专升本《线性代数》_试卷_答案(考试类)
专升本《线性代数》_试卷_答案

专升本《线性代数》一、(共12题,共150分)
1. 计算下列行列式(10分)
标准答案:
2. 已知,计算(12分)
标准答案:
3. 设均为n阶矩阵,且可逆,证明相似. (14分)
标准答案:,故相似
4. 求一正交变换,将二次型化成标准型. (14分)
标准答案:
5. 已知,求(12分)
标准答案:6. 设矩阵A和B满足,其中,求B (12分)
标准答案:
7. 解线性方程组(14分)
标准答案:
8. 判断下列向量组是线性相关还是线性无关?
(12分)
标准答案:线性相关.可用三种方法:用三阶行列式;用定义及线性方程组;用矩阵的初等行变换.
9. 已知求(12分)
标准答案:
10. 已知,其中求A (12分)
标准答案:
11. 解下列线性方程组(14分)
标准答案:
12. 判断下列向量组是线性相关还是线性无关?
(12分)
标准答案:线性相关.可用三种方法:用三阶行列式;用定义及线性方程组;用矩阵的初等行变换.。
课程:线性代数(专升本)试题和答案

课程:线性代数(专升本)--习题和答案1.(单选题) 对于元齐次线性方程组,以下命题中,正确的是( )(本题3.5分)A、若的列向量组线性无关,则有非零解;B、若的行向量组线性无关,则有非零解;C、若的列向量组线性相关,则有非零解;D、若的行向量组线性相关,则有非零解。
学生答案:未答题标准答案:C解析:得分:2.(单选题) 设A是方阵,如有矩阵关系式AB=AC,则必有( )(本题3.5分)A、 A =0B、B C时A=0C、A0时B=CD、|A|0时B=C学生答案:未答题标准答案:D解析:得分:3.(单选题) 设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有( )(本题3.5分)B、k<3C、k=3D、k>3学生答案:未答题标准答案:A解析:得分:4.(单选题) 已知为四维列向量组,且行列式,,则行列式( )(本题3.5分)A、;B、 B.;C、;D、。
学生答案:未答题标准答案:D解析:得分:5.(单选题) 设A=(a ij)3×3,|A|=2,A ij表示|A|中元素a ij的代数余子式(i,j=1,2,3),则(a11A21+a12A22+a13A23)2+(a21A21+a22A22+a23A23)2+(a31A21+a32A22+a33A23)2=( ).(本题3.0分)B、 2C、 3D、 4学生答案:未答题标准答案:D解析:得分:6.(单选题) 设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则( )(本题3.5分)A、有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B、有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C、有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D、有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=0学生答案:未答题标准答案:D解析:得分:7.(单选题) 设A是一个n(≥3)阶方阵,下列陈述中正确的是( )(本题3.5分)A、如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B、如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C、A的2个不同的特征值可以有同一个特征向量D、如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关学生答案:未答题标准答案:B解析:得分:8.(单选题)( ).(本题3.0分)A、 3B、 5C、 6D、8学生答案:未答题标准答案:C解析:得分:9.(单选题) 设矩阵A=,已知α=是它的一个特征向量,则α所对应的特征值为( ).(本题3.0分)A、 1B、 2D、 4学生答案:未答题标准答案:A解析:得分:10.(单选题) 已知,则以下选项中正确的是( )(本题3.5分)A、;B、;C、;D、。
线性代数考试题及答案

线性代数考试题及答案一、选择题(每题2分,共20分)1. 向量空间中,线性无关的向量集合的最小维度是:A. 1B. 2C. 3D. 向量的数量答案:D2. 矩阵A的行列式为0,这意味着:A. A是可逆矩阵B. A不是可逆矩阵C. A的所有行向量线性相关D. A的所有列向量线性无关答案:B3. 线性变换T: R^3 → R^3,由矩阵[1 2 3; 4 5 6; 7 8 9]表示,其特征值是:A. 1, 2, 3B. 0, 1, 2C. -1, 1, 2D. 0, 3, 6答案:D4. 矩阵A与矩阵B相乘,结果矩阵的秩最多是:A. A的秩B. B的秩C. A和B的秩之和D. A的秩和B的列数中较小的一个答案:D5. 给定两个向量v1和v2,它们的点积v1·v2 > 0,这意味着:A. v1和v2垂直B. v1和v2平行或共线C. v1和v2的夹角小于90度D. v1和v2的夹角大于90度答案:C6. 对于任意矩阵A,下列哪个矩阵总是存在的:A. 伴随矩阵B. 逆矩阵C. 转置矩阵D. 特征矩阵答案:C7. 线性方程组AX=B有唯一解的充分必要条件是:A. A是方阵B. A的行列式不为0C. B是零向量D. A是可逆矩阵答案:D8. 矩阵的特征值和特征向量之间的关系是:A. 特征向量对应于特征值B. 特征值对应于特征向量C. 特征向量是矩阵的行向量D. 特征值是矩阵的对角元素答案:A9. 一个矩阵的迹(trace)是:A. 所有元素的和B. 主对角线上元素的和C. 所有行的和D. 所有列的和答案:B10. 矩阵的范数有很多种,其中最常见的是:A. L1范数B. L2范数C. 无穷范数D. 所有上述范数答案:D二、简答题(每题10分,共20分)1. 请解释什么是基(Basis)以及它在向量空间中的作用是什么?答:基是向量空间中的一组线性无关的向量,它们通过线性组合可以表示空间中的任何向量。
线性代数(专升本)试题

线性代数(专升本)试题总时长:120分钟1. (单选题) 下列矩阵中,不是初等矩阵。
(本题2.0分)A、B、C、D、学生答案: B标准答案:B解析:得分: 22. (单选题) 若A为5阶方阵且|A|=2,则|- 2A |= 。
(本题2.0分)A、 4B、-4C、-64D、64学生答案: C标准答案:C解析:3. (单选题) 线性方程组 { a 11 x 1 + a 12 x 2 +⋯+ a 1n x n = b 1, a 21 x 1 + a 22 x 2 +⋯+ a 2n x n = b 2, ⋯⋯⋯⋯ a m1 x 1 + a m2 x 2 +⋯+ a mn x n = b m }的系数矩阵为 A,增广矩阵为 A ¯ ,则它有无穷多个解的充要条件为。
(本题2.0分)A、R(A)=R( A ¯)<nB、R(A)=R( A ¯)<mC、R(A)<R( A ¯)<mD、R(A)=R( A ¯)=m学生答案: A标准答案:A解析:得分: 24. (单选题) 一个 n维向量组α 1 , α 2 ,⋯, α s (s>1) 线性相关的充要条件是(本题2.0分)A、有两个向量的对应坐标成比例B、含有零向量C、有一个向量是其余向量的线性组合D、每一个向量都是其余向量的线性组合学生答案: C标准答案:C得分: 25. (单选题) 设3阶矩阵 A的特征值为 1 , −1 , 2 ,则下列矩阵中可逆矩阵是(本题2.0分)A、 E −AB、 E + AC、 2 E −AD、 2 E + A学生答案: D标准答案:D解析:得分: 26. (单选题) 设α 1 , α 2 , α 3 是齐次方程组 Ax=0 的基础解系,则下列向量组中也可作为 Ax=0 的基础解系的是(本题2.0分)A、 2B、-2C、 1D、-1学生答案: B标准答案:B解析:7. (单选题) 下列矩阵中,是初等矩阵的为( )(本题2.0分)A、B、C、D、学生答案: A标准答案:C解析:得分: 08. (单选题) 下列矩阵中,不是初等矩阵。
线性代数(专升本) 期末考试试题及参考答案

线性代数练习与答案一、填空题:1、 排列13582467的逆序数为 7 。
2、 若排列21i36j87为偶排列,则i=(4),j=(5)3、 行列式33215321--中,元素a 12的代数余子式为15. 4、 设行列式33333322222211111123332221111a c c b b a a c c b b a a c c b b a D ,c b a c b a c b a D +++++++++==,则D 1与D 2的关系为D 2=2D 1。
5、 设方阵A 的行列式2113354411423123355554321|A |=,则A 31+2A 32+3A 33+4A 34+5A 35=(0)。
5、设⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛--=200123411C ,112301B ,1210121A则(A+B)C=⎪⎪⎭⎫ ⎝⎛--30221046 6、设A=21(B+E),则当且仅当B 2=(E )时,A 2=A 。
解:A 2=A ⇔41(B 2+2B+E)=21(B+E)⇔B 2+2B+E=2B+2E ⇔B 2=E7、矩阵⎪⎪⎪⎭⎫ ⎝⎛--651112105321的秩为 2 。
8、若A 为n 阶可逆矩阵,则R(A)= n 。
9、向量组α1=(1,1,1,1),α2=(1,0,2,2),α3=(2,3,1,1)的线性相关性为线性相关.10、向量组α1=(1,2,0,0),α2=(1,2,3,4),α3=(3,6,0,0)的极大线性无关组为α1,α2或α2,α3 11、n 元齐次线性方程组Ax=0,当|A|≠0时,方程组的解的情况为只有零解. 12、设A 为n 阶方阵,若R(A)=n-2,则AX=0的基础解析所含解向量的个数为(2) 解:n-(n-2)=213、非齐次线性方程组AX=b(A 为m ×n 矩阵)有唯一解的充要条件是R(A)=R(B)=n ;有无穷多个解的充要条件是R(A)=R(B)<n 。
线性代数(专升本)综合测试1

单选题1. 若行列式,则_____.(5分)(A) :(B) :(C) :(D) :参考答案:B2. 对任意同阶方阵,下列说法正确的是_____.(5分)(A) :(B) :(C) :(D) :参考答案:C3. 设可逆,则的解是_____.(5分)(A) :(B) :(C) :(D) : 不存在参考答案:B4. 若向量组线性相关,则它的部分向量组是_____.(5分)(A) : 线性相关(B) : 线性无关(C) : 或者线性相关,或者线性无关(D) : 既不线性相关,也不线性无关参考答案:C5. 若阶方阵不可逆,则必有_____.(5分)(A) :(B) : 0为的一个特征值(C) : 秩(D) :参考答案:B填空题6. ,,且,则___(1)___ .(5分)(1). 参考答案: -47. 阶方阵的个特征值互不相同是与对角矩阵相似的___(2)___ 条件(5分) (1). 参考答案: 充分问答题8. 计算行列式:. (10分)参考答案:先提出各列的公因子,再利用展开法则得到原式.解题思路:9. 解矩阵方程,求,其中.(10分)参考答案:解答,解题思路:10. 设阶方阵满足关系式,证明可逆,并写出的表达式.(10分)参考答案:因为,通过移项与提取公因子得从而由可逆定义知可逆,并且.解题思路:11. 论线性方程组的解的结构与计算无论是在科学研究领域,还是在工程技术应用中,大量的问题可以归结为线性方程组的求解,因此研究线性方程组的求解问题是线性代数的一个重要内容.(1)请描述齐次线性方程组AX=0的解的结构定理(即什么条件下只有唯一的零解?什么条件下有无穷多组非零解,此时的非零解由什么组成?)(2)请描述非齐次线性方程组AX=b的解的结构定理( 即利用系数矩阵与增广矩阵的秩的关系,给出在:什么条件下无解?什么条件下有唯一解?什么条件下有无穷多组解,此时的解由哪两部分组成?)(3)请利用齐次线性方程组与非齐次线性方程组的解的结构定理讨论:若齐次线性方程组AX=0有无穷多组解,则非齐次线性方程组AX=b是否也必有无穷多组解?(15分)参考答案:(1)设有n元齐次线性方程组AX=0 ,则它的解的结构定理是:当秩R(A)=n时,方程组只有唯一的零解;当秩R(A)=r<n时,方程组有无穷多组非零解.此时所有的解构成解空间,解空间中存在着n-r个线性无关的解向量,构成基础解系,方程组中的每一个解均可表为基础解系的一个线性组合.(2)对于n元非齐次线性方程组AX=b而言:当系数矩阵的秩R(A)=增广矩阵的秩R (Ab)时,方程组有解;当R(A)≠R(Ab)时,方程组无解.且R(A)=R(Ab)=n时有惟一解,R(A)=R(Ab)<n时有无穷多解;此时AX=b的通解由齐次通解与非齐次特解相加构成.(3)答案是不一定必有无穷多组解.由解的结构定理可知,AX=0有无穷多解,则其秩必有R(A)=r<n,但仅此并不能保证AX=b有无穷多组解,因为不能保证R(A)=R(A b),所以非齐次线性方程AX=b也可能无解.解题思路:由线性方程组的解的结构定理,描述及应用12. 论特征值与特征向量(1) 设A为n阶方阵,是A的特征值,x是A的关于的特征向量,则A、、x必须满足什么条件?应如何求得?(2) n阶方阵A必有n个特征值:,则这n个特征值必须满足哪两条性质?(3) 两个n阶方阵A与B相似的定义是什么?它们的特征值之间有什么关系?方阵A与一个对角矩阵相似通常需要满足哪些条件(条件不止1个,任意写出1条即可)?(20分)参考答案:解答要点(1)特征值与特征值向量必须满足关系式;并且是通过解特征多项式求出所有的特征值,通过解线性方程组求出所有的特征向量;(2) 阶方阵必有个特征值,这个特征值必须满足两条性质:①,②。
线性代数试题(完整试题与详细答案)

线性代数试题(完整试题与详细答案)一、单项选择题(本大题共10小题,每小题2分,共20分)1.行列式111101111011110------第二行第一列元素的代数余子式21A =( )A .-2B .-1C .1D .22.设A 为2阶矩阵,若A 3=3,则=A 2( ) A .21 B .1 C .34 D .23.设n 阶矩阵A 、B 、C 满足E ABC =,则=-1C ( ) A .AB B .BA C .11--B AD .11--A B4.已知2阶矩阵⎪⎪⎭⎫ ⎝⎛=d c b a A 的行列式1-=A ,则=-1*)(A ( ) A .⎪⎪⎭⎫⎝⎛----d c b aB .⎪⎪⎭⎫⎝⎛--a c b dC .⎪⎪⎭⎫ ⎝⎛--a cb d D .⎪⎪⎭⎫ ⎝⎛d c b a5.向量组)2(,,,21≥s s ααα 的秩不为零的充分必要条件是( ) A .s ααα,,,21 中没有线性相关的部分组 B .s ααα,,,21 中至少有一个非零向量 C .s ααα,,,21 全是非零向量D .s ααα,,,21 全是零向量6.设A 为n m ⨯矩阵,则n 元齐次线性方程组0=Ax 有非零解的充分必要条件是( )A .n r =)(AB .m r =)(AC .n r <)(AD .m r <)(A 7.已知3阶矩阵A 的特征值为-1,0,1,则下列矩阵中可逆的是( ) A .A B .AE - C .A E -- D .A E -2 8.下列矩阵中不是..初等矩阵的为( )A .⎪⎪⎪⎭⎫ ⎝⎛101010001B .⎪⎪⎪⎭⎫⎝⎛-101010001C .⎪⎪⎪⎭⎫⎝⎛100020001D .⎪⎪⎪⎭⎫⎝⎛1010110019.4元二次型4332412143212222),,,(x x x x x x x x x x x x f +++=的秩为( ) A .1B .2C .3D .410.设矩阵⎪⎪⎪⎭⎫ ⎝⎛=001010100A ,则二次型Ax x T 的规范形为( )A .232221z z z ++ B .232221z z z ---C .232221z z z --D .232221z z z -+二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
自考本线性代数试题及答案

自考本线性代数试题及答案一、选择题(每题2分,共10分)1. 下列矩阵中,哪个是可逆矩阵?A. [1, 2; 3, 4]B. [1, 0; 0, 1]C. [2, 3; 4, 5]D. [0, 1; 1, 0]答案:B2. 设A为n阶方阵,若存在常数k使得A^2 = kA,则称A为幂等矩阵。
若A是幂等矩阵且|A|≠0,则k的值是:A. 0B. 1C. -1D. n答案:B3. 对于任意的n阶方阵A,以下哪个选项是正确的?A. |A| = |A^T|B. det(A) = det(A^T)C. tr(A) = tr(A^T)D. A + A^T 总是对称矩阵答案:C4. 设A和B是两个n阶方阵,若AB=BA,则称A和B可交换。
若A和B可交换,且|A|=5,|B|=3,则|AB|的值是:A. 15B. 5C. 3D. 无法确定答案:A5. 对于n维向量空间V,以下哪个命题是线性代数的基本假设?A. 向量加法满足交换律B. 向量加法满足结合律C. 标量乘法对向量加法满足分配律D. 所有选项都是答案:D二、填空题(每题3分,共15分)6. 设向量α=(1, 2, 3)^T,β=(-4, 5, -6)^T,向量α和β的点积α·β等于______。
答案:-37. 若矩阵A的特征值为2,则矩阵2A的特征值为______。
答案:48. 设矩阵B可以表示为B=P^(-1)AP,其中P是可逆矩阵,那么B和A 是______相似的。
答案:相似9. 对于任意矩阵A,tr(A)表示矩阵A的______。
答案:迹(或特征值之和)10. 设A是一个3×3的矩阵,且A^3 = A,则A的一个特征值可以是______。
答案:1三、解答题(共75分)11. (15分)证明任意n阶方阵A,|A^T| = |A|。
证明:设A是一个n阶方阵,其行列式为|A|。
根据行列式的性质,我们知道行列式与行(列)的置换有关。
对于矩阵A的转置矩阵A^T,它的行(列)与A的列(行)相对应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专升本《线性代数》一、(共12题,共150分)
1. 计算下列行列式(10分)
标准答案:
2. 已知,计算(12分)
标准答案:
3. 设均为n 阶矩阵,且可逆,证明相似. (14分)
标准答案:,故相似
4. 求一正交变换,将二次型化成标准型. (14分)标准答案:
5. 已知,求(12分)
标准答案:6. 设矩阵A和B 满足,其中,求B (12分)
标准答案:
7. 解线性方程组(14分)
标准答案:
8. 判断下列向量组是线性相关还是线性无关?
(12分)
标准答案:线性相关.可用三种方法:用三阶行列式;用定义及线性方程组;用矩阵的初等行变换.
9. 已知求(12分)
标准答案:
10. 已知,其中求A (12分)
标准答案:
11. 解下列线性方程组(14分)
标准答案:
12. 判断下列向量组是线性相关还是线性无关?
(12分)
标准答案:线性相关.可用三种方法:用三阶行列式;用定义及线性方程组;用矩阵的初等行变换.。