2019年吉林省长春市南关区中考数学一模试卷【含答案及解析】
2019届吉林省长春市九年级毕业一诊数学试卷【含答案及解析】

2019届吉林省长春市九年级毕业一诊数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、单选题1. 的绝对值是()A. B. C. D. ﹣22. 如图,AB∥CD,AD=CD,∠2=40°,则∠1的度数是()A. 80°B. 75°C. 70°D. 65°3. 在学校开展的“爱我中华”的一次演讲比赛中,编号1,2,3,4,5,6的五位同学最后成绩如表所示.那么这五位同学演讲成绩的众数与中位数依次是()A. 92,88B. 88,90C. 88,92D. 88,914. 如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方体中的数字表示该位置小正方体的个数,则该几何体的左视图是()A. B. C. D.5. 下列各式计算正确的是()A. a+2a2=3a3B. (a+b)2=a2+ab+b2C. 2(a﹣b)=2a﹣2bD. (2ab)2÷(ab)=2ab(ab≠0)6. 如图,将△ABC绕点C按顺时针方向旋转至△A′B′C,使点A′落在BC的延长线上.已知∠A=27°,∠B=40°,则∠ACB′是()A. 46°B. 45°C. 44°D. 43°7. 已知a2﹣2a﹣1=0,则a4﹣2a3﹣2a+1等于:A. 0B. 1C. 2D. 38. 如图,在一个单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,是斜边在x轴上、斜边长分别为2,4,6,…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2017的横坐标为()A. 1010B. 2C. 1D. ﹣10069. 如图,在△ABC中,∠C=90°,AC=BC,斜边AB=4,O是AB的中点,以O为圆心,线段OC的长为半径画圆心角为90°的扇形OEF,经过点C,则图中阴影部分的面积为()A. B. C. D.10. 如图,在平面直角坐标系xOy中,△OAB的顶点A在x轴正半轴上,OC是△OAB的中线,点B、C在反比例函数(x>0)的图象上,若△OAB的面积等于6,则k的值为()A. 2B. 4C. 6D. 8二、填空题11. 一个正常人的心跳平均每分70次,一天大约跳100800次,将100800用科学记数法表示为________.12. 计算:=_______.13. 甲、乙两人加工一批零件,甲完成120个与乙完成100个所用的时间相同,已知甲比乙每天多完成4个.设甲每天完成x个零件,依题意列方程 _______.14. 如图,AB是⊙O的直径,已知AB=2,C,D是⊙O的上的两点,且,M是AB上一点,则MC+MD的最小值是__________.15. 如图所示,某办公大楼正前方有一根高度是15米的旗杆ED,从办公大楼顶端A测得旗杆顶端E的俯角α是45°,旗杆低端D到大楼前梯砍底边的距离DC是20米,梯坎坡长BC是12米,梯坎坡度i=1:,则大楼AB的高度为_________米.16. 如图,△ABC中,∠C=90°,AC=6,BC=8,动点P从A点出发,以1cm/s的速度,沿A—C—B向B点运动,同时,动点Q从C点出发,以2cm/s的速度,沿C—B—A向A点运动,当其中一点运动到终点时,两点同时停止运动。
精编2019级吉林省长春市中考数学模拟试卷(有标准答案)

吉林省长春市中考数学模拟试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)的相反数是()A. B.C.﹣4 D.42.(3分)用两块完全相同的长方体搭成如图所示的几何体,这个几何体的主视图是()A.B.C.D.3.(3分)下列运算正确的是()A.a•a2=a2B.(a2)3=a6C.a2+a3=a6 D.a6÷a2=a34.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.5.(3分)如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若CD=2,AB=8,则△ABD的面积是()A.6 B.8 C.10 D.126.(3分)如图,在Rt△ABC中,∠C=90°,AC<BC.斜边AB的垂直平分线交边BC于点D.若BD=5,CD=3,则△ACD的周长是()A.7 B.8 C.12 D.137.(3分)如图,四边形ABCD内接于⊙O,若∠B=130°,则∠AOC的大小是()A.130°B.120°C.110°D.100°8.(3分)如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=1,点A在函数y=﹣(x<0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y=(x>0)的图象上,C1O1与此图象交于点P,则点P的纵坐标是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)化简:﹣= .10.(3分)某种商品n千克的售价是m元,则这种商品8千克的售价是元.11.(3分)不解方程,判断方程2x2+3x﹣2=0的根的情况是.12.(3分)如图,在平面直角坐标系中,直线y=﹣x+2分别交x轴、y轴于A、B两点,点P (1,m)在△AOB的形内(不包含边界),则m的值可能是.(填一个即可)13.(3分)如图,将△ABC绕点A按逆时针方向旋转100°,得到△AB1C1,若点B1在线段BC的延长线上,则∠BB1C1的大小是度.14.(3分)如图,在平面直角坐标系中,抛物线y=﹣(x﹣3)2+m与y=(x+2)2+n的一个交点为A.已知点A的横坐标为1,过点A作x轴的平行线,分别交两条抛物线于点B、C(点B在点A左侧,点C在点A右侧),则的值为.三、解答题(本大题共10小题,共78分)15.(6分)先化简,再求值:2b2+(a+b)(a﹣b)﹣(a﹣b)2,其中a=﹣3,b=.16.(6分)如图是一副扑克牌的四张牌,将它们正面向下洗均匀,从中任意抽取两张牌,用画树状图(或列表)的方法,求抽出的两张牌中,牌面上的数字都是偶数的概率.17.(6分)为了解九年级课业负担情况,某校随机抽取80名九年级学生进行问卷调查,在整理并汇总这80张有效问卷的数据时发现,每天完成课外作业时间,最长不超过180分钟,最短不少于60分钟,并将调查结果绘制成如图所示的频数分布直方图.(1)被调查的80名学生每天完成课外作业时间的中位数在组(填时间范围).(2)该校九年级共有800名学生,估计大约有名学生每天完成课外作业时间在120分钟以上(包括120分钟)18.(7分)如图,在▱ABCD中,O为AC的中点,过点O作EF⊥AC与边AD、BC分别相交于点E、F,求证:四边形AECF是菱形.19.(7分)某环卫清洁队承担着9600米长的街道清雪任务,在清雪1600米后,为了减少对交通的影响,决定租用清雪机清雪,结果共用了4小时就完成了清雪任务.已知使用清雪机后的工作效率是原来的5倍,求原来每小时清雪多少米?20.(7分)如图,小区内斜向马路的大树与地面的夹角∠ABC为55°,高为3.2米的大型客车靠近此树的一侧至少要离此树的根部B点多少米才能安全通过?(结果精确到0.1米)【参考数据:sin55°=0.82,cos55°=0.57,tan55°=1.42】21.(8分)【发现问题】如图①,在△ABC中,分别以AB、AC为斜边,向△ABC的形外作等腰直角三角形,直角的顶点分别为D、E,点F、M、G分别为AB、BC、AC边的中点,求证:△DFM ≌△MGE.【拓展探究】如图②,在△ABC中,分别以AB、AC为底边,向△ABC的形外作等腰三角形,顶角的顶点分别为D、E,且∠BAD+∠CAE=90°.点F、M、G分别为AB、BC、AC边的中点,若AD=5,AB=6,△DFM的面积为a,直接写出△MGE的面积.22.(9分)在连接A、B两市的公路之间有一个机场C,机场大巴由A市驶向机场C,货车由B 市驶向A市,两车同时出发匀速行驶,图中线段、折线分别表示机场大巴、货车到机场C的路程y(km)与出发时间x(h)之间的函数关系图象.(1)直接写出连接A、B两市公路的路程以及货车由B市到达A市所需时间.(2)求机场大巴到机场C的路程y(km)与出发时间x(h)之间的函数关系式.(3)求机场大巴与货车相遇地到机场C的路程.23.(10分)如图,在△ABC中,AD⊥BC于点D,BD=3cm,DC=8cm,AD=4cm,动点P从点B出发,沿折线BA﹣AC向终点C做匀速运动,点P在线段BA上的运动速度是5cm/s;在线段AC 上的运动速度是cm/s,当点P不与点B、C重合时,过点P作PQ⊥BC于点Q,将△PBQ绕PQ 的中点旋转180°得到△QB′P,设四边形PBQB′与△ABD重叠部分图形的面积为y(cm2),点P的运动时间为x(s).(1)用含x的代数式表示线段AP的长.(2)当点P在线段BA上运动时,求y与x之间的函数关系式.(3)当经过点B′和△ADC一个顶点的直线平分△ADC的面积时,直接写出x的值.:y=(x+k)(x﹣3)交x轴于点A、B 24.(12分)如图①,在平面直角坐标系中,抛物线C1(A在B的右侧),交y轴于点C,横坐标为2k的点P在抛物线C上,连结PA、PC、AC,设△1ACP的面积为S.(1)求直线AC对应的函数表达式(用含k的式子表示).(2)当点P在直线AC的下方时,求S取得最大值时抛物线C1所对应的函数表达式.(3)当k取不同的值时,直线AC、抛物线C1和点P、点B都随k的变化而变化,但点P始终在不变的抛物线(虚线)C2:y=ax2+bx上,求抛物线C2所对应的函数表达式.(4)如图②,当点P在直线AC的下方时,过点P作x轴的平行线交C2于点F,过点F作y轴的平行线交C1于点E,当△PEF与△ACO的相似比为时,直接写出k的值.吉林省长春市中考数学模拟试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)的相反数是()A. B.C.﹣4 D.4【解答】解:的相反数是,故选:B.2.(3分)用两块完全相同的长方体搭成如图所示的几何体,这个几何体的主视图是()A.B.C.D.【解答】解:从物体正面看,左边1列、右边1列上下各一个正方形,且左右正方形中间是虚线,故选:C.3.(3分)下列运算正确的是()A.a•a2=a2B.(a2)3=a6C.a2+a3=a6 D.a6÷a2=a3【解答】解:A、原式=a3,错误;B、原式=a6,正确;C、原式不能合并,错误;D、原式=a4,错误,故选:B.4.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【解答】解:,由①得,x>﹣1;由②得,x≤2,故此不等式组的解集为:﹣1<x≤2.在数轴上表示为:故选:A.5.(3分)如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若CD=2,AB=8,则△ABD 的面积是()A.6 B.8 C.10 D.12【解答】解:如图,过点D作DE⊥AB于E,∵AB=8,CD=2,∵AD是∠BAC的角平分线,∠C=90°,∴DE=CD=2,∴△ABD的面积=AB•DE=×8×2=8.故选:B.6.(3分)如图,在Rt△ABC中,∠C=90°,AC<BC.斜边AB的垂直平分线交边BC于点D.若BD=5,CD=3,则△ACD的周长是()A.7 B.8 C.12 D.13【解答】解:∵DE是AB的垂直平分线,∴AD=BD=5,又CD=3,由勾股定理得,AC==4,∴△ACD的周长=AC+CD+AD=12,故选:C.7.(3分)如图,四边形ABCD内接于⊙O,若∠B=130°,则∠AOC的大小是()A.130°B.120°C.110°D.100°【解答】解:∵∠B+∠D=180°,∴∠D=180°﹣130°=50°,∴∠AOC=2∠D=100°.故选:D.8.(3分)如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=1,点A在函数y=﹣(x<0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y=(x>0)的图象上,C1O1与此图象交于点P,则点P的纵坐标是()A.B.C.D.【解答】解:∵OB=1,AB⊥OB,点A在函数y=﹣(x<0)的图象上,∴当x=﹣1时,y=2,∴A(﹣1,2).∵此矩形向右平移3个单位长度到A1B1O1C1的位置,∴B1(2,0),∴A1(2,2).∵点A1在函数y=(x>0)的图象上,∴k=4,∴反比例函数的解析式为y=,O1(3,0),∵C1O1⊥x轴,∴当x=3时,y=,∴P(3,).故选:C.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)化简:﹣= .【解答】解:原式=2﹣=.故答案为:.10.(3分)某种商品n千克的售价是m元,则这种商品8千克的售价是元.【解答】解:根据题意,得:,故答案为:.11.(3分)不解方程,判断方程2x2+3x﹣2=0的根的情况是有两个不相等的实数根.【解答】解:∵a=2,b=3,c=﹣2,∴△=b2﹣4ac=9+16=25>0,∴一元二次方程有两个不相等的实数根.故答案为:有两个不相等的实数根.12.(3分)如图,在平面直角坐标系中,直线y=﹣x+2分别交x 轴、y 轴于A 、B 两点,点P (1,m )在△AOB 的形内(不包含边界),则m 的值可能是 1 .(填一个即可)【解答】解:∵直线y=﹣x+2分别交x 轴、y 轴于A 、B 两点, ∴A (4,0),B (0,2),∴当点P 在直线y=﹣x+2上时,﹣+2=m ,解得m=, ∵点P (1,m )在△AOB 的形内, ∴0<m <, ∴m 的值可以是1. 故答案为:1.13.(3分)如图,将△ABC 绕点A 按逆时针方向旋转100°,得到△AB 1C 1,若点B 1在线段BC 的延长线上,则∠BB 1C 1的大小是 80 度.【解答】解:由旋转的性质可知:∠B=∠AB 1C 1,AB=AB 1,∠BAB 1=100°. ∵AB=AB 1,∠BAB 1=100°, ∴∠B=∠BB 1A=40°. ∴∠AB 1C 1=40°.∴∠BB 1C 1=∠BB 1A+∠AB 1C 1=40°+40°=80°. 故答案为:80.14.(3分)如图,在平面直角坐标系中,抛物线y=﹣(x﹣3)2+m与y=(x+2)2+n的一个交点为A.已知点A的横坐标为1,过点A作x轴的平行线,分别交两条抛物线于点B、C(点B在点A左侧,点C在点A右侧),则的值为.【解答】解:抛物线y=﹣(x﹣3)2+m与y=(x+2)2+n的对称轴分别为直线x=3与直线x=﹣2,∵点A的横坐标为1,∴点C的横坐标为5,点B横坐标为﹣5,∴AC=4,AB=6,则==,故答案为:三、解答题(本大题共10小题,共78分)15.(6分)先化简,再求值:2b2+(a+b)(a﹣b)﹣(a﹣b)2,其中a=﹣3,b=.【解答】解:原式=2b2+a2﹣b2﹣(a2+b2﹣2ab)=2b2+a2﹣b2﹣a2﹣b2+2ab=2ab,当a=﹣3,b=时,原式=2×(﹣3)×=﹣3.16.(6分)如图是一副扑克牌的四张牌,将它们正面向下洗均匀,从中任意抽取两张牌,用画树状图(或列表)的方法,求抽出的两张牌中,牌面上的数字都是偶数的概率.【解答】解:画树状图得:∵共有12种等可能的结果,牌面上的数字都是偶数的有2种情况,∴P(牌面上数字都是偶数)==.17.(6分)为了解九年级课业负担情况,某校随机抽取80名九年级学生进行问卷调查,在整理并汇总这80张有效问卷的数据时发现,每天完成课外作业时间,最长不超过180分钟,最短不少于60分钟,并将调查结果绘制成如图所示的频数分布直方图.(1)被调查的80名学生每天完成课外作业时间的中位数在120~150 组(填时间范围).(2)该校九年级共有800名学生,估计大约有600 名学生每天完成课外作业时间在120分钟以上(包括120分钟)【解答】解:(1)被调查的80名学生每天完成课外作业时间的中位数在120~150.故答案为120~150.(2)校九年级共有800名学生,每天完成课外作业时间在120分钟以上的学生有800×=600,故答案为600.18.(7分)如图,在▱ABCD中,O为AC的中点,过点O作EF⊥AC与边AD、BC分别相交于点E、F,求证:四边形AECF是菱形.【解答】证明:∵四边形ABCD是平行四边形,∴BC∥AD,∴AE∥CF,∴∠OAE=∠OCF,∵点O是AC的中点,∴OA=OC,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴AE=CF,∵AE∥CF,∴四边形AECF是平行四边形,∵EF与AC垂直,∴四边形AECF是菱形.19.(7分)某环卫清洁队承担着9600米长的街道清雪任务,在清雪1600米后,为了减少对交通的影响,决定租用清雪机清雪,结果共用了4小时就完成了清雪任务.已知使用清雪机后的工作效率是原来的5倍,求原来每小时清雪多少米?【解答】解:设原来每小时清雪x米,根据题意得:+=4,解得:x=800,经检验:x=800是分式方程的解.答:原来每小时清雪800米.20.(7分)如图,小区内斜向马路的大树与地面的夹角∠ABC为55°,高为3.2米的大型客车靠近此树的一侧至少要离此树的根部B点多少米才能安全通过?(结果精确到0.1米)【参考数据:sin55°=0.82,cos55°=0.57,tan55°=1.42】【解答】解:如图:在AB上取点D,过点D作DE⊥BC于点E,则DE=3.5,∵tan55°==1.42,∴BE==≈2.3(米),答:至少要离此树的根部B点2.3米才能安全通过.21.(8分)【发现问题】如图①,在△ABC中,分别以AB、AC为斜边,向△ABC的形外作等腰直角三角形,直角的顶点分别为D、E,点F、M、G分别为AB、BC、AC边的中点,求证:△DFM ≌△MGE.【拓展探究】如图②,在△ABC中,分别以AB、AC为底边,向△ABC的形外作等腰三角形,顶角的顶点分别为D、E,且∠BAD+∠CAE=90°.点F、M、G分别为AB、BC、AC边的中点,若AD=5,AB=6,△DFM的面积为a,直接写出△MGE的面积.【解答】【发现问题】证明:∵△ADB是等腰直角三角形,F为斜边AB的中点,∴∠DFB=90°,DF=FA;∵△ACE是等腰直角三角形,G为斜边AC的中点,∴∠EGC=90°,AG=GE,∵点F、M、G分别为AB、BC、AC边的中点,∴FM∥AC,MG∥AB,∴四边形AFMG是平行四边形,∴FM=AG,MG=FA,∠BFM=∠BAC,∠BAC=∠MGC,∴DF=MG,∠DFM=∠MGE,FM=GE,在△DFM与△MGE中,,∴△DFM≌△MGE.【拓展探究】∵点F、M、G分别为AB、BC、AC边的中点,∴FM∥AC,MG∥AB,FM=AC=AG,MG=AB=AF,∠MGC=∠BAC=∠BFM,∴∠DFM=∠MGE,∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,∴tan∠1=tan∠3,即=,∴=,∵∠DFM=∠MGE,∴△DFM∽△MGE,∴=()2,在Rt△ADF中,DF===4,∴=()2=,∵△DFM的面积为a,∴S=a.△MGE22.(9分)在连接A、B两市的公路之间有一个机场C,机场大巴由A市驶向机场C,货车由B 市驶向A市,两车同时出发匀速行驶,图中线段、折线分别表示机场大巴、货车到机场C的路程y(km)与出发时间x(h)之间的函数关系图象.(1)直接写出连接A、B两市公路的路程以及货车由B市到达A市所需时间.(2)求机场大巴到机场C的路程y(km)与出发时间x(h)之间的函数关系式.(3)求机场大巴与货车相遇地到机场C的路程.【解答】解:(1)60+20=80(km),80÷20×=(h).∴连接A、B两市公路的路程为80km,货车由B市到达A市所需时间为h.(2)设所求函数表达式为y=kx+b(k≠0),将点(0,60)、(,0)代入y=kx+b,得:,解得:,∴机场大巴到机场C的路程y(km)与出发时间x(h)之间的函数关系式为y=﹣80x+60(0≤x≤).(3)设线段ED对应的函数表达式为y=mx+n(m≠0),将点(,0)、(,60)代入y=mx+n,得:,解得:,∴线段ED对应的函数表达式为y=60x﹣20(≤x≤).解方程组,得,∴机场大巴与货车相遇地到机场C的路程为km.23.(10分)如图,在△ABC中,AD⊥BC于点D,BD=3cm,DC=8cm,AD=4cm,动点P从点B出发,沿折线BA﹣AC向终点C做匀速运动,点P在线段BA上的运动速度是5cm/s;在线段AC 上的运动速度是cm/s,当点P不与点B、C重合时,过点P作PQ⊥BC于点Q,将△PBQ绕PQ 的中点旋转180°得到△QB′P,设四边形PBQB′与△ABD重叠部分图形的面积为y(cm2),点P的运动时间为x(s).(1)用含x的代数式表示线段AP的长.(2)当点P在线段BA上运动时,求y与x之间的函数关系式.(3)当经过点B′和△ADC一个顶点的直线平分△ADC的面积时,直接写出x的值.【解答】解:(1)当0<x≤1时,PA=5x,当1<x<5时,PA=5(x﹣1)=5x﹣5.(2)如图1中,当0<x≤时,重叠部分是四边形PBQB′.∵PQ⊥BC,AD⊥BC,∴PQ∥AD,∴==,∴==,∴PQ=4x,BQ=3x,由题意四边形PBQB′是平行四边形,∴y=BQ•PQ=12x2,如图2中,当<x≤1,重叠部分是五边形PBQMN.∵PN∥BD,∴=,∴PN=3(1﹣x),B′N=3x﹣3(1﹣x)=6x﹣3,易知MN=4(2x﹣1),∴y=12x2﹣•(6x﹣3)•4(2x﹣1)=﹣12x2+24x﹣6.综上所述,y=.(3)如图3中,当PA=B时,PB′是△ABD是中位线.∴AB′=DB′,此时CB′平分△ADC的面积,此时x=.如图4中,设AB′的延长线交BC于G.当DG=GC=4时,AB′平分△ADC的面积,∵PB′∥BG,∴=,∴=,∴x=.如图5中,连接DB′交AC于N,延长B′P交AD于T,作NM⊥PB′于M,NH⊥AD于H.由题意PA=(x﹣1),AT=x﹣1,TP=2(x﹣1),PB′=BQ=3+2(x﹣1)=2x+1,当AN=CN时,DB′平分△ADC的面积,∴可得AH=HD=2,HN=TM=2,∴B′M=TB′﹣MT=2(x﹣1)+2x+1﹣4=4x﹣5,MN=2﹣(x﹣1)=3﹣x,TD=4﹣(x﹣1)=5﹣x,∵MN∥TD,∴=,∴=,∴x=,综上所述,x=s或s或s时,经过点B′和△ADC一个顶点的直线平分△ADC的面积.24.(12分)如图①,在平面直角坐标系中,抛物线C1:y=(x+k)(x﹣3)交x轴于点A、B(A在B的右侧),交y轴于点C,横坐标为2k的点P在抛物线C1上,连结PA、PC、AC,设△ACP的面积为S.(1)求直线AC对应的函数表达式(用含k的式子表示).(2)当点P在直线AC的下方时,求S取得最大值时抛物线C1所对应的函数表达式.(3)当k取不同的值时,直线AC、抛物线C1和点P、点B都随k的变化而变化,但点P始终在不变的抛物线(虚线)C2:y=ax2+bx上,求抛物线C2所对应的函数表达式.(4)如图②,当点P在直线AC的下方时,过点P作x轴的平行线交C2于点F,过点F作y轴的平行线交C1于点E,当△PEF与△ACO的相似比为时,直接写出k的值.【解答】解:(1)在y=(x+k)(x﹣3)中,令y=0,可得A(3,0),B(﹣k,0),令x=0,可得C(0,﹣3k),设直线AC对应的函数表达式为:y=mx+n,将A(3,0),C(0,﹣3k)代入得:,解得:,∴直线AC对应的函数表达式为:y=kx﹣3k;(2)如图①,过点P作y轴的平行线交AC于点Q,交x轴于点M,过C作CN⊥PM于N,当x=2k时,y=(2k+k)(2k﹣3)=6k2﹣9k,∵点P、Q分别在抛物线C1、直线AC上,∴P(2k,6k2﹣9k)、Q(2k,2k2﹣3k),∴PQ=9k﹣6k2﹣(3k﹣2k2)=﹣4k2+6k,∴S△PAC =S△PQC+S△PQA=PQ•CN+PQ•AM=PQ•(CN+AM),=PQ,=(﹣4k2+6k),=﹣6(k﹣)2+,∴当k=时,△PAC面积的最大值是,此时,C1:y=(x+)(x﹣3)=x2﹣﹣;(3)∵点P在抛物线C1上,∴P(2k,6k2﹣9k),当k=1时,此时P(2,﹣3),当k=2时,P(4,6),把(2,﹣3)和(4,6)代入抛物线(虚线)C2:y=ax2+bx上得:,解得:,∴抛物线C2所对应的函数表达式为:y=x2﹣x;(4)如图②,由题意得:△ACO和△PEF都是直角三角形,且∠A OC=∠PFE=90°,∵点P在直线AC的下方,横坐标为2k的点P在抛物线C1上,∴P(2k,6k2﹣9k),且0<k<,∵A(3,0),C(0,﹣3k),∴OA=3,OC=3K,∴当△PEF与△ACO的相似比为时,存在两种情况:①当△PEF∽△CAO时,,∴=,∴PF=k,EF=1,∴E(3k,12k2﹣12k),∵EF=1,∴9k﹣6k2=12k﹣12k2+1,6k2﹣3k﹣1=0,k1=,k2=<0(舍),②当△PEF∽△ACO时,,∴,∴PF=1,EF=k,∴E(2k+1,6k2﹣4k﹣2),∴4k+2﹣6k2+k=9k﹣6k2,k=,综上所述,k的值为或.。
2019年吉林省长春市南关区东北师大附中中考数学一模试卷

2019年吉林省长春市南关区东北师大附中中考数学一模试卷一、选择题(本大腿共8小题,每小题3分,共24分)1.(3分)若a与2互为相反数,则a+1的值为()A.﹣3.B.﹣1.C.1.D.3.2.(3分)“中国天眼”F AST射电望远镜的反射面总面积约250 000m2,数据250 000用科学记数法表示为()A.25×104B.2.5×105C.2.5×106D.0.25×1063.(3分)如图是一个正方体的表面展开图,在这个正方体中,与点A重合的点为()A.点C和点N B.点B和点M C.点C和点M D.点B和点N4.(3分)若□×3xy=3x2y,则□内应填的单项式是()A.xy B.3xy C.x D.3x5.(3分)如图,在框中解分式方程的4个步骤中,根据等式基本性质的是()A.①②B.②④C.①③D.③④6.(3分)西周时期,丞相周公旦设置过一种通过测定日影长度来确定时间的仪器,称为圭表.如图是一个根据北京的地理位置设计的圭表,其中,立柱AC高为a.已知,冬至时北京的正午日光入射角∠ABC约为26.5°,则立柱根部与圭表的冬至线的距离(即BC的长)约为()A.a sin26.5°B.C.a cos26.5°D.7.(3分)如图,在平面直角坐标系中,点A的坐标为(0,1),点B是x轴正半轴上一点,以AB为边作等腰直角三角形ABC,使∠BAC=90°,点C在第一象限,若点C在函数(x>0)的图象上,则△ABC的面积为()A.1B.2C.D.3.8.(3分)在△ABC中,∠ACB=90°,用直尺和圆规在AB上确定点D,使△ACD∽△CBD,根据作图痕迹判断,正确的是()A.B.C.D.二、填空题(本大共6小题,每小题3分,共18分)9.(3分)不等式3x+1<﹣2的解集是.10.(3分)分解因式:m2n﹣4n=.11.(3分)如图,一束平行太阳光线照射到正五边形上,则∠1=.。
2019年吉林省长春市中考数学一模试卷(精品解析版)

2019年吉林省长春市中考数学一模试卷一、选择题1.-的绝对值是( )A.B. 2019C.D.【答案】D 【解析】【分析】:直接利用绝对值的定义进而得出答案. 【详解】的绝对值是.故选D .【点睛】此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2.据统计,截止2019年2月,长春市实际居住人口约4210000人,4210000这个数用科学记数法表示为( )A.B. C.D.【答案】C 【解析】【分析】:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】421 0000=4.21×106,故选C . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.如图是一个正六棱柱的茶叶盒,其俯视图为( )A.B.C.D.【答案】B 【解析】试题解析:正六棱柱的俯视图为正六边形.故选B.考点:简单几何体的三视图.4.不等式的解集在数轴上表示正确的是( )A. B.C. D.【答案】A【解析】【分析】:分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:解不等式3x-1≤2,得:x≤1,解不等式x+2>0,得:x>-2,则不等式组的解集为-2<x≤1,故选:A.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.已知如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于( )A. B. C. D.【答案】B【解析】【分析】:利用三角形内角与外角关系:三角形的任一外角等于和它不相邻的两个内角之和解答.【详解】如图,∵∠1、∠2是△CDE的外角,∴∠1=∠4+∠C,∠2=∠3+∠C,即∠1+∠2=2∠C+(∠3+∠4),∵∠3+∠4=180°-∠C=90°,∴∠1+∠2=2×90°+90°=270°.故选B.【点睛】此题主要考查了三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和.6.如图所示,某超市在一楼至二楼之间安装有电梯,天花板与地面平行.张强扛着箱子(人与箱子的总高度约为2.2m)乘电梯刚好安全通过,请你根据图中数据回答,两层楼之间的高约为( )A. B. C. 11m D.【答案】A【解析】如图,作DE⊥FC于点E,∴△ABC∽△CED,∴.设AB=x米,由题意得DE=6米,EF=2.2米.∴,解得x=5.5.故选A.7.如图,某地修建高速公路,要从B地向C地修一座隧道(B,C在同一水平面上),为了测量B,C两地之间的距离,某工程师乘坐热气球从C地出发,垂直上升200米到达A处,在A处观察B地的俯角为α,则B,C两地之间的距离为()A.米 B. 米 C. 米 D. 米【答案】D【解析】【分析】:根据正切的定义解答即可.【详解】由题意得,∠B=,在Rt△ACB中,tanB=,则BC=米,故选D.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角和俯角的概念、熟记锐角三角函数的定义是解题的关键.8.如图,在平面直角坐标系中,点A、B的坐标分贝为(0,3)、(1,0),将线段AB绕点B顺时针旋转90°,得到线段BC,若点C落在函数y=(x>0)的图象上,则k的值为( )A. 3B. 4C. 6D. 8【答案】B【解析】试题分析:根据旋转的性质和勾股定理可求得AB=AC=,然后设C的坐标为(4,),则AC=,解得k=±4,由图像可知k=4.故选:B.点睛:此题主要考查了勾股定理在平面直角坐标系中的应用,解题关键是明确旋转后的坐标变化,表示出C点的坐标,从而根据反比例函数的图像的性质,求出k的值.二、填空题9.比较大小:______3(填写“<”或“>”).【答案】.【解析】【分析】:首先把两个数分别平方,然后比较平方结果即可比较大小.【详解】∵7<9,∴<3.故答案为:<.【点睛】此题主要考查了实数的大小的比较,比较两个实数的大小,可以采用作差法、取近似值法等.实数大小比较法则:(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小.10.(a2)3=_____.【答案】a6【解析】分析:直接根据幂的乘方法则运算即可.详解:原式=a6.故答案为a6.点睛:本题考查了幂的乘方与积的乘法:(a m)n=a mn(m,n是正整数);(ab)n=a n b n(n是正整数).11.如图,直线L:y=-x-3与直线y=a(a为常数)的交点在第三象限,则a的值可以为______.(写出一个即可)【答案】答案不唯一,只要-3<a<0即可【解析】分析:首先求出方程组的解,然后根据第三象限内点的坐标特征,列出关于a的不等式组,从而得出a的取值范围.【详解】解方程组,得.∵交点在第三象限,∴,解得-3 <a<0.故答案不唯一,只要-3<a<0即可.点睛:本题主要考查了一次函数与方程组的关系及第二象限内点的坐标特征.两个一次函数图象的交点坐标就是对应的二元一次方程组的解,反之,二元一次方程组的解就是对应的两个一次函数图象的交点坐标.第四象限内点的坐标特征:横坐标大于0,纵坐标小于0.12.如图,四边形ABCD内接于⊙O,若∠ADC=130°,则∠AOC的大小为______度.【答案】100【解析】试题分析:根据圆内接四边形的对角互补,可求得∠B=180°-∠ADC=50°,然后跟据圆周角定理可求得∠AOC=2×50°=100°.故答案为:100°.13.如图,在Rt△ABC中,∠ACB=90°,BC=9,AC=12.分别以点A和点B为圆心、大于AB一半的长为半径作圆弧,两弧相交于点E和点F,作直线EF交AB于点D,连结CD.则CD的长为______.【答案】【解析】解:由作图可知,E F垂直平分AB,即DC是Rt△ABC斜边上的中线,故DC=AB= .14.如图,在平面直角坐标系中,抛物线y=x2-2x-1交y轴于点A,过点A作AB∥x轴交抛物线于点B,点P在抛物线上,连结PA、PB,若点P关于x轴的对称点恰好落在直线AB上,则△ABP的面积是______.【答案】2【解析】【分析】求得C的坐标,进而求得B的坐标,根据点P关于x轴的对称点恰好落在直线AB上得出三角形的高,然后根据三角形面积公式即可求得.【详解】解:令x=0,则y=x2-2x-1=-1,∴A(0,-1),把y=-1代入y=x2-2x-1得-1=x2-2x-1,解得x1=0,x2=2,∴B(2,-1),∴AB=2,∵点P关于x轴的对称点恰好落在直线AB上,∴△PAB边AB上的高为2,∴S=×2×2=2.故答案为2.【点睛】本题考查了二次函数图象上点的坐标特征,求得A、B的坐标以及三角形的高是解题的关键.三、解答题15.小明解方程=3出现了错误,解答过程如下:方程两边都乘以(x-2),得1-(1-x)=3(第一步)去括号,得1-1+x=3(第二步)移项,合并同类项,得x=3(第三步)检验,当x=3时x-2≠0(第四步)所以x=3是原方程的解.(第五步)(1)小明解答过程是从第____步开始出错的,原方程化为第一步的根据是_____.(2)请写出此题正确的解答过程.【答案】(1)一,方程两边都乘以(或都除以)同一个不为0的数,方程的解不变;(2)见解析. 【解析】【分析】(1)根据等式的基本性质判断可得;(2)根据解分式方程的步骤依次计算可得.【详解】(1)一方程两边都乘以(或都除以)同一个不为0的数,方程的解不变(2)解答过程如下:方程两边都乘以,得.解得.检验,当时所以是原方程的解.【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.16.某校对初三学生进行物理、化学实验操作能力测试.物理、化学各有3个不同的操作实验题目,物理实验分别用①、②、③表示,化学实验分别用a、b、c表示.测试时每名学生每科只操作一个实验,实验的题目由学生抽签确定,第一次抽签确定物理实验题目,第二次抽签确定化学实验题目.王刚同学对物理的①、②号实验和化学的b、c号实验准备得较好.请用画树状图(或列表)的方法,求王刚同学同时抽到两科都准备得较好的实验题目的概率.【答案】【解析】试题分析:根据题意画出树状图,再求出一共有的等可能结果数,及他两科都抽到准备得较好的实验题目的情况数,利用概率公式求解即可。
2019年吉林省长春市中考数学一模考试试卷(解析版)

2019年吉林省长春市中考数学一模试卷一、选择题(本大题共8小题,共24.0分)1.-法;的绝对值是( )2.3. A. -2019B.201912019据统计,截止2019年2月,长春市实际居住人口约4210000 A , 4210000这个数用 科学记数法表示为()A. 42.1 x 105 B. 4.21 x 105 C. 4.21 x 106如图是一个正六棱柱的茶叶盒,其俯视图为( )D. 4.21 x 107A.4,不等式{乂竿项Mo 的解集在数轴上表示正确的是( )-1 05.已知如图,/kABC 为直角三角形,zC=90°,若沿图中虚线剪去乙C,贝0zl+z2等于( )A. 315°B. 270°C. 180°D. 135°6,如图所示,某超市在一楼至二楼之间安装有电梯,天花板与地面平行.张强扛着箱 子(人与箱子的总高度约为2.2m )乘电梯刚好安全通过,请你根据图中数据回答, 两层楼之间的高约为()A. 5.5m D. 2.2m7,如图,某地修建高速公路,要从3地向。
地修一座隧道(B,。
在同一水平面上),为了测量。
两地之间的距离,某工程师乘坐热气球从。
地出发,垂直上升200米到达A处,在A处观察B地的俯角为a,则B,C两地之间的距离为()A.200sina米B.200tana米C.竺米sina8,如图,在平面直角坐标系中,点A、B的坐标分贝为(0,3)、(1,0),将线段AB绕点B顺时针旋转90。
,得到线段3C,若点。
落在函数y=§(x>0)的图象上,贝琳的值为()A.3B.4C.6D.8二、填空题(本大题共6小题,共18.0分)9.比较大小:V73(填写或">”).10.(a2)3=.11.如图,直线L:y=-|x-3与直线y=a(a为常数)的交点在第三象限,则a的值可以为.(写出一个即可)12,如图,四边形ABCQ内接于若ZADC=130°,则zAOC的大小为度.DB13.如图,在Rt「AB C中,zACB=90。
吉林省长春市2019年中考数学模拟试卷(包含答案)

吉林省长春市2019年中考数学模拟试卷一.选择题(满分24分,每小题3分)1.下列语句正确的是()A.“+15米”表示向东走15米B.0℃表示没有温度C.﹣a可以表示正数D.0既是正数也是负数2.已知a<b,下列式子不成立的是()A.a+1<b+1 B.4a<4bC.﹣>﹣b D.如果c<0,那么<3.天津到上海的铁路里程约1326000米,用科学记数法表示1326000的结果是()A.0.1326×107B.1.326×106C.13.26×105D.1.326×1074.如图,点O在直线AB上,若∠AOC=3∠BOC,则∠BOC的度数为()A.30°B.45°C.50°D.60°5.如图,菱形ABCD的两条对角线AC,BD相交于点O,E是AB的中点,若AC=6,BD=8,则OE长为()A.3 B.5 C.2.5 D.46.南洞庭大桥是南益高速公路上的重要桥梁,小芳同学在校外实践活动中对此开展测量活动.如图,在桥外一点A测得大桥主架与水面的交汇点C的俯角为α,大桥主架的顶端D的仰角为β,已知测量点与大桥主架的水平距离AB=a,则此时大桥主架顶端离水面的高CD为()A .a sin α+a sin βB .a cos α+a cos βC .a tan α+a tan βD .+7.如图,在⊙O 中,点C 在优弧上,将沿BC 折叠后刚好经过AB 的中点D ,连接AC ,CD .则下列结论中错误的是( )①AC =CD ;②AD =BD ;③+=;④CD 平分∠ACBA .1B .2C .3D .48.如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO =∠ADB =90°,反比例函数y =的图象经过点B ,若△OAC 与△BAD 的面积之差S △OAC ﹣S △BAD =2,则k 的值为( )A .2B .4C .6D .8二.填空题(满分18分,每小题3分) 9.因式分解:ax 3y ﹣axy 3= .10.定义[x ]表示不超过实数x 的最大整数,例如:[0.82]=0,[6]=6,[﹣]=﹣3,[﹣7]=﹣7.若规定:对于实数m ,.例如:f (7)=[]﹣[]=[﹣]﹣[]=﹣2﹣1=﹣3,则f (﹣6)= .11.如图,在四边形ABCD 中,∠ABC =90°,对角线AC 、BD 交于点O ,AO =CO ,CD ⊥BD ,如果CD=3,BC=5,那么AB=.12.如图,点A、B、C、D、E在⊙O上,且为50°,则∠E+∠C=°.13.如图,在Rt△ABC中,∠C=90°,以顶点B为圆心,适当长度为半径画弧,分别交AB,BC于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线BP交AC于点D.若∠A=30°,则=.14.二次函数y=ax2+bx+c的图象与x轴相交于(﹣1,0)和(5,0)两点,则该抛物线的对称轴是.三.解答题15.(6分)先化简再求值,(3a﹣2)2﹣3a(2a﹣1)+5,其中a是方程x2﹣3x+1=0的解.16.(6分)现有学生若干人,分住若干宿舍.如果每间住4人,那么还余20人;如果每间住6人,那么有一间宿舍只住了2人.试求学生人数和宿舍间数.17.(6分)一个不透明的袋子中装有3个标号分别为1、2、3的完全相同的小球,随机地摸出一个小球不放回,再随机地摸出一个小球.(1)采用树状图或列表法列出两次摸出小球出现的所有可能结果;(2)求摸出的两个小球号码之和等于4的概率.18.(7分)为了解学生每天的睡眠情况,某初中学校从全校800名学生中随机抽取了40名学生,调查了他们平均每天的睡眠时间(单位:h),统计结果如下:9,8,10.5,7,9,8,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,10,9.5,8,9,7,9.5,8.5,9,7,9,9,7.5,8.5,8.5,9,8,7.5,9.5,10,9.5,8.5,9,8,9.在对这些数据整理后,绘制了如下的统计图表:睡眠时间分组统计表睡眠时间分布情况组别睡眠时间分组人数(频数)1 7≤t<8 m2 8≤t<9 113 9≤t<10 n4 10≤t<11 4请根据以上信息,解答下列问题:(1)m=,n=,a=,b=;(2)抽取的这40名学生平均每天睡眠时间的中位数落在组(填组别);(3)如果按照学校要求,学生平均每天的睡眠时间应不少于9h,请估计该校学生中睡眠时间符合要求的人数.19.(7分)在△ABC中,∠A、∠B、∠C所对的边分别用a、b、c表示.(1)如图,在△ABC中,∠A=2∠B,且∠A=60度.求证:a2=b(b+c).(2)如果一个三角形的一个内角等于另一个内角的2倍,我们称这样的三角形为“倍角三角形”.第一问中的三角形是一个特殊的倍角三角形,那么对于任意的倍角三角形ABC ,其中∠A =2∠B ,关系式a 2=b (b +c )是否仍然成立?并证明你的结论.(3)试求出一个倍角三角形的三条边的长,使这三条边长恰为三个连续的正整数. 20.(7分)已知抛物线y =x 2+(2m ﹣1)x ﹣2m (m >0.5)的最低点的纵坐标为﹣4. (1)求抛物线的解析式;(2)如图1,抛物线与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,D 为抛物线上的一点,BD 平分四边形ABCD 的面积,求点D 的坐标;(3)如图2,平移抛物线y =x 2+(2m ﹣1)x ﹣2m ,使其顶点为坐标原点,直线y =﹣2上有一动点P ,过点P 作两条直线,分别与抛物线有唯一的公共点E 、F (直线PE 、PF 不与y 轴平行),求证:直线EF 恒过某一定点.21.(8分)甲、乙两车分别从A 、B 两地同时出发,在同一条公路上,匀速行驶,相向而行,到两车相遇时停止.甲车行驶一段时间后,因故停车0.5小时,故障解除后,继续以原速向B 地行驶,两车之间的路程y (千米)与出发后所用时间x (小时)之间的函数关系如图所示.(1)求甲、乙两车行驶的速度V 甲、V 乙. (2)求m 的值.(3)若甲车没有故障停车,求可以提前多长时间两车相遇.22.(9分)如图,四边形ABCD为平行四边形,AD=1,AB=3,∠DAB=60°,点E为边CD 上一动点,过点C作AE的垂线交AE的延长线于点F.(1)求∠D的度数;(2)若点E为CD的中点,求EF的值;(3)当点E在线段CD上运动时,是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.23.如图1,点C在线段AB上,(点C不与A、B重合),分别以AC、BC为边在AB同侧作等边三角形ACD和等边三角形BCE,连接AE、BD交于点P.【观察猜想】①AE与BD的数量关系是;②∠APD的度数为.【数学思考】如图2,当点C在线段AB外时,(1)中的结论①、②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明;【拓展应用】如图3,点E为四边形ABCD内一点,且满足∠AED=∠BEC=90°,AE=DE,BE=CE,对角线AC、BD交于点P,AC=10,则四边形ABCD的面积为.24.在平面直角坐标系中,如果某点的横坐标与纵坐标的和为10,则称此点为“合适点”例如,点(1,9),(﹣2019,2029)…都是“合适点”.(1)求函数y=2x+1的图象上的“合适点”的坐标;(2)求二次函数y=x2﹣5x﹣2的图象上的两个“合适点”A,B之间线段的长;(3)若二次函数y=ax2+4x+c的图象上有且只有一个合适点”,其坐标为(4,6),求二次函数y=ax2+4x+c的表达式;(4)我们将抛物线y=2(x﹣n)2﹣3在x轴下方的图象记为G1,在x轴及x轴上方图象记为G2,现将G1沿x轴向上翻折得到G3,图象G2和图象G3两部分组成的记为G,当图象G上恰有两个“合适点”时,直接写出n的取值范围.参考答案一.选择题1.解:A、“+15米”不一定表示向东走15米,原说法错误,故这个选项不符合题意;B、0℃不是没有温度,而是表示零上温度和零下温度的分界点,原说法错误,故这个选项不符合题意;C、﹣a可以表示正数,也可以表示负数,原说法正确,故这个选项符合题意;D、0 既不是正数也不是负数,原说法错误,故这个选项不符合题意;故选:C.2.解:A、不等式两边同时加上1,不等号方向不变,式子a+1<b+1成立,故这个选项不符合题意;B、不等式两边同时乘以4,不等号方向不变,式子4a<4b成立,故这个选项不符合题意;C、不等式两边同时乘以﹣,不等号方向改变,式子﹣a>﹣b成立,故这个选项不符合题意;D、不等式两边同时除以负数c,不等号方向改变,式子<不成立,故这个选项符合题意.故选:D.3.解:用科学记数法表示1326000的结果是1.326×106,故选:B.4.解:∵∠AOC与∠BOC互为邻补角,∴∠AOC+∠BOC=180°,①又∵∠AOC=3∠BOC,②把②代入①,可得3∠BOC+∠BOC=180°,解得∠BOC=45°.故选:B.5.解:∵四边形ABCD是菱形,AC=6,BD=8,∴AO=OC=3,OB=OD=4,AO⊥BO,又∵点E是AB中点,∴OE是△DAB的中位线,在Rt△AOD中,AB==5,则OE=AD=.故选:C.6.解:在Rt△ABD和Rt△ABC中,AB=a,tanα=,tanβ=,∴BC=a tanα,BD=a tanβ,∴CD=BC+BD=a tanα+a tanβ;故选:C.7.解:过D作DD'⊥BC,交⊙O于D',连接CD'、BD',由折叠得:CD=CD',∠ABC=∠CBD',∴AC=CD'=CD,故①正确;∵点D是AB的中点,∴AD=BD,∵AC=CD',故②正确;∴=,由折叠得:=,∴+=;故③正确;延长OD交⊙O于E,连接CE,∵OD⊥AB,∴∠ACE=∠BCE,∴CD不平分∠ACB,故④错误;故选:A.8.解:设B点坐标为(a,b),∵△OAC和△BAD都是等腰直角三角形,∴S△OAC =AC2,S△BAD=AD2,∵S△OAC ﹣S△BAD=2,∴AC2﹣AD2=4,∴(AC+AD)(AC﹣AD)=4∴(OC+BD)•CD=4,∴a•b=4,∴k=4.故选:B.二.填空题9.解:ax3y﹣axy3=axy(x2﹣y2)=axy(x+y)(x﹣y).故答案为:axy(x+y)(x﹣y).10.解:∵,∴f(﹣6)=[]﹣[]=2﹣(﹣2)=4.故答案为:4.11.解:如图,过点A作AE⊥BD,∵CD⊥BD,AE⊥BD,∴∠CDB=∠AED=90°,且CO=AO,∠COD=∠AOE,∴△AOE≌△COD(AAS)∴CD=AE=3,∵∠CDB=90°,BC=5,CD=3,∴DB===4;∵∠ABC=∠AEB=90°,∴∠ABE+∠EAB=90°,∠CBD+∠ABE=90°,∴∠EAB=∠CBD,且∠CDB=∠AED=90°,∴△ABE∽△BCD,∴,∴∴AB=故答案为:.12.解:连接EA,∵为50°,∴∠BEA=25°,∵四边形DCAE为⊙O的内接四边形,∴∠DEA+∠C=180°,∴∠DEB+∠C=180°﹣25°=155°,故答案为:155.13.解:由作法得BD平分∠ABC,∵∠C=90°,∠A=30°,∴∠ABC=60°,∴∠ABD=∠CBD=30°,∴DA=DB,在Rt△BCD中,BD=2CD,∴AD=2CD,∴=.故答案为.14.解:∵二次函数y=ax2+bx+c的图象与x轴相交于(﹣1,0)和(5,0)两点,∴其对称轴为:x==2.故答案为:x=2.三.解答15.解:原式=9a2﹣12a+4﹣6a2+3a+5=3a2﹣9a+9=3(a2﹣3a)+9,把x=a代入方程得:a2﹣3a+1=0,即a2﹣3a=﹣1,则原式=﹣3+9=6.16.解:设学生有x人,宿舍有y间,依题意,得:,解得:.答:学生有68人,宿舍有12间.17.解:(1)根据题意,可以画出如下的树形图:从树形图可以看出,两次摸球出现的所有可能结果共有6种.(2)由树状图知摸出的两个小球号码之和等于4的有2种结果,∴摸出的两个小球号码之和等于4的概率为=.18.解:(1)7≤t<8时,频数为m=7;9≤t<10时,频数为n=18;∴a=×100%=17.5%;b=×100%=45%;故答案为:7,18,17.5%,45%;(2)由统计表可知,抽取的这40名学生平均每天睡眠时间的中位数为第20个和第21个数据的平均数,∴落在第3组;故答案为:3;(3)该校学生中睡眠时间符合要求的人数为800×=440(人);答:估计该校学生中睡眠时间符合要求的人数为440人.19.(1)证明:∵∠A=2∠B,∠A=60°∴∠B=30°,∠C=90°∴c=2b,a=b∴a2=3b2=b(b+c)(2)解:关系式a2=b(b+c)仍然成立.法一:证明:∵∠A=2∠B∴∠C=180°﹣∠A﹣∠B=180°﹣3∠B由正弦定理得即a=2R sin A,b=2R sin B,c=2R sin C∴b(b+c)=2R sin B(2R sin B+2R sin C)=4R2sin B[sin B+sin(180°﹣3∠B)]=4R2sin B(sin B+sin3∠B)=4R2sin B(2sin2B cos B)=4R2sin2B×sin2B=4R2sin22B又∵a2=4R2sin2A=4R2sin22B∴a2=b(b+c)(3)解:若△ABC是倍角三角形,由∠A=2∠B,应有a2=b(b+c),且a>b.当a>c>b时,设a=n+1,c=n,b=n﹣1,(n为大于1的正整数)代入a2=b(b+c),得(n+1)2=(n﹣1)•(2n﹣1),解得n=5,有a=6,b=4,c=5,可以证明这个三角形中,∠A=2∠B当c>a>b及a>b>c时,均不存在三条边长恰为三个连续正整数的倍角三角形.边长为4,5,6的三角形为所求.20.解:(1)∵y =x 2+(2m ﹣1)x ﹣2m =(x +m ﹣0.5)2﹣m 2﹣m ﹣0.25,∴顶点坐标为(0.5﹣m ,﹣m 2﹣m ﹣0.25)∵最低点的纵坐标为﹣4,∴﹣m 2﹣m ﹣0.25=﹣4,即4m 2+4m ﹣15=0,∴m =1.5或﹣2.5,∵m >0.5,∴m =1.5.∴抛物线的解析式为y =x 2+2x ﹣3;(2)∵y =x 2+2x ﹣3与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C , ∴A (﹣3,0),B (1,0),C (0,﹣3).如图1,连AC 交BD 于E ,过A 作AM ⊥BD 于M ,过C 作CN ⊥BD 于N ,∵BD 平分四边形ABCD 的面积,∴S △ABD =S △CBD ,∴BD ×AM =BD ×CN ,∴AM =CN ,且∠AEM =∠CMN ,∠AME =∠CNE =90°∴△AEM ≌△CEN (AAS ),∴AE =CE ,∴E (﹣1.5,﹣1.5),且B (1,0),∴直线BE 的解析式为y =0.6x ﹣0.6.∴0.6x ﹣0.6=x 2+2x ﹣3,解得x 1=﹣,x 2=1, ∴D (﹣,﹣).(3)由题意可得平移后解析式为y=x2,设E(t,t2),F(n,n2),设直线PE为y=k1(x﹣t)+t2,由题意可得x2﹣k1x+k1t﹣t2=0,∴△=k12﹣4(k1t﹣t2)=(k1﹣2t)2=0,∴k1=2t.∴直线PE为y=2t(x﹣t)+t2,即y=2tx﹣t2.令y=﹣2,得x P=,同理,设直线PF为y=k2(x﹣n)+n2,∴x P=,∴=,∵t≠n,∴tn=﹣2.设直线EF的解析式为y=kx+b,得x2﹣kx﹣b=0,∴x E•x F=﹣b,即tn=﹣b,∴b=2.∴直线EF为y=kx+2,过定点(0,2).21.解:(1)由图可得,,解得,,答:甲的速度是60km/h乙的速度是80km/h;(2)m=(1.5﹣1)×(60+80)=0.5×140=70,即m的值是70;(3)甲车没有故障停车,则甲乙相遇所用的时间为:180÷(60+80)=,若甲车没有故障停车,则可以提前:1.5﹣=(小时)两车相遇,即若甲车没有故障停车,可以提前小时两车相遇.22.解:(1)如图1中,∵四边形ABCD是平行四边形,∴AB∥CB,∠ADC+∠DAB=180°,∵∠DAB=60°,∴∠ADC=120°.(2)如图1中,作AH⊥CD交CD的延长线于H.在Rt△ADH中,∵∠H=90°,∠ADH=60°,AD=2,∴AH=AD•sin60°=,DH=AD•cos60°=,∵DE=EC=,∴EH=DH+DE=2,∴AE===,∵CF⊥AF,∴∠F=∠H=90°,∵∠AEH=∠CEF,∴△AEH∽△CEF,∴=,∴=,∴EF=.(3)如图2中,作△AFC的外接圆⊙O,作AH⊥CD交CD的郯城县于H,作OK⊥CD于K,交⊙O于M,作FP∥CD交AD的延长线于P,作MN∥CD交AD的延长线于M,作NQ⊥CD于Q.∵DE∥PF,∴=,∵AD是定值,∴PA定值最大时,定值最大,观察图象可知,当点F与点M重合时,PA定值最大,最大值=AN的长,由(2)可知,AH=,CH=,∠H=90°,∴AC===,∴OM=AC=,∵OK∥AH,AO=OC,∴KH=KC,∴OK==,∴MK=NQ=﹣,在Rt△NDQ中,DN===﹣,∴AN=AD+DN=+,∴的最大值==+.23.解:【观察猜想】:结论:AE=BD.∠APD=60°.理由:设AE交CD于点O.∵△ADC,△ECB都是等边三角形,∴CA=CD,∠ACD=∠ECB=60°,CE=CB,∴∠ACE=∠DCB,∴△ACE≌△DCB(SAS),∴AE=BD,∠CAO=∠ODP,∵∠AOC=∠DOP,∴∠DPO=∠ACO=60°,即∠APD=60°.故答案为AE=BD,60°.【数学思考】:结论仍然成立.理由:设AC交BD于点O.∵△ADC,△ECB都是等边三角形,∴CA=CD,∠ACD=∠ECB=60°,CE=CB,∴∠ACE=∠DCB∴△ACE≌△DCB(SAS),∴AE=BD,∠PAO=∠ODC,∵∠AOP=∠DOC,∴∠APO=∠DCO=60°,即∠APD=60°.【拓展应用】:设AC交BE于点O.∵△ADC,△ECB都是等腰直角三角形,∴ED=EA,∠AED=∠BEC=90°,CE=EB,∴∠AEC=∠DEB∴△AEC≌△DEB(SAS),∴AC=BD=10,∠PBO=∠OCE,∵∠BOP=∠EOC,∴∠BPO=∠CEO=90°,∴AC⊥BD,=•AC•DP+•AC•PB=•AC•(DP+PB)=•AC•BD=50.∴S四边形ABCD故答案为50.24.解:(1)联立x+y=10和y=2x+1并解得:x=3,y=7,故“合适点”的坐标为(3,7);(2)联立x+y=10和y=x2﹣5x﹣2并解得:x=﹣2或6,故点A、B的坐标分别为:(﹣2,12)、(6,4),则AB==8;(3)将点(4,6)代入二次函数表达式得:16a+16+c=6…①,联立y=10﹣x和y=ax2+4x+c并整理得:ax2+5x+(c﹣10)=0,△=25﹣4a(c﹣10)=0…②,联立①②并解得:a=﹣,c=0,故抛物线的表达式为:y=﹣x2+4x;(4)图象G,如下图所示:G 2的顶点坐标为(n,3),则G2的函数表达式为:y=﹣2(x﹣n)2+3,x+y=10,则y=10﹣x,设直线m为:y=10﹣x,①当直线m与图象G2只有一个交点时,直线m与图象G有3个交点,即有3个“合适点”,联立直线m与G2的表达式得:y=﹣2(x﹣n)2+3=10﹣x,整理得:2x2﹣(4n+1)x+(2n2+7)=0,△=b2﹣4ac=8n﹣55=0,解得:n=,故当n<时,图象G恰好有2个“合适点”;②当直线m经过点A、B时,直线m与图象G有3个交点,即有3个“合适点”,则在这两个点之间有2个“合适点”,吉林省长春市2019年中考数学模拟试卷(包含答案)直线m与x轴的交点为(10,0),将(10,0)代入y=2(x﹣n)2﹣3并解得:n=10,故10﹣<n<10+;综上,n的取值范围为:n<或10﹣<n<10+.21 / 21。
长春市2019中考数学模拟试题(带解答)

长春市2019中考数学模拟试题一、选择题(本大题共8小题,每小题3分,共24分) 1.﹣51的绝对值是( ) A .5 B .﹣5 C .51 D .﹣51 解:﹣51的绝对值是51 【答案】C2.作为“一带一路”倡议的重大先行项目,中国、巴基斯坦经济走廊建设进展快,成效显著,两年来,已有18个项目在建或建成,总投资额达185********美元,将“185********”用科学记数法可表示为( ) A .1.85×109B .1.85×1010C .1.85×1011D .185×108解:185********=1.85×1010【答案】B3.如图是一个由5个相同的正方体组成的立体图形,它的主视图是( )A .B .C .D .解:这个几何体的主视图为:【答案】A4.一元一次不等式组⎩⎨⎧-≥->+1212x xx 的解集在数轴上表示正确的是( )A .B .C .D .解:{)()(112212-≥->+x xx由(1)得:x ≤2, 由(2)得:x >﹣1,则不等式组的解集为﹣1<x ≤2, 表示在数轴上,如图所示:【答案】C5.如图,直线a ∥b ,∠1=75°,∠2=35°,则∠3的度数是( )A .75°B .55°C .40°D .35° 解:∵直线a ∥b ,∠1=75°, ∴∠4=∠1=75°, ∵∠2+∠3=∠4,∴∠3=∠4﹣∠2=75°﹣35°=40°. 【答案】C6.如图,在△ABC 中,∠C =90°,AB =13,AC =12,下列三角函数表示正确的是( )A .sin A =1312 B .cos A =1312C .tan A =512D .tan B =125 解:∵∠C =90°,AB =13,AC =12, ∴BC =5, 则sinA =AB BC =135,cosA =AB AC =1312,tanA =AC BC =125,tanB =BC AC =512, 【答案】B7.某班去看演出,甲种票每张24元,乙种票每张18元,如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?设买了x 张甲种票,y 张乙种票,则所列方程组正确的是( )A .B .C .D .解:设买了x 张甲种票,y 张乙种票,根据题意可得:{35y x 7501824=+=+y x【答案】B8.如图,已知,第一象限内的点A 在反比例函数y =x2的图象上,第四象限内的点B 在反比例函数y =xk的图象上.且OA ⊥OB ,∠OAB =60°,则k 的值为( )A .23B .6C .﹣23D .﹣6 解:如图,作AC ⊥x 轴,BD ⊥x 轴.∵OA ⊥OB , ∴∠AOB =90°,∵∠OAC+∠AOC =90°,∠AOC+∠BOD =90°, ∴∠OAC =∠BOD , ∴△ACO ∽△ODB , ∴OB OA =BD OC =ODAC, ∵∠OAB =60°, ∴OBOA =33,设A (x ,x2) BD =3OC =3x ,OD =3AC =x32,∴B (3x ,﹣x32) 把点B 代入y =x k得,﹣x 32=xk 3,解得x =﹣6.【答案】D二、填空题(本大题共6小题,每小题3分,共18分)9.比较实数的大小:、“<”或“=”). 解:∵3=9,9>5, ∴3>5. 【答案】>10.分解因式:x 2y ﹣xy 2= . 解:原式=xy (x ﹣y ).11.若关于x 的一元二次方程x 2+4x +k =0有两个不相等的实数根,则k 的取值范围是 . 解:∵关于x 的一元二次方程x 2+4x +k =0有两个不相等的实数根, ∴△=42﹣4k >0, 解得k <4. 【答案】k <412.如图,直线l 1、l 2、…、l 6是一组等距离的平行线,过直线l 1上的点A 作两条射线m 、n ,射线m 与直线l 3、l 6分别相交于B 、C ,射线n 与直线l 3、l 6分别相交于点D 、E .若BD =1,则CE 的长为 .解:∵l 3∥l 6,∴BD ∥CE , ∴△ABD ∽△ACE , ∴AC AB =CE BD =52, ∵BD =1,∴CE =25. 【答案】2513.在平行四边形ABCD 中,连接AC ,按以下步骤作图,分别以A 、C 为圆心,以大于21AC 的长为半径画弧,两弧分别相交于点M 、N ,作直线MN 交CD 于点E ,交AB 于点F .若AB =6,BC =4,则△ADE 的周长为 .解:∵四边形ABCD 是平行四边形, ∴AD =BC =4,CD =AB =6,∵由作法可知,直线MN 是线段AC 的垂直平分线, ∴AE =CE , ∴AE +DE =CD =6,∴△ADE 的周长=AD +(DE +AE )=4+6=10. 【答案】1014.如图,一段抛物线:y =﹣x (x ﹣2)(0≤x ≤2)记为C 1,它与x 轴交于两点O ,A 1;将C 1绕A 1旋转180°得到C 2,交x 轴于A 2;将C 2绕A 2旋转180°得到C 3,交x 轴于A 3;…如此进行下去,直至得到C 6,若点P (11,m )在第6段抛物线C 6上,则m = .解:∵y =﹣x (x ﹣2)(0≤x ≤2),∴配方可得y =﹣(x ﹣1)2+1(0≤x ≤2), ∴顶点坐标为(1,1), ∴A 1坐标为(2,0) ∵C 2由C 1旋转得到,∴OA 1=A 1A 2,即C 2顶点坐标为(3,﹣1),A 2(4,0); 照此类推可得,C 3顶点坐标为(5,1),A 3(6,0); C 4顶点坐标为(7,﹣1),A 4(8,0); C 5顶点坐标为(9,1),A 5(10,0); C 6顶点坐标为(11,﹣1),A 6(12,0); ∴m =﹣1. 【答案】﹣1三、解答题(本大题共10小题,共78分)15.(6分)先化简,再求值:(x +1)2﹣(x +2)(x ﹣2),其中x =﹣21. 解:当x =﹣21时, 原式=x 2+2x +1﹣x 2+4 =2x +5 =﹣1+5 =416.(6分)一个不透明的袋子里装有三个分别标有数字﹣2、1、2的小球,除所标有的字不同外,其它方面均相同,现随机从中摸出一个小球,记录所摸出的小球上的数字后放回并搅匀,再随机摸出一个小球,记录小球上的数字.请用画树状图(或列表)的方法,求两次记录数字之和是正数的概率. 解:列表如下所有等可能的情况有9种,其中两次记录数字之和是正数的有4种结果,所以两次记录数字之和是正数的概率为.17.(6分)甲乙两人做某种机器零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等,求甲乙每小时各做多少个零件?解:设甲每小时做x个零件,乙每小时做y个零件.由题意得:解得:,经检验x=18,y=12是原方程组的解.答:甲每小时做18个,乙每小时做12个零件.18.(6分)图①、图②均是6×6的正方形网格,每个小正方形的顶点称为格点.线段AB 的端点均在格点上,按下列要求画出图形.(1)在图①中找到一个格点C,使∠ABC是锐角,且tan∠ABC=,并画出△ABC.(2)在图②中找到一个格点D,使∠ADB是锐角,且tan∠ADB=1,并画出△ABD.解:(1)如图①所示:答案不唯一;(2)如图②所示:答案不唯一.19.(7分)如图,AB是⊙O的直径,C是⊙O上一点,D在AB的延长线上,且∠BCD=∠A.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为3,CD=4,求BD的长.(1)证明:如图,连接OC.∵AB是⊙O的直径,C是⊙O上一点,∴∠ACB=90°,即∠ACO+∠OCB=90°.∵OA=OC,∠BCD=∠A,∴∠ACO=∠A=∠BCD,∴∠BCD+∠OCB=90°,即∠OCD=90°,∴CD是⊙O的切线.(2)解:在Rt△OCD中,∠OCD=90°,OC=3,CD=4,∴OD==5,∴BD=OD﹣OB=5﹣3=2.20.(8分)某校“两会”知识竞赛培训活动中,在相同条件下对甲、乙两名学生进行了10次测验.①收集数据:分别记录甲、乙两名学生10次测验成绩(单位:分)②整理数据:两组数据的平均数、中位数、众数、方差如下表所示:③分析数据:根据甲、乙两名学生10次测验成绩绘制折线统计图:④得出结论:结合上述统计全过程,回答下列问题:(1)补全②中的表格.(2)判断甲、乙两名学生谁的成绩比较稳定,说明判断依据.(3)如果你是决策者,从甲、乙两名学生中选择一人代表学校参加知识竞赛,你会选择(填“甲”或“乙),理由是:.解:(1)甲10次测验的成绩排序后,最中间的两个数据是84和86,故中位数为85;乙10次测验的成绩中,81出现的次数最多,故众数为81;故答案为:85,81;(2)甲的成绩较稳定.两人的成绩在平均数相同的情况下,甲成绩的方差较小,反映出甲的成绩比较稳定.(3)选择甲.理由如下:两人的成绩的平均数相同,但甲的中位数较高,说明甲的成绩多次高于乙的成绩,此外甲的成绩比较稳定.(答案不唯一)故答案为:甲;两人的成绩的平均数相同,但甲的中位数较高,说明甲的成绩多次高于乙的成绩,此外甲的成绩比较稳定.21.(8分)某景区的三个景点A、B、C在同一线路上.甲、乙两名游客从景点A出发,甲步行到景点C;乙乘景区观光车先到景点B,在B处停留一段时间后,再步行到景点C;甲、乙两人同时到达景点C.甲、乙两人距景点A的路程y(米)与甲出发的时间x(分)之间的函数图象如图所示.(1)乙步行的速度为米/分.(2)求乙乘景区观光车时y与x之间的函数关系式.(3)甲出发多长时间与乙第一次相遇?解:(1)乙步行的速度为:(5400﹣3000)÷(90﹣60)=80(米/分).故答案为:80.(2)设乙乘景区观光车时y与x之间的函数关系式为y=kx+b(k≠0),将(20,0),(30,3000)代入y=kx+b得:,解得:,∴乙乘景区观光车时y与x之间的函数关系式为y=300x﹣6000(20≤x≤30).(3)甲步行的速度为:5400÷90=60(米/分),∴甲步行y与x之间的函数关系式为y=60x.联立两函数关系式成方程组,,解得:,∴甲出发25分钟与乙第一次相遇.22.(9分)在矩形ABCD中,已知AD>AB.在边AD上取点E,使AE=AB,连结CE,过点E作EF⊥CE,与边AB或其延长线交于点F.猜想:如图①,当点F在边AB上时,线段AF与DE的大小关系为.探究:如图②,当点F在边AB的延长线上时,EF与边BC交于点G.判断线段AF与DE的大小关系,并加以证明.应用:如图②,若AB=2,AD=5,利用探究得到的结论,求线段BG的长.解:①AF =DE ;②AF =DE ,证明:∵∠A =∠FEC =∠D =90°,∴∠AEF =∠DCE ,在△AEF 和△DCE 中,,∴△AEF ≌△DCE ,∴AF =DE .③∵△AEF ≌△DCE ,∴AE =CD =AB =2,AF =DE =3,FB =F A ﹣AB =1,∵BG ∥AD , ∴AE BG =FAFB ∴BG =32 23.(10分)如图,在△ABC 中,∠C =90°,AC =BC ,AB =8.点P 从点A 出发,以每秒2个单位长度的速度沿边AB 向点B 运动.过点P 作PD ⊥AB 交折线AC ﹣CB 于点D ,以PD 为边在PD 右侧做正方形PDEF .设正方形PDEF 与△ABC 重叠部分图形的面积为S ,点P 的运动时间为t 秒(0<t <4).(1)当点D 在边AC 上时,正方形PDEF 的边长为 (用含t 的代数式表示).(2)当点E 落在边BC 上时,求t 的值.(3)当点D 在边AC 上时,求S 与t 之间的函数关系式.(4)作射线PE 交边BC 于点G ,连结DF .当DF =4EG 时,直接写出t 的值.解:(1)∵∠C =90°,AC =BC ,∴∠A =45°=∠B ,且DP ⊥AB ,∴∠A =∠ADP =45°,∴AP =DP =2t ,故答案为2t ,(2)如图,∵四边形DEFP 是正方形∴DP =DE =EF =PF ,∠DPF =∠EFP =90°∵∠A =∠B =45°∴∠A =∠ADP =∠B =∠BEF =45°∴AP =DP =2t =EF =FB =PF∵AB =AP +PF +FB∴2t +2t +2t =8∴t =34 (3)当0<t ≤34时,正方形PDEF 与△ABC 重叠部分图形的面积为正方形PDEF 的面积,即S =DP 2=4t 2,当34<t ≤2时,如图,正方形PDEF 与△ABC 重叠部分图形的面积为五边形PDGHF 的面积,∵AP =DP =PF =2t ,∴BF =8﹣AP ﹣PF =8﹣4t ,∵BF =HF =8﹣4t ,∴EH =EF ﹣HF =2t ﹣(8﹣4t )=6t ﹣8,∴S =S 正方形DPFE ﹣S △GHE ,∴S =4t 2﹣×(6t ﹣8)2=﹣14t 2+48t ﹣32, (4)如图,当点E 在△ABC 内部,设DF 与PE 交于点O ,∵四边形PDEF 是正方形,∴DF =PE =2PO =2EO ,∠DFP =45°,∴∠DFP =∠ABC =45°,∴DF ∥BC , ∴PG PO =PBPF ∵DF =4EG∴设EG =a ,则DF =4a =PE ,PO =2a =EO ,∴PG =5a , ∴PG PO =PB PF =aa 52 ∴t t 282-=52 ∴t =78 如图,当点E 在△ABC 外部,设DF 与PE 交于点O ,∵四边形PDEF 是正方形,∴DF =PE =2PO =2EO ,∠DFP =45°,∴∠DFP =∠ABC =45°,∴DF ∥BC , ∴PG PO =PBPF ∵DF =4EG∴设EG =a ,则DF =4a =PE ,PO =2a =EO ,∴PG =3a , ∵PG PO =PB PF =a3a 2 ∴t t 282-=32 ∴t =58 综上所述:t =78或58 24.(12分)定义:如图1,在平面直角坐标系中,点M 是二次函数C 1图象上一点,过点M 作l ⊥x 轴,如果二次函数C 2的图象与C 1关于l 成轴对称,则称C 2是C 1关于点M 的伴随函数.如图2,在平面直角坐标系中,二次函数C 1的函数表达式是y =﹣2x 2+2,点M是二次函数C1图象上一点,且点M的横坐标为m,二次函数C2是C1关于点M的伴随函数.(1)若m=1,①求C2的函数表达式.②点P(a,b1),Q(a+1,b2)在二次函数C2的图象上,若b1≥b2,a的取值范围为.(2)过点M作MN∥x轴,①如果MN=4,线段MN与C2的图象交于点P,且MP:PN=1:3,求m的值.②如图3,二次函数C2的图象在MN上方的部分记为G1,剩余的部分沿MN翻折得到G2,由G1和G2所组成的图象记为G.以A(1,0)、B(3,0)为顶点在x轴上方作正方形ABCD.直接写出正方形ABCD与G有三个公共点时m的取值范围.解:(1)①当m=1时,抛物线C2与抛物线C1关于直线x=1对称∴抛物线C2的顶点时(2,2)∴抛物线C2的解析式为y=﹣2(x﹣2)2+2=﹣2x2+8x﹣6②∵点P(a,b1),Q(a+1,b2)在二次函数C2的图象上∴b2﹣b1=﹣2(a+1)2+8(a+1)﹣6﹣(﹣2a2+8a﹣6)=﹣4a+6当b1≥b2时﹣4a+6≤03∴a≥23故答案为:a≥2(2)①∵MN∥x轴,MP:PN=1:3∴MP =1当m >0时,2m =1m =21 当m <0时,﹣2m =1 m =﹣21 ②分析图象可知:当m =21时,可知C 1和G 的对称轴关于直线x =21对称,C 2的顶点恰在AD 上,此时G 与正方形恰由2个交点.当m =1时,直线MN 与x 轴重合,G 与正方形恰由三个顶点.当m =2时,G 过点B (3,0)且G 对称轴左侧部分与正方形有两个交点 当m =2或21<m ≤1时,G 与正方形ABCD 有三个公共点.。
2019年吉林地区中考数学一模试卷(解析版)

2019年吉林地区中考数学一模试卷一、单项选择题(每小题2分,共12分)1.计算﹣1×2的结果是()A.1 B.2 C.﹣3 D.﹣22.吉林市人民大剧院于2015年8月建成,建筑面积约37 000平方米,将37 000用科学记数法表示为()A.0.37×105 B.3.7×104C.37×103D.370×1023.如图,已知几何体由5个相同的小正方体组成,那么它的主视图是()A.B.C.D.4.如图,含30°角的直角三角尺DEF放置在△ABC上,30°角的顶点D在边AB上,DE⊥AB.若∠B为锐角,BC∥DF,则∠B的大小为()A.30°B.45°C.60°D.75°5.如图,在平面直角坐标系中,点P的坐标为(﹣3,4),以点O为圆心,以OP长为半径画弧,交x轴的负半轴于点A,则点A的横坐标为()A.5 B.﹣3 C.﹣4 D.﹣56.如图,AB是⊙O的直径,CD是⊙O的弦,连接AD、DB、BC,若∠ABD=55°,则∠BCD的度数为()A.65°B.55°C.45°D.35°二、填空题(每小题3分,共24分)7.不等式2x+3<1的解集为.8.计算=.9.分式方程的解为x=.10.某小学对该校留守儿童人数进行了统计,得到每个年级的留守儿童分数分别为9,15,10,18,17,20,这组数据的中位数为人.11.某商品按进价提高20%出售,若进价为a元,则售价为元.12.如图,扇形AOB的圆心角为90°,半径为2,点C为OB中点,点D在上,将扇形沿直线CD折叠,若点B,O重合,则图中阴影部分的周长为.(结果保留π)13.如图,点A在双曲线上,点B在双曲线y=上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为.14.如图,在平行四边形ABCD中,∠BAD=110°,将四边形BCD绕点A逆时针旋转到平行四边形AB′C′D′的位置,旋转角α(0°<α<70°),若C′D′恰好经过点D,则α的度数为.三、解答题(每小题5分,共20分)15.先化简,再求值:2a(a+2b)﹣(a+2b)2,其中a=﹣1,b=.16.今年植树节期间某校20名学生共植树52棵,其中男生每人植树3棵,女生每人植树2棵,参加植树的男生和女生各有多少名?17.一只不透明袋子中装有1个红球,2个黄球,这些球除颜色外都相同,小明搅匀后从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出1个球,用画树状图或列表法列出摸出球的所有等可能情况,并求两次摸出的球都是红球的概率.18.如图,在正方形ABCD中,点E,F分别在AD,CD上,且AE=DF,连接BE,AF.求证:BE=AF.四、解答题(每小题7分,共28分)19.如图,点A、B的坐标分别为(4,0)(0,2).(1)画线段AB关于x轴的对称线段AC,画AP⊥x轴于点A,在AP上取点D,使得DB=AB,连接DB;(2)直接写出四边形ACBD是哪种特殊的四边形.20.为了了解用户对某国手机的A、B、C、D四种型号的购买情况,某手机经销商随机对m名该手机用户的购买型号进行了调查,将调查数据整理并绘制成如图的统计图,根据统计图提供的信息,解答下列问题:(1)求m的值;(2)四种型号中用户最喜欢的型号为,选择该种型号手机的人数占被调查人数的百分比为;(3)根据统计结果,估计2000名该手机用户中,选择D型的用户人数?21.热气球的探测器显示,从热气球看一栋楼顶部的仰角α为27°,看这栋楼底部的俯角β为58°,热气球与这栋楼的水平距离为120米,这栋楼有多高(结果取整数)?(参考数据:sin27°=0.45,cos27°=0.89,tan27°=0.51,sin58°=0.85,cos58°=0.53,tan58°=1.60)22.甲、乙两地相距145km,小李骑摩托车从甲地出发去往乙地,速度为25km/h,中途因故换成汽车继续前往乙地(换车时间忽略不计),小李与甲地的距离y(单位:km)和所用时间x(单位:h)之间的关系如图所示.(1)小李骑摩托车所用的时间m=,汽车的速度是km/h;(2)当m≤x≤3时,求y关于x的函数解析式.五、解答题(每小题8分,共16分)23.如图,AB是⊙O的弦,点O关于AB的对称点C在⊙O上,过点B作BD⊥AC交AC 的延长线于点D.(1)求证:BD是⊙O的切线;(2)若⊙O的半径为2,请直接写出BD的长.24.类比平行四边形,我们学习筝形,定义:两组邻边分别相等的四边形叫做筝形.如图①,若AD=CD,AB=CB,则四边形ABCD是筝形.①在同一平面内,△ABC与△ADE按如图②所示放置,其中∠B=∠D=90°,AB=AD,BC 与DE相交于点F,请你判断四边形ABFD是不是筝形,并说明理由.(2)请你结合图①,写出一个筝形的判定方法(定义除外).在四边形ABCD中,若,则四边形ABCD是筝形.(3)如图③,在等边三角形OGH中,点G的坐标为(﹣1,0),在直线l:y=﹣x上是否存在点P,使得以O,G,H,P为顶点的四边形为筝形?若存在,请直接写出点P的坐标;若不存在,请说明理由.六、解答题(每小题10分,共20分)25.如图,在矩形ABCD中,AB=6cm,AD=2cm,点E从点A开始,沿射线AB方向平移,在平移过程中,以线段AE为斜边向上作等腰三角形AEF,当EF过点C时,点E停止移动,设点E平移的距离为x(cm),△AEF与矩形ABCD重叠部分的面积为y(cm2).(1)当点F落在CD上时,x=;(2)求y关于x的函数解析式,并写出自变量x的取值范围;(3)设EF的中点为Q,直接写出在整个平移过程中点Q移动的距离.26.如图,二次函数y=﹣x2+k(k>0)的图象与x轴相交于A、C两点(点A在点C的左侧),与y轴交于点B,点D为线段OC上一点(不与点O、C重合),以OD为边向上作正方形ODEF,连接AE,BE,AB,AB,设点D的横坐标为m.=,(1)当k=3,m=2时,S△ABE=,当k=4,m=3时,S△ABE=;当k=5,m=4时,S△ABE的大小,并证明你的猜想;(2)根据(1)中的结果,猜想S△ABE=8时,在坐标平面内有一点P,其横坐标为n,当以A,B,E,P为顶点的(3)当S△ABE四边形为平行四边形时,请直接写出m与n满足的关系式.2016年吉林地区中考数学一模试卷参考答案与试题解析一、单项选择题(每小题2分,共12分)1.计算﹣1×2的结果是()A.1 B.2 C.﹣3 D.﹣2【考点】有理数的乘法.【分析】根据有理数乘法法则来计算.【解答】解:﹣1×2=﹣(1×2)=﹣2.故选D.2.吉林市人民大剧院于2015年8月建成,建筑面积约37 000平方米,将37 000用科学记数法表示为()A.0.37×105 B.3.7×104C.37×103D.370×102【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:37000用科学记数法表示应为3.7×104,故选B.3.如图,已知几何体由5个相同的小正方体组成,那么它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】得到从几何体正面看得到的平面图形即可作出判断.【解答】解:从正面看得到3列正方形的个数依次为1,2,1.故选C.4.如图,含30°角的直角三角尺DEF放置在△ABC上,30°角的顶点D在边AB上,DE⊥AB.若∠B为锐角,BC∥DF,则∠B的大小为()A.30°B.45°C.60°D.75°【考点】平行线的性质;直角三角形的性质.【分析】首先根据垂直定义可得∠ADE=90°,再根据∠FDE=30°,可得∠ADF=60°,然后根据两直线平行同位角相等可得∠B的大小.【解答】解:∵DE⊥AB,∴∠ADE=90°,∵∠FDE=30°,∴∠ADF=90°﹣30°=60°,∵BC∥DF,∴∠B=∠ADF=60°,故选:C.5.如图,在平面直角坐标系中,点P的坐标为(﹣3,4),以点O为圆心,以OP长为半径画弧,交x轴的负半轴于点A,则点A的横坐标为()A.5 B.﹣3 C.﹣4 D.﹣5【考点】坐标与图形性质.【分析】先根据勾股定理求出OP的长,由于OP=OA,故估算出OP的长,再根据点A在x轴的负半轴上即可得出结论.【解答】解:∵点P坐标为(﹣3,4),∴OP==5,∵点A、P均在以点O为圆心,以OP为半径的圆上,∴OA=OP=5,∵点A在x轴的负半轴上,∴点A的横坐标是﹣5.故选D.6.如图,AB是⊙O的直径,CD是⊙O的弦,连接AD、DB、BC,若∠ABD=55°,则∠BCD的度数为()A.65°B.55°C.45°D.35°【考点】圆周角定理.【分析】先根据圆周角定理求出∠ADB的度数,再由直角三角形的性质求出∠A的度数,进而可得出结论.【解答】解:∵AB是⊙O的直径,∴∠ADB=90°.∵∠ABD=55°,∴∠A=90°﹣55°=35°,∴∠BCD=∠A=35°.故选D.二、填空题(每小题3分,共24分)7.不等式2x+3<1的解集为x<﹣1.【考点】解一元一次不等式.【分析】根据解不等式的方法可以得到2x+3<1的解集,本题得以解决.【解答】解:2x+3<1不等式两边同时减去3,得2x<﹣2两边同时除以2,得x<﹣1,故答案为:x<﹣1.8.计算=3.【考点】二次根式的加减法.【分析】原式化简后,合并同类二次根式即可得到结果.【解答】解:原式=+2=3.故答案为:3.9.分式方程的解为x=2.【考点】分式方程的解.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x=2x﹣2,解得:x=2,经检验x=2是分式方程的解,则分式方程的解为x=2,故答案为:2.10.某小学对该校留守儿童人数进行了统计,得到每个年级的留守儿童分数分别为9,15,10,18,17,20,这组数据的中位数为16人.【考点】中位数.【分析】根据中位数的定义,将这组数据从小到大重新排列,求出最中间两个数的平均数即可.【解答】解:∵共有6个数,∴这组数据的中位数是第3、4个数的平均数,∴这组数据的中位数是(17+15)÷2=16(人).故答案为:16.11.某商品按进价提高20%出售,若进价为a元,则售价为a元.【考点】列代数式.【分析】根据:进价×(1+增长百分率)=售价,即可得.【解答】解:若进价为a元,则售价为(1+20%)a=a,故答案为:a.12.如图,扇形AOB的圆心角为90°,半径为2,点C为OB中点,点D在上,将扇形沿直线CD折叠,若点B,O重合,则图中阴影部分的周长为π+2.(结果保留π)【考点】弧长的计算;翻折变换(折叠问题).【分析】根据折叠的性质得到=,利用扇形的弧长的计算的长,根据周长公式计算即可.【解答】解:的长为=π,由折叠的性质可知,=,∴图中阴影部分的周长=AO++=AO+=π+2,故答案为:π+2.13.如图,点A在双曲线上,点B在双曲线y=上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为2.【考点】反比例函数系数k的几何意义.【分析】根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S的关系S=|k|即可判断.【解答】解:过A点作AE⊥y轴,垂足为E,∵点A在双曲线上,∴四边形AEOD的面积为1,∵点B在双曲线y=上,且AB∥x轴,∴四边形BEOC的面积为3,∴矩形ABCD的面积为3﹣1=2.故答案为:2.14.如图,在平行四边形ABCD中,∠BAD=110°,将四边形BCD绕点A逆时针旋转到平行四边形AB′C′D′的位置,旋转角α(0°<α<70°),若C′D′恰好经过点D,则α的度数为40°.【考点】旋转的性质;平行四边形的性质.【分析】由平行四边形的性质和旋转的性质得出AD′=AD,∠D′=∠ADC=70°,由等腰三角形的性质得出∠ADD′=∠D′=70°,再由三角形内角和定理即可得出结果.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ADC+∠BAD=180°,∴∠BDC=180°﹣110°=70°,由旋转的性质得:AD′=AD,∠D′=∠ADC=70°,∴∠ADD′=∠D′=70°,∴∠α=180°﹣2×70°=40°;故答案为:40°.三、解答题(每小题5分,共20分)15.先化简,再求值:2a(a+2b)﹣(a+2b)2,其中a=﹣1,b=.【考点】整式的混合运算—化简求值.【分析】先算乘法,再合并同类项,最后代入求出即可.【解答】解:2a(a+2b)﹣(a+2b)2=2a2+4ab﹣a2﹣4ab﹣4b2=a2﹣4b2,当a=﹣1,b=时,原式=(﹣1)2﹣4×()2=﹣7.16.今年植树节期间某校20名学生共植树52棵,其中男生每人植树3棵,女生每人植树2棵,参加植树的男生和女生各有多少名?【考点】二元一次方程组的应用.【分析】设参加植树的男生有x人,女生有y人,根据:“男、女生共20人、植树共52棵”列方程组求解可得.【解答】解:设参加植树的男生有x人,女生有y人,根据题意,得:,解得:,答:参加植树的男生有12名,女生有8人.17.一只不透明袋子中装有1个红球,2个黄球,这些球除颜色外都相同,小明搅匀后从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出1个球,用画树状图或列表法列出摸出球的所有等可能情况,并求两次摸出的球都是红球的概率.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球都是红球的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,两次摸出的球都是红球的只有1种情况,∴两次摸出的球都是红球的概率为:.18.如图,在正方形ABCD中,点E,F分别在AD,CD上,且AE=DF,连接BE,AF.求证:BE=AF.【考点】全等三角形的判定与性质;正方形的性质.【分析】根据正方形的四条边都相等可得AB=AD,每一个角都是直角可得∠BAE=∠D=90°,然后利用“边角边”证明△ABE和△ADF全等,根据全等三角形对应边相等证明即可.【解答】证明:在正方形ABCD中,AB=AD,∠BAE=∠D=90°,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS),∴BE=AF.四、解答题(每小题7分,共28分)19.如图,点A、B的坐标分别为(4,0)(0,2).(1)画线段AB关于x轴的对称线段AC,画AP⊥x轴于点A,在AP上取点D,使得DB=AB,连接DB;(2)直接写出四边形ACBD是哪种特殊的四边形.【考点】作图-轴对称变换.【分析】(1)直接利用轴对称图形的性质得出对应线段,进而得出答案;(2)直接利用平行四边形的判定方法进而得出答案.【解答】解:(1)如图所示:四边形ACBD即为所求;(2)四边形ACBD是平行四边形,理由:∵BC=AD,BD=AC,∴四边形ACBD是平行四边形.20.为了了解用户对某国手机的A、B、C、D四种型号的购买情况,某手机经销商随机对m名该手机用户的购买型号进行了调查,将调查数据整理并绘制成如图的统计图,根据统计图提供的信息,解答下列问题:(1)求m的值;(2)四种型号中用户最喜欢的型号为50,选择该种型号手机的人数占被调查人数的百分比为36%;(3)根据统计结果,估计2000名该手机用户中,选择D型的用户人数?【考点】条形统计图;用样本估计总体.【分析】(1)m等于各型个数的和;(2)最喜欢的就是数量最多的类型,然后根据百分比的意义求解;(3)利用总人数乘以对应的比例即可求得.【解答】解:(1)m=8+10+18+14=50;(2)四种型号中用户最喜欢的型号为C,该种型号手机的人数占被调查人数的百分比时是×100%=36%,故答案是:C,36%;(3)2000×=560(人),答:估计选择D的用户是560人.21.热气球的探测器显示,从热气球看一栋楼顶部的仰角α为27°,看这栋楼底部的俯角β为58°,热气球与这栋楼的水平距离为120米,这栋楼有多高(结果取整数)?(参考数据:sin27°=0.45,cos27°=0.89,tan27°=0.51,sin58°=0.85,cos58°=0.53,tan58°=1.60)【考点】解直角三角形的应用-仰角俯角问题.【分析】根据正切的定义分别求出BD、DC的长,求和即可.【解答】解:在Rt△ABD中,tanα=,则BD=AD•tanα=120×0.51=61.2,在Rt△ACD中,tanβ=,则CD=AD•tanβ=120×1.60=192,∴BC=BD+CD=61.2+192=253.2≈253,答:这栋楼高约为253米.22.甲、乙两地相距145km,小李骑摩托车从甲地出发去往乙地,速度为25km/h,中途因故换成汽车继续前往乙地(换车时间忽略不计),小李与甲地的距离y(单位:km)和所用时间x(单位:h)之间的关系如图所示.(1)小李骑摩托车所用的时间m=1,汽车的速度是60km/h;(2)当m≤x≤3时,求y关于x的函数解析式.【考点】一次函数的应用.【分析】(1)利用小李骑摩托车的速度以及其行驶的路程得出m的值,再利用甲、乙两地相距145km,再结合行驶时间得出汽车的速度;(2)首先得出P,Q点坐标,进而利用待定系数法求出一次函数解析式.【解答】解:(1)由题意可得:小李骑摩托车所用的时间m=25÷25=1(h),汽车的速度是:÷(3﹣1)=60(km/h);故答案为:1,60;(2)当m≤x≤3时,设y关于x的函数关系式为:y=kx+b,由题可得:m=1,P(1,25),Q(3,145),把P,Q两点坐标代入:y=kx+b,得:,解得:,故y关于x的函数解析式为:y=60x﹣35.五、解答题(每小题8分,共16分)23.如图,AB是⊙O的弦,点O关于AB的对称点C在⊙O上,过点B作BD⊥AC交AC 的延长线于点D.(1)求证:BD是⊙O的切线;(2)若⊙O的半径为2,请直接写出BD的长.【考点】切线的判定.【分析】(1)欲证明BD是⊙O的切线,只要证明∠OBD=90°,先四边形AOBC是菱形,得OB∥AD,根据两直线平行同旁内角互补即可解决问题.(2)连接OC,先证明△OBC,△OAC都是等边三角形,在RT△BCD中利用30度性质即可解决问题.【解答】(1)证明:∵点O关于AB的对称点C在⊙O上,∴AO=AC,BO=BC,∵AO=OB,∴AO=OB=BC=CA,∴四边形AOBC是菱形,∴AD∥OB,∴∠D+∠OBD=180°,∵BD⊥AD,∴∠D=90°,∴∠OBD=90°,∴BD⊥OB,∵OB是⊙O的半径,∴DB是⊙O的切线.(2)连接OC,由(1)可知四边形AOBC是菱形,∴OB=OC=BC=OA=AC,∴△OBC,△OAC都是等边三角形,∴∠BCO=∠ACO=60°,∴∠ACB=120°,∴∠BCD=180°﹣∠ACB=60°,在RT△BCD中,∵∠D=90°,BC=2,∠DBC=30°,∴CD=BC=1,∴BD===.24.类比平行四边形,我们学习筝形,定义:两组邻边分别相等的四边形叫做筝形.如图①,若AD=CD,AB=CB,则四边形ABCD是筝形.①在同一平面内,△ABC与△ADE按如图②所示放置,其中∠B=∠D=90°,AB=AD,BC 与DE相交于点F,请你判断四边形ABFD是不是筝形,并说明理由.(2)请你结合图①,写出一个筝形的判定方法(定义除外).在四边形ABCD中,若AD=CD,∠ADB=∠CDB,则四边形ABCD是筝形.(3)如图③,在等边三角形OGH中,点G的坐标为(﹣1,0),在直线l:y=﹣x上是否存在点P,使得以O,G,H,P为顶点的四边形为筝形?若存在,请直接写出点P的坐标;若不存在,请说明理由.【考点】一次函数综合题.【分析】(1)连接AF,通过给定的条件结合全等直角三角形的判定定理(HL)可得出Rt △AFB≌Rt△AFD,由此找出BF=DF,结合筝形定义即可得出结论;(2)若要四边形ABCD是筝形,只需证明△ABD≌△CBD即可.根据全等三角形的判定定理(SAS)随便选取一组条件“当AD=CD,∠ADB=∠CDB”来证明;(3)过点H作HP1⊥OG于点M交直线y=﹣x于点P1点,连接GP1,过点G作GP2⊥OH 与N交直线y=﹣x于点P2,连接HP2,由等边三角形的三线合一可得知“HM为OG的垂直平分线,GN为OH的垂直平分线”,由此即得出“四边形OHGP1为筝形,四边形OGHP2为筝形”,再根据给定条件找出点M、N、H点的坐标,利用待定系数法即可得出直线HM和直线GN的解析式,最后结合两直线的交点知识求出点P的坐标.【解答】解:(1)四边形ABFD是筝形.理由:如图②,连接AF.在Rt△AFB和Rt△AFD中,,∴Rt△AFB≌Rt△AFD(HL),∴BF=DF,又∵AB=AD,∴四边形ABFD是筝形.(2)若要四边形ABCD是筝形,只需△ABD≌△CBD即可.当AD=CD,∠ADB=∠CDB时,在△ABD和△CBD中,,∴△ABD≌△CBD(SAS),∴AB=CB,∴四边形ABCD是筝形.故答案为:AD=CD,∠ADB=∠CDB.(3)存在,理由如下:过点H作HP1⊥OG于点M交直线y=﹣x于点P1点,连接GP1,过点G作GP2⊥OH与N 交直线y=﹣x于点P2,连接HP2,如图③所示.∵△OGH为等边三角形,∴HM为OG的垂直平分线,GN为OH的垂直平分线,且OG=GH=HO,∴P2O=P2H,P1O=P1G,∴四边形OHGP1为筝形,四边形OGHP2为筝形.∵△OGH为等边三角形,点G的坐标为(﹣1,0),∴点H的坐标为(,),点M的坐标为(,0),点N的坐标为(,).①∵H(,),M(,0),∴直线HM的解析式为x=,令直线y=﹣x中的x=,则y=﹣.∴P1的坐标为(,﹣);②设直线GN的解析式为y=kx+b,则有,,解得:,∴直线GN的解析式为y=﹣x+.联立,解得:,故点P2的坐标为(﹣1,1).综上可知:在直线l:y=﹣x上存在点P,使得以O,G,H,P为顶点的四边形为筝形,点P的坐标为(,﹣)或(﹣1,1).六、解答题(每小题10分,共20分)25.如图,在矩形ABCD中,AB=6cm,AD=2cm,点E从点A开始,沿射线AB方向平移,在平移过程中,以线段AE为斜边向上作等腰三角形AEF,当EF过点C时,点E停止移动,设点E平移的距离为x(cm),△AEF与矩形ABCD重叠部分的面积为y(cm2).(1)当点F落在CD上时,x=4cm;(2)求y关于x的函数解析式,并写出自变量x的取值范围;(3)设EF的中点为Q,直接写出在整个平移过程中点Q移动的距离.【考点】四边形综合题.【分析】(1)直接利用等腰直角三角形的性质得出AF,AE的长,进而求出答案;(2)分段讨论,①当0<x≤4时,②当4<x≤6时,③当6<x≤8时,进而求出答案;(3)根据题意得出Q点移动到C点时,即AQ的长就是中点Q移动的距离,进而得出答案.【解答】解:(1)如图1,∵点F落在CD上,△AEF是等腰直角三角形,∴可得AD=DF=2cm,则AF=AE=2cm∴x=AE==4(cm),故答案为:4cm;(2)①当0<x≤4时,如图2所示,过点F作FH⊥AB于H,则FH=AE=x,=AE•FH=x x=x2,∴y=S△AEF②当4<x≤6时,如图3所示,过点F作FH⊥AB于H,FH交CD于点G,AF,EF分别交CD于M,N,由题意可得:△MNF是等腰直角三角形,∴FG=FH﹣GH=x﹣2,∴MN=2FG=2(x﹣2)=x﹣4,∴S △MNF =MN •FG=(x ﹣4)(x ﹣2)=(x ﹣2)2,∴y=S △AEF ﹣S △MNF ==2x ﹣4.③当6<x ≤8时,如图4所示,过点F 作FH ⊥AB 于H ,FH 交CD 于点G ,AF 、EF 分别交CD 于M 、N ,EF 交BC 于点P , 由题意可得:△MNF ,△EPB 都是等腰直角三角形,S MNF =(x ﹣2)2,S △EPB =EB •BP=(x ﹣6)2,∴y=S △AEF ﹣S △MNF ﹣S △EPB =﹣x 2+8x ﹣22,综上所述:y=;(3)如图5,∵EF 的中点为Q ,∴当E 点停止时,可得△ADM ,△FMC ,△CBE 为等腰直角三角形,则AD=DM=2cm ,BC=BE=2cm ,故MC=4cm ,AE=8cm ,∴=,∴此时C ,Q 点重合,∴AQ=2cm ,即在整个平移过程中点Q 移动的距离为2cm .26.如图,二次函数y=﹣x2+k(k>0)的图象与x轴相交于A、C两点(点A在点C的左侧),与y轴交于点B,点D为线段OC上一点(不与点O、C重合),以OD为边向上作正方形ODEF,连接AE,BE,AB,AB,设点D的横坐标为m.=,(1)当k=3,m=2时,S△ABE=8,当k=4,m=3时,S△ABE=;当k=5,m=4时,S△ABE(2)根据(1)中的结果,猜想S的大小,并证明你的猜想;△ABE=8时,在坐标平面内有一点P,其横坐标为n,当以A,B,E,P为顶点的(3)当S△ABE四边形为平行四边形时,请直接写出m与n满足的关系式.【考点】二次函数综合题.【分析】(1)令y=0,解关于x的一元二次方程得出x的值,即可得知点A的坐标,令x=0求出y值,由此得出B点的坐标,再根据正方形形的性质以及D点的横坐标为m得出点D、点E的坐标,代入k、m的值得出点A、B、E、D四点的坐标,再根据三角形的面积公式即可得出结论;=.由(1)得出由k、m表示的点A、B、E、D四点的坐标,结合三角形(2)S△ABE的面积公式求出S即可得出结论;△ABE=8找出k值,设点P的坐标为(n,y).以A,B,E,P为顶点的四边形(3)根据S△ABE为平行四边形有三种情况,分情况考虑,利用平行四边形的性质以及坐标系中点的意义即可得出结论.【解答】解:(1)令y=﹣x2+k=0,则x2=k2,解得:x1=﹣k,x2=k,∴点A的坐标为(﹣k,0).令x=0,则y=k,∴点B的坐标为(0,k).∵D点的横坐标为m,∴点E的坐标为(m,m),点D的坐标为(m,0).当k=3,m=2时,A(﹣3,0),B(0,3),E(2,2),D(2,0),=AO•OB+(OB+DE)•OD﹣AD•DE=×3×3+×(3+2)×2﹣(3+2)×S△ABE2=;当k=4,m=3时,A(﹣4,0),B(0,4),E(3,3),D(3,0),=AO•OB+(OB+DE)•OD﹣AD•DE=×4×4+×(4+3)×3﹣(4+3)×S△ABE3=8;当k=5,m=4时,A(﹣5,0),B(0,5),E(4,4),D(4,0),=AO•OB+(OB+DE)•OD﹣AD•DE=×5×5+×(5+4)×4﹣(5+4)×S△ABE4=.故答案为:;8;.=.(2)S△ABE证明:由(1)知:A(﹣k,0),B(0,k),E(m,m),D(m,0),=AO•OB+(OB+DE)•OD﹣AD•DE=k•k+(k+m)m﹣(k+m)m=.S△ABE(3)设点P的坐标为(n,y).==8,∵S△ABE∴k=4.当以A,B,E,P为顶点的四边形为平行四边形时,分三种情况:①当AB、EP为对角线时,令对角线的交点为M,如图1所示.∵四边形AEBP为平行四边形,∴点M平分AB,点M平分EP.∵A(﹣4,0),B(0,4),E(m,m),P(n,y),∴﹣4+0=m+n,即m+n=﹣4;②AB、EP为对边,且点P在E的左侧时,延长ED,过点P作PN⊥ED于点N,如图2所示.∵四边形AEBP为平行四边形,∴AB=PE,且AB∥PE,∴AO=PN.∵A(﹣4,0),B(0,4),E(m,m),P(n,y),∴0﹣(﹣4)=m﹣n,即m﹣n=4;③AB、EP为对边,且点P在E的右侧时,延长FE,过点P作PN⊥FE于点N,如图3所示.∵四边形AEBP为平行四边形,∴AB=PE,且AB∥PE,∴AO=PN.∵A(﹣4,0),B(0,4),E(m,m),P(n,y),∴0﹣(﹣4)=n﹣m,即n﹣m=4.综上可知:当以A,B,E,P为顶点的四边形为平行四边形时,m与n满足的关系式有m+n=﹣4,m﹣n=4和n﹣m=4.2016年10月24日。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年吉林省长春市南关区中考数学一模试卷【含答
案及解析】
姓名___________ 班级____________ 分数__________
一、填空题
1. 因式分【解析】 a3b﹣ab=_________.
2. 如图,矩形ABCD的对角线BD的中点为O,过点O作OE⊥BC于点E,连接OA,已知AB=5,BC=12,则四边形ABEO的周长为_____.
3. 如图,反比例函数y=(x>0)的图象经过矩形OABC的边AB的中点D,若矩形OABC
的面积为8,则k=___.
4. 如图,点B是扇形AOC的弧AC的二等分点,过点B、C分别作半径的垂线段BD、CE,垂足分别为D、E,已知OA⊥OC,半径OC=1,则图中阴影部分的面积和是____.
5. 如图,抛物线y=ax2+bx+c(a<0)的对称轴是过点(1,0)且平行于y轴的直线,若
点P(3,0)在该抛物线上,则a﹣b+c的值为_____.
二、解答题
6. 先化简,再求值:(1﹣)÷,其中x=﹣4.
7. 一个不透明的袋子中装有2个红球、1个白球,这些球除颜色外都相同,甲从中随机摸
出一个球后,放回并搅匀,乙再随机摸出一个球,请用列表法或画树状图的方法,求两人
都摸到相同颜色小球的概率.
8. 煤气公司一工人检修一条长540米的煤气管道,计划用若干小时完成,在实际检修过程中,每小时检修的管道长度是原计划的1.5倍,结果提前3小时完成任务,求该工人原计
划每小时检修煤气管道多少米?
9. 如图,在△ABC中,AD平分∠BAC,过AD的中点O作EF⊥AD,分别交AB、AC于点E、F,连接DE、DF.
(1)判断四边形AFDE是什么四边形?请说明理由;
(2)若BD=8,CD=3,AE=4,求CF的长.
10. 为了测量出大楼AB的高度,从距离楼底B处50米的点C(点C与楼底B在同一水平
面上)出发,沿倾斜角为30°的斜坡CD前进20米到达点D,在点D处测得楼顶A的仰角
为64°,求大楼AB的高度(结果精确到1米)(参考数据:sin64°≈0.9,
cos64°≈0.4,tan64°≈2.1,≈1.7)
11. 网上购物已经成为人们常用的一种购物方式,售后评价特别引人关注,为了解市民对
售后评价的关注情况,随机采访部分市民,对采访情况制作了如下统计图表:
12. 关注情况频数频率 A.高度关注 50 b B.一般关注 120 0.6 C.不关注 a 0.1 D.不知道 10 0.05td
13. 高铁的开通,给N市市民出行带来了极大的方便,“元旦”期间,甲、乙两人应邀到
A市的艺术馆参加演出,甲乘私家车从N市出发1小时后,乙乘坐高铁从N市出发,先到
A市火车站,然后再转乘出租车到A市的艺术馆(换车时间忽略不计),两人恰好同时到
达A市的艺术馆,他们离开N市的距离y(千米)与乘车时间x(小时)的关系如图所示,请结合图象解答下列问题:
(1)高铁的平均速度是每小时多少千米?
(2)分别求甲、乙(乘坐高铁时)两人离开N市的距离y与乘车时间x的函数关系式;(3)若甲要提前30分钟到达艺术馆,那么私家车的速度必须达到多少千米/小时?
14. 【阅读发现】如图①,在△ABC中,∠ACB=45°,AD⊥BC于点D,E为AD上一点,且DE=BD,可知AB=CE.
【类比探究】如图②,在正方形ABCD中,对角线AC与BD交于点O,E是OC上任意一点,AG⊥BE于点G,交BD于点F.判断AF与BE的数量关系,并加以证明.
【推广应用】在图②中,若AB=4,BF=,则△AGE的面积为_________ .
15. 如图,抛物线y=﹣x2+bx+c与x轴交于A、B(2,0)两点(点A在点B的左侧),与y轴交于点C(0,8).
(1)求该抛物线的解析式;
(2)若将该抛物线向下平移m个单位长度,使平移后所得抛物线的顶点落在△ABC的内部(不包括△ABC的边界),求m的取值范围;
(3)已知点Q在x轴上,点P在抛物线上,是否存在以A、C、P、Q为顶点的四边形是平行四边形?若存在,请求出点Q的坐标;若不存在,请说明理由.
16. 如图,在Rt△ABC中,∠C=90°,AC=9,AB=15,动点P从点A出发,沿AC→CB→BA 边运动,点P在AC、CB、BA边上运动的速度分别为每秒3、4、5个单位,直线l从与AC
重合的位置开始,以每秒个单位的速度沿CB方向移动,移动过程中保持l∥AC,且分
别与CB,AB边交于E,F两点,点P与直线l同时出发,设运动的时间为t秒,当点P第一次回到点A时,点P和直线l同时停止运动.
(1)当t=_________秒时,△PCE是等腰直角三角形;
(2)当点P在AC边上运动时,将△PEF绕点E逆时针旋转,使得点P的对应点P1落在EF上,点F的对应点为F1,当EF1⊥AB时,求t的值;
(3)作点P关于直线EF的对称点Q,在运动过程中,若形成的四边形PEQF为菱形,求t 的值;
(4)在整个运动过程中,设△PEF的面积为S,请直接写出S的最大值.
三、单选题
17. ﹣5的相反数是()
A. -
B.
C. ﹣5
D. 5
18. 今年春节我市共接待国内外游客总人数3343200万人次,3343200这个数用科学记数法表示为()
A. 0.33432×106
B. 3.3432×106
C. 3.3432×105
D. 33.432×105
19. 如图,立体图形的俯视图是()
A. B. C. D.
20. 不等式的解集在数轴上表示正确的是()
A. B.
C. D.
21. 关于x的一元二次方程x2+4x+k=0有两个实数根,则k的取值范围是()
A. k≤﹣4
B. k≥﹣4
C. k≤4
D. k>4
22. 如图,在平行线a,b之间放置一块直角三角板,三角板的顶点A,C分别在直线a,b 上,∠ACB=90°,∠BAC=20°,则∠1+∠2的值为()
A. 60°
B. 70°
C. 80°
D. 90°
23. 如图,C、D是以线段AB为直径的⊙O上两点,若CA=CD,且∠CAB=25°,则∠ACD的
度数为()
A. 25°
B. 30°
C. 40°
D. 50°
24. 如图,等腰三角形ABC的底边AB在x轴上,点B与原点O重合,已知点A(﹣2,0),AC=,将△ABC沿x轴向右平移,当点C的对应点C1落在直线y=2x﹣4上时,则平移
的距离是()
A. 2
B. 3
C. 4
D. 5
四、填空题
25. 比较大小:_____(填入“>”或“<”号).
参考答案及解析
第1题【答案】
第2题【答案】
第3题【答案】
第4题【答案】
第5题【答案】
第6题【答案】
第7题【答案】
第8题【答案】
第9题【答案】
第10题【答案】
第11题【答案】
第12题【答案】
第13题【答案】
第14题【答案】
第15题【答案】
第16题【答案】
第17题【答案】
第18题【答案】
第19题【答案】
第20题【答案】
第21题【答案】
第22题【答案】
第23题【答案】
第24题【答案】。