward t he specimen[17].When t he tensile stress wave εi (t )propagates into t he specimen ,it reverberates wit hin t he specimen until a nominally homogeneous stress state is achieved.Thereafter ,part of t he wave is transmitted t hrough t he603 实 验 力 学 (2007年)第22卷 t ransmitted bar as a tensile wave ,εt (t ),and t he rest is reflected back to t he incident bar as a comp ressive wave ,εr (t ).Since t he elastic stress p ulses in t he bars are non 2dispersive and t he specimen is assumed to deform homogeneously ,t he elementary one dimensional elastic wavep ropagation can be used to calculate t he engineering st ress σs (t ),engineering st rain rate ε(t ),and st rain εs (t )in t he specimen asσs (t )=E A 0A sεt (t )(1) εs (t )=2c 0L sεr (t )(2)εs (t )=∫t 0 εs (t )dt(3)where E ,A 0and c 0are Y oung ’s modulus ,cro ss 2sectional area ,and longit udinal wave speed of t he p ressure bars ;A s and L s are t he initial cross 2sectional area and lengt h of t he specimen.The t rue stress and strain rates are determined f rom engineering st ress and st rain rate assuming uniform deformation and constant volume.However ,t he assumption of uniform st rain is not valid in tensile experiment s particularly when a neck is formed.Therefore ,t he strain calculated by t hese assumptions must be corrected.Direct st rain measurement s using standard extensometer in dynamic experiment s is impossible because t here is not enough time for t he extensometer to respond.Ot her met hods such as foil gages can be used but are limited by adhesive strengt h and can only reach a maximum of 5%before failure.Ot her non 2contact met hods such as Interf rometeric St rain Displacement Gages (ISD G )[21]and Laser Occlusive Radius Detector (LORD )[22]can be used.However ,large deformations lead to fast f ringe decay in t he first met hod while t he unp redictable neck location produces t he limitation in t he later.As a better alternative to overcome t hese problems ,high 2speed p hotograp hy can be employed alt hough discrete st rain measurement s are obtained.In t he p resent investigatio n ,an IMACON 200high speed digital camera was used to monitor t he develop ment of necking in t he tensile specimen during t he dynamic deformation p rocess.True st ress ,σtrue ,true st rain ,εtrue ,and t rue st rain rate , εtrue ,in t he specimen are corrected at t he initiation of necking according to Equation (4)to (6),where d initial and A initial are initial diameter and cro ss 2sectional area of gage section ,d instant and A instant are instantaneous minimum diameter and cross 2sectional area of neck region measured f rom corresponding high 2speed camera p hotograp hs ,and σs is t he engineering st ress calculated based on t he SH TB assumption of uniform deformation.σtrue =σs A initial A instant(4)εtrue =2ln d initiald instant (5)εtrue =-2 d instantd instant =-2Δd instant t interframe ×d instant(6) Since t he formation of a neck in t he specimen int roduces a complex t riaxial state of st ress in neck region ,which raises t he value of longit udinal stress required to cause plastic flow ,t he average true st ress at t he neck determined by Equation (4)is higher t han t he st ress required to cause flow if simple tension prevails.In t his case t he uniaxial flow st ress and plastic st rain can be comp uted by t he well known Bridgman analysis [23](Equation (7)and (8)),where R is t he radius of curvat ure of t he neck measured f rom t he high 2speed camera p hotograp hs.703第324期 Xin Tang et al :Dynamic Tensile Deformation of Aluminum Alloy 60612T6and 60612OA珋σ=σtrue(1+2R/d instant )[ln (1+d instant /2R )](7)εp =2ln d initiald instant(8) Because t he elastic st rains are negligible compared to t he large plastic st rains in t he neck region ,t he total strains are assumed to be equal to t he plastic st rains.1.4 Dynamic tension testing at low temperature :the Split 2H opkinson T ension B ar (SHTB)The SH TB low temperat ure facilities (Figure 2)were used to st udy t he material ’s tensile behavior at low temperat ure.In t his system ,a light 2weight foam tank wit h 2holes on it s cylindricalface for t he p ressure bars to go t hrough was used to contain t he liquid nit rogen (-196℃).The specimen and t he ends of t he p ressure bars were immersed in t he liquid nit rogen.Prior to t he test ,t he high 2speed camera and flash light were adjusted and focused at t he fixed positions wit h t he desired magnification.The p ressure bars were p ushed into t he cooling tank t hrough t he holes and t he specimen was tightly screwed into t he bars ’ends as usual.Liquid nit rogen was filled into t he tank ,immersing t he specimen and t he bar ends below t he liquid surface.After 5~10minutes ,t here was some accumulatio n of ice crystals around t he bar expo sed out side t he tank ,induced by t he ext remely low temperat ure condition at t he bar ends.This observation indicates t hat t he specimen and bar ends were bot h at ext remely low temperat ure.Thereafter ,t he foam tank was caref ully slid along t he bars to expose t he specimen to t he camera.A temperat ure of -170℃,is t he lowest temperat uret hat can be achieved by t his system.Ot her test temperat ures were obtained via use of a cooling coil instead of direct immersion.Figure 2 Schematic of the low temperature Split 2Hopkinson Tension Bar (SH TB )facility (cooling tank containing liquid nitrogen )at CWRU2 R esults and discussion2.1 Q u asi 2static tension resultsThe quasi 2static tensile result s of Al 260612T6and Al 260612OA are shown in Figure 3,where f ract ure stress and t rue fract ure st rain were calculated from Equation (4)and (5).The result s show t hat under quasi 2static conditions wit h strain rate 1×10-3s -1,Al 260612T6has a higher tensile st rengt h (yield st rengt h ,U TS and f ract ure strengt h )t han t hat of Al 260612OA.Necking and significant po st 2necking st rain were recorded.2.2 Room temperature SHTB resultsThe high 2speed p hotograp hs and dynamic tensile result s for a selected Al 260612T6are shown in 803 实 验 力 学 (2007年)第22卷 Figure 4to 6.Due to t he high ductility of Al 26061,in all experiment s performed on t he SH TB ,a neck is formed prior complete failure (Figure 4).Beginning at t he 1st f rame recorded ,t he gradual elongation of t he specimen is evident until it necks around t he 7t h f rame and finally fract ures at f rame No.16.True stress ,t rue st rain and strain rate in t he specimen are corrected at t he initiation of necking according to Equations (4)to (8).The strain rate in t he neck region ,calculated from Equation (6),is app roximately t hree times greater t han t he average st rain rate calculated using t he SH TB analysis t hat is based on t he assumptio n of uniaxial straess in t he specimen.Besides t he high speed camera observations ,t he critical time of neck formatio n is obtained by equating t he rate of st rainhardening d σtrue /d εtrue and t he t rue st ress σtrue as shown in Figure 5wit h good agreement wit h t he high 2speed cameraobservations.Figure 3 Quasi 2static tensile properties of Al 260612T6and Al 260612OA at roomtemperatureFigure 4 Selected frames f rom high 2speed camera records for Al 260612T6at room temperature(strain rate 1280s -1).Corresponding f rames time are shown beneath each frameFigure 5 SHT B results for Al 260612T6at room temperature.Dots on curve correspond to high 2speed camera frame Figure 6 SH TB results for Al 26061in different high strain rates at room temperature903第324期 Xin Tang et al :Dynamic Tensile Deformation of Aluminum Alloy 60612T6and 60612OA The SH TB result s for Al 260612T6at t he various st rain rates are shown in Figure 6.Al 260612T6shows high ductility and work hardening after necking.The necking st rain is approximately 0.08to 0.10.The yield stress and failure st rengt h of Al 260612T6are around 300M Pa and 350M Pa.The representative Al 260612OA SH TB result s and all high st rain rate result s are shown in Figures 7and 8.The Al 260612OA shows lower st rengt h but higher ductility t han t hat of Al 260612T6.The yield stress and failure st rengt h of Al 260612OA are around 220M Pa and 290M Pa.The necking st rain for Al 260612OA is in t he range of 0.11to 0.13.SEM micrograp hs of t he Al 260612OA f ract ure surface after room temperat ure SH TB test s are shown in Figure 9.The fract ured Al 260612T6specimen has similar appearance.In t he f ract ure surface ,t here are a lot of micro scopic dimples ,indicating t hat very high levels of “local ”and “glo bal ”plastic deformation occurs as dynamic tension test proceeds.Some micro 2void coalescences (MVC )are observed in t he SEM f ractograp hs.The material demonst rates a highly ductilebehavior.Figure 7 SH TB results for Al 260612OAat roomtemperature Figure 8 SH TB results for Al 260612OA in different high strain rates at roomtemperatureFigure 9 Fracture surface morphologies of Al 260612OA f ractured specimens after room temperature SH TB test2.3 Low temperature SHTB resultsThe selected low temperat ure high 2speed p hotograp hs and SH TB result s of Al 260612T6are shown in Figure 10and 11.At -15℃and st rain rate 1513s -1,Al 260612T6did not show much change in t he dynamic response compared to t ho se room temperat ure test s.However ,as t he temperat ure drop s to 170℃,t he t rue st ress vs.t rue strain curve shift s up to a much higher level ,showing t he t rue yield st ress and failure strengt h of 375M Pa and 500M Pa ,respectively.The necking st rain increases to 0.17in t he -170℃test temperat ure experiment.The black dot s shown in high 2013 实 验 力 学 (2007年)第22卷 speed camera frames are f rost accumulated around t he sample and t he bar ends.Figure 12shows t he low temperat ure SH TB result s of Al 260612OA.As t he temperat uredecreases f rom room temperat ure (24℃)to -20℃and -23℃,t he necking strain and yield stress did not change much.However ,as t he temperat ure decreases to -170℃,t he yield st ress increases to 280M Pa ,while t he necking st rain changes little.The work hardening after necking seems have no great dependency wit h t he temperat ure.The high 2speed camera records of Al 260612OA in low temperat ure are similar to t heir Al 260612T6counterparts.Figure 10 Selected f rames f rom high 2speed camera records for Al 260612T6at -170℃(strainrate 1485s -1).Corresponding frames time are shown beneath each frameFigure 11 SH TB results of Al 260612T6at lowtemperature compared with that at room temperature Figure 12 SH TB results of Al 260612OA at low temperature compared with that at room temperature 3 SummaryIn t he p resent st udy ,t he quasi 2static and dynamic yield and flow behavior of Al 260612T6and Al 260612OA are investigated under uniaxial tension loading at t he test temperat ures range f rom room temperat ure down to -170℃.At all strain rates ,Al 260612T6showed high st rengt h but lower ductility t han Al 260612OA.In t he SH TB experiment s ,bot h heat t reat ment s showed slightly po sitive st rain rate sensitivity and high work hardening after necking.As test temperat ure decreases ,bot h materials show significant increased tensile st rengt h.The necking st rain increases asstrain rate increases and test temperat ure decreases.4 Acknow ledgementThe aut hor would like to acknowledge financial support f rom t he Office of Naval Research grant #ONR 2N00142032120351and material supply f rom AL COA and Professor H.G.Wadley of t he University of Virginia.113第324期 Xin Tang et al :Dynamic Tensile Deformation of Aluminum Alloy 60612T6and 60612OA213 实 验 力 学 (2007年)第22卷 R eferences:[1] Howard G Allen.Analysis and Design of Structural Sandwich Panels[M].1st edition,Volume1,Chapter1,Pergamon Press,1969:1~46.[2] Albert G H Dietz.Keynote Address in Conference on Sandwich Panel Design Criteria[M].Washington,D. C.,National Academy of Science2National Research Council,1959.[3] Gregory W K ooistra,Vikram S Deshpande,Haydn N pressive behavior of age hardenabletetrahedral lattice truss structures made f rom aluminium[J].Acta Materialia,2004,52(14):4229~4237.[4] David J S,Wadley N G W.Cellular metal truss core sandwich structures[J].Advanced Engineering Materials,2002,10.[5] K obayashi T.Strength and f racture of aluminum alloys[J].Materials science and Engineering,2000,A280:8~16.[6] Richard K,Klaus H,Bruno G.Energy2absorbing behavior of aluminum foams:head impact tests on the A2Pillar ofa car[J].Advanced Engineering Materials,2002,10.[7] Dong2Kuk K,Sunghak L.Impact energy absorption of aluminum extruded tubes with different cross2sectionalshapes[J].Material and Design,1999,20:41~49.[8] Kezhun L,Werner G.Impact Aluminum Plates by Tumbling Projectiles:Experimental study[J].InternationalJournal of Impact Engineering,1999,18(1):23~43.[9] Auzanneau T,Sato C.Mechanical behavior of aluminum foils as micro structural material under low velocity impactloading[J].Microsystem Technologies,2003,9:183~187.[10] Paul A,Ramamurty U.Strain rate sensitivity of a closed2cell aluminum foam[J].Material science andEngineering,2000,A281:1~7.[11] Srivatsan T S,Champlin J,Lam PC.The impact behavior of Aluminum alloy6061:Effect of notch severit[J].Journal of Materials science,1999,34:2793~2800.[12] Hu M,Fei W D,Yao C K.Effect of heat treatment on dislocation states and work hardening behavior of SiCW/60612Al composite[J].Materials Letters,2002,56:637~641.[13] Rajeev K,Vecchio K S.Deformation behavior and failture mechanisms in particulate reinforced6061Al metal2matrix composites[J].Materials Science and Engineering,1995,A202:63~75.[14] Akihisa A,K ozo K.Planar Impact Experiment of60612T6Aluminum and Measurement of Particle Velocity G enerated byElastic2Plastic Shock Waves[J].T ransactions of the Japan S ociety of Mechanical Engineers A,2003,69(6).[15] Gray G T.High strain rate testing of materials:The split Hopkinson pressure bar[M].Methods in MaterialsResearch,John Wiley Press,2000.[16] Follansbee P S.The Hopkinson Bar[J].ASM Handbook,1985,8:198~203.[17] Nicholas T.Tensile testing of materials at high rates of strain[J].Experimental Mechanics,1981,21:177~185.[18] Al2Mousawi M M,Reid S R,Deans W e of the split Hopkinson pressure bar techniques in high strain ratematerials testing[J].Journal of Mechanical Engineering Science,1997,211(4):273~292.[19] Frew D J,Forrestal M J,Chen W.Pulse shaping techniques for testing brittle materials with a Split2hopkinsonpressure bar[J].Experimental Mechanics,2002,42(1).[20] Rodriguez J,Navarro C,Sanchez2G alvez V.Numerical assessment of the dynamic tension test using the splitHopkinson bar[J].Journal of Testing and Evaluation,1994,22(4):335~342.[21] Sharpe W N.The Interferometric Strain Gage[J].Experimental Mechanics,1968,8(4):164~170.[22] Ramesh K T,Narasimhan S.Finite deformations and the dynamic measurement of radial strains in compressionK olsky bar experiments[J].International Journal of Solids and Structures,1996,33(25):3723~3738.[23] Hill R.Mathematical Theory of Plasticity[M].Mc Graw2Hill,New Y ork,1995.铝合金材料AA 260612T6和AA 260612OA 的动态拉伸力学性能唐 欣1,Vikas Prakash 1,John Lewandowski 2(1.凯斯西部保留地大学力学与航空工程系,克里夫兰市,俄亥俄州44106,美国;2.凯斯西部保留地大学材料科学与工程系,克里夫兰市,俄亥俄州44106,美国)摘要:铝合金材料蜂窝夹层板结构具有在较低体重情况下的高硬度和高抗冲击性能力。

ZL101A力学性能的研究

ZL101A力学性能的研究

ZL101A力学性能的研究
▪ 主要元素:
▪ Al ▪ Si 6.5~7.5 ▪ Mg 0.25~0.45 ▪ Ti 0.08~0.20

(GB/T 1173-1995)
铸造方法及其热处理工艺参数
▪ 砂型铸造,必须进行变质处理(SB) ▪ 钠或锶 ▪ 合金状态:T6(固溶处理后完全人工
时效)大部分铸铝合金采用T6规范
重力铸造和低压铸造
对ZL101A铝合金的力学性能和 微观组织的影响
▪ 参考文献:《低压铸造对ZL101A合金力学性能的改善》 ——西北工业大学、
广西大学
▪ 160度处理可以得到较好的综合性能(强度和塑性)
▪ 低压铸造充型平稳,减少氧化夹杂;凝固 时具有一定的压力,枝晶间补缩的效果显 著。同时其凝固速度较重力浇注也快得多, 微观组织更加致密。从而使低压浇注比重 力浇注的力学性能,特别是伸长率大幅度 提高。

——北京航空材料研究院
ZL101A合金比较理想的时效制度 为170℃,保温9~13h。
总体来看:采用低压铸造、变压铸造、金属型铸造、 固溶充分、控制杂质含量(特别是Fe杂质)
延伸率不足:适当降低时效温含量
acknowledge:Guowei Zeng
固溶处理
▪ 固溶处理温度540±5℃,保温时间6~10h, 水冷60~100℃
▪ 为获得良好的时效强化效果,在不发生过热、 过烧及晶粒长大的条件下,淬火加热温度 高些,保温时间长些,有利于合金元素充 分融入基体中,从而获得最大过饱和度的 均匀固溶体。 也即有更好的力学性能。
时效工艺
▪ 参考文献:《时效工艺对ZL101A合金性能的影响》
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(一)GB —2008 铝合金建筑型材第1部分:基材6005,6005A供货状态:T5、T6
室温力学性能要求(取样部位的公称壁厚小于时,不测断后伸长率。

):
a 硬度仅供参考。

(二)GB/T 6892—2006 一般工业用铝及铝合金挤压型材车辆型材指适用于铁道、地铁、轻轨等轨道车辆车体结构及其他车辆车体结构的型材。

6005,6005A供应状态:T6
型材的室温纵向拉伸力学性能:
a 表示原始标距(L0)为S0的断后伸长率。

b 壁厚不大于的型材不要求伸长率。

(三)GB/T 10623—2008 金属材料力学性能试验术语A 伸长率:原始标距L0的伸长与原始标距之比的百分率。

Rp 规定非比例延伸强度:非比例延伸率等于引伸计标距(L e)规定百分率时的应力。

注:使用的符号应附以下脚标注说明所规定的百分率,例如:。

(四)GB/T 3191—2010 铝及铝合金挤压棒材
6005,6005A供货状态T5、T6
棒材的室温纵向拉伸力学性能:
(五)GB/ 铝及铝合金热挤压管第2部分:有缝管6005,6005A供货状态T5
管材的纵向室温力学性能:
(六)GB/T 26494—2011 轨道列车车辆结构用铝合金挤压型材6005,6005A供货状态T6
室温纵向拉伸力学性能:。

相关文档
最新文档