普通高校专升本考试高等数学模拟试题及答案

合集下载

高数专升本真题及答案

高数专升本真题及答案

高数专升本真题及答案一、选择题(每题2分,共20分)1. 下列函数中,哪一个不是周期函数?A. y = sin(x)B. y = x^2C. y = cos(x)D. y = tan(x)2. 函数f(x) = x^3 - 6x^2 + 9x + 2在区间[1, 3]上的最大值是:A. 2B. -1C. 12D. 153. 曲线y = x^3在点(1,1)处的切线斜率是:A. 1B. 2C. 3D. 44. 无穷小量o(x)与x的关系是:A. o(x)/x → 0 当x → ∞B. o(x)/x → 1 当x → ∞C. o(x)/x → ∞ 当x → ∞D. o(x)/x → x 当x → ∞5. 以下哪个级数是收敛的?A. 1 - 1/2 + 1/3 - 1/4 + ...B. 1 + 2 + 3 + 4 + ...C. 1 - 1/2^2 + 1/3^2 - 1/4^2 + ...D. 1 + 1/2 + 1/3 + 1/4 + ...6. 函数f(x) = ln(x)的原函数是:A. x^2B. e^xC. x ln(x)D. x7. 已知函数f(x) = 3x^2 + 2x - 1,求f'(1)的值是:A. 7B. 5C. 3D. 18. 以下哪个选项是微分方程dy/dx + 2y = 6x的解?A. y = 3x^2 + CB. y = 2x + CC. y = x^2 + CD. y = 3x + C9. 曲线y = x^2在点(1,1)处的法向量是:A. (1, -1)B. (1, 1)C. (-1, 1)D. (-1, -1)10. 以下哪个选项是二阶偏导数的连续性条件?A. fxx = fyyB. fxx + fyy = 0C. fxx - fyy = 0D. fxx * fyy = 1二、填空题(每空2分,共20分)11. 若函数f(x) = 2x^3 - 5x^2 + 3x + 1,则f'(x) =____________。

高等数学 专升本考试 模拟题及答案

高等数学 专升本考试 模拟题及答案

高等数学(专升本)-学习指南一、选择题1.函数2222ln 24z xyxy 的定义域为【D 】A .222xyB .224x yC .222x yD .2224xy解:z 的定义域为:420402222222yxyxy x ,故而选D 。

2.设)(x f 在0x x 处间断,则有【D 】A .)(x f 在0x x 处一定没有意义;B .)0()0(0xf x f ; (即)(lim )(lim 0x f x f x x xx );C .)(lim 0x f x x 不存在,或)(lim 0x f xx ;D .若)(x f 在0x x 处有定义,则0x x时,)()(0x f x f 不是无穷小3.极限2222123lim n n nnnn【B 】A .14B .12C .1 D. 0解:有题意,设通项为:222212112121122n Sn nnnn nnn n n原极限等价于:22212111lim lim222nnn nnnn4.设2tan y x ,则dy【A 】A .22tan sec x xdxB .22sin cos x xdx C .22sec tan x xdx D.22cos sin x xdx解:对原式关于x 求导,并用导数乘以dx 项即可,注意三角函数求导规则。

22'tan tan 2tan 2tan sec y x d x xdxx x 所以,22tan sec dy x x dx,即22tan sec dyx xdx5.函数2(2)yx 在区间[0,4]上极小值是【D 】A .-1B .1 C.2D .0解:对y 关于x 求一阶导,并令其为0,得到220x ;解得x 有驻点:x=2,代入原方程验证0为其极小值点。

6.对于函数,f x y 的每一个驻点00,x y ,令00,xx A f x y ,00,xy B f x y ,00,yy Cf x y ,若20ACB,则函数【C 】A .有极大值B .有极小值C .没有极值D .不定7.多元函数,f x y 在点00,x y 处关于y 的偏导数00,y f x y 【C 】A .000,,limx f x x y f x y xB.000,,limx f x x y y f x y xC .00000,,limy f x y y f x y yD.0000,,limy f x x y yf x y y8.向量a 与向量b 平行,则条件:其向量积0a b 是【B 】A .充分非必要条件B .充分且必要条件C .必要非充分条件 D .既非充分又非必要条件9.向量a 、b 垂直,则条件:向量a 、b 的数量积0a b 是【B 】A .充分非必要条件B .充分且必要条件C .必要非充分条件 D .既非充分又非必要条件10.已知向量a 、b 、c 两两相互垂直,且1a ,2b ,3c ,求a b a b【C 】A .1 B.2 C .4 D.8解:因为向量a 与b 垂直,所以sin ,1a b ,故而有:22sin ,22114a a ba ba a -a b+b a -b b b ab a b 11.下列函数中,不是基本初等函数的是【B 】A .1xyeB .2ln yxC .sin cos x yxD .35yx解:因为2ln x y 是由u yln ,2x u复合组成的,所以它不是基本初等函数。

2024年成人高考专升本《数学》考卷真题及答案

2024年成人高考专升本《数学》考卷真题及答案

2024年成人高考专升本《数学》考卷真题及答案一、选择题(每小题5分,共25分)1. 下列函数中,是奇函数的是()A. y = x^3B. y = x^2C. y = x^4D. y = x^2 + 12. 下列数列中,是等差数列的是()A. 1, 3, 5, 7,B. 1, 2, 4, 8,C. 1, 3, 9, 27,D. 1, 2, 3, 4,3. 下列不等式中,正确的是()A. 2x + 3 > 5x 1B. 3x 4 < 2x + 5C. 4x + 7 > 5x 2D. 5x 3 < 4x + 14. 下列立体图形中,是圆柱的是()A. 圆锥B. 球体C. 长方体D. 圆柱5. 下列积分中,正确的是()A. ∫(x^2 + 1)dx = (1/3)x^3 + x + CB. ∫(x^3 + 1)dx = (1/4)x^4 + x + CC. ∫(x^4 + 1)dx = (1/5)x^5 + x + CD. ∫(x^5 + 1)dx = (1/6)x^6 + x + C二、填空题(每小题5分,共25分)1. 函数y = x^2 4x + 3的顶点坐标是______。

2. 等差数列1, 3, 5, 7, 的前10项和是______。

3. 不等式3x 4 < 2x + 5的解集是______。

4. 圆柱的体积公式是______。

5. 积分∫(x^3 + 1)dx的值是______。

三、解答题(每小题10分,共50分)1. 解方程组:\[\begin{align}2x + 3y &= 8 \\4x 5y &= 10\end{align}\]2. 求函数y = x^3 6x^2 + 9x 1的极值。

3. 求证:等差数列1, 3, 5, 7, 的前n项和是n(n + 1)/2。

4. 求圆柱的表面积。

5. 计算积分∫(x^4 + 1)dx。

四、证明题(每小题10分,共20分)1. 证明:对于任意实数x,都有x^2 ≥ 0。

专升本高等数学(含答案)

专升本高等数学(含答案)

高等数学一、选择题1、设的值是则a x ax x ,3)sin(lim 0=→( )A.31B.1C.2D.32、设函数(==⎩⎨⎧≥+=k ,x ,)x x )(x<ke x f x则常数处连续在00cos 10)(2 。

A. 1B.2C.0D.3 3、)(,41)()2(lim)(00000x f x f h x f h ,x x f y h '→=--=则且处可导在点已知函数等于A .-4 B. -2 C. 2 D.4 4、⎰dt t f a b,b a x f )(],[)(则上连续在闭区间设函数( )A.小于零B.等于零C.大于零D.不确定 5、若A 与B 的交是不可能事件,则A 与B 一定是( )A.对立事件B.相互独立事件C.互不相容事件D.相等事件6、甲、乙二人参加知识竞赛,共有6个选择题,8个判断题,甲、乙二人依次各抽一题,则甲抽到选择题,乙抽到判断题的概率为 A.918 B.916 C.9124 D.91147、等于应补充处连续在要使)0(0)21(1)(3f ,x x n x f x=-=( ) A.e -6 B. -6 C. -23D.0 8、等于则且处可导在已知)(,41)()2(lim)(00000x f x f h x f h ,x x f h '=--→( )A. -4B. -2C.2D.4 9、等于则设)2)((,1)()(≥=n x fnx x x f n ( )A.()()11-1--n nx !n B.nn x n !)1(-C.()()2221--=-n n x !n D.12)2()1(----n n x!n 10、则必有处取得极小值在点函数,x x x f y 0)(==( )A.0)(0<x f '' B.0)(0='x f C.0)(0)(00>x f x f ''='且 D.不存在或)(0)(00x f x f '=' 11、则下列结论不正确的是上连续在设函数,b a x f ],[)(( )A .⎰的一个原函数是)()(x f dx x f abB.⎰的一个原函数是)()(x f dt t f a x(a <x <b )C. ⎰-的一个原函数是)()(x f dt t f xb(a <x <b )D.上是可积的在].[)(b a x f12、=-+∞→43121x x imx ( )A. -41B.0C.32D.113、=-+='=→hf h f im f ,x x f h )1()1(1,3)1(1)(0则且处可导在已知( )A. 0B.1C.3D.6 14、='=y nx y 则设函数,1 ( ) A. x 1 B. —x1 C. 1n x D.e x15、x <,x x f 当处连续在设函数0)(=0时,则时当,>x f ,x >,<x f 0)(00)(''( )A.是极小值)0(fB. 是极大值)0(fC. 不是极值)0(fD. 既是极大值又是极小值)0(f 16.设函数=-=dy x y 则),1sin(2( ) A.dx x )1cos(2- B,dx x )1cos(2-- C.2dx x x )1cos(2- D.dx x x )1cos(22-- 17、=')(,)(3x f x x f 则的一个原函数为设 ( )A.23x B.441x C. 44x D.6x 18、设函数=∂∂=xzxy z 则,tan ( )A.xy y 2cos B. xy x 2cos C.xy x 2sin - D. xyy2sin - 19、设函数=∂∂∂+=yx z y x z 23,)(则 ( )A.3(x +y )B.2)3y x +(C. 6(x +y ) B.2)6y x +( 20、五人排成一行,甲乙两人必须排在一起的概率P=( ) A.51 B. 52 c. 53 D. 54二、填空题 1、=-→xx xx 2sin ·2cos 1lim0 。

2024浙江专升本高数模拟卷2

2024浙江专升本高数模拟卷2

2024浙江•专升本高数•模拟卷2考试时间: 120分钟 班次: ____________姓名:___________一、单选题 (共5小题20分)1.x =0是f(x)={e x +1x <0,2x =0ln(1+x)x >0的( )A.可去间断点B.跳跃间断点C.连续点D.无穷间断点2.设a 1=x(cos √x −1),a 2=√xln(1+√x 3),a 3=√x +13−1, 当x →0+时,以上3个无穷小量按照从低阶到高阶的排序是( ) A.a 1,a 2,a 3 B.a 2,a 3,a 1 C.a 2,a 1,a 3D.a 3,a 2,a 13.设f(x)在(−∞,+∞)连续,下列说法正确的是( ) A.dd x [∫f(x)d x]=f(x)+C,C 为任意常数B.若f(x)在[a,b]上连续, 则f(x)在(a,b)上必有最大值和最小值C.对任意常数a,b , 总有∫a bf(x)d x =∫a bf(a +b −x)d x 成立 D.若f(x)为偶函数, 则f(x)的原函数一定是奇函数4.级数∑n=1∞(−1)n (1−cos βn )(β为常数且大于0)( )A.发散B.条件收敛C.绝对收玫D.收敛性与β有关5.设P =∫−1212cos 2x ∙ln 1−x1+x d x,N =∫−1212[cosx 2+ln 1−x1+x ]d x,M =∫−1212[xsin 2x −cos 2x ]d x , 则有( ) A.N <P <M B.M <P <N C.N <M <PD.P <M <N二、填空题 (共10小题40分)6.已知函数f(x)={x,x <0,0,x =0e x −2,x >0,则f[f(1)]=________.7.lim x→+∞x 3+x 2+12x+x 3sinx =_______ . 8.函数f(x)=13x 3−3x 2+9x 在区间[0,4]上的最大值为________.9.设y =f(x)由方程xy +2lnx =y 4确定,则曲线y =f(x)在点(1,1)处的切线方程为_______.10.极限lim n→∞1n (ln 2πn +ln 22πn +⋯+ln 2nπn )用定积分表示为________.11.lim x→0+(sinx x )11−cosx =_______.12.已知f(x)在x =1处可导, 且limΔx→0f(1+2Δx)−f(1)4Δx =2, 则f ′(1)=________.13.已知y =cos (x +lnx 2), 则d y =_______.14.设函数f(x)在(−∞,+∞)上连续, 且∫01f(x)d x =3, 则∫0π2cosxf(sinx)d x=__________.15.位于曲线y =1x (1+ln 2x )(e ⩽x <+∞)下方以及x 轴上方的无界区域的面积为_________.三、计算题 (共8小题60分)16.求极限limx→0e x2−e 2−2cosx x 4. 17.设f(x)={x1+e 1x,x ≠0,0,x =0,判断f(x)在x =0处的连续性与可导性.18.设y =(2x+3)4∙√x−6√x+13, 求y ′.19.求∫xtan 2x d x .20.∫−11(sin 3x +x 2)e −|x|d x . 21.一平面经过直线l:x+53=y−21=z4,且垂直于平面x +y −z +15=0, 求该平面的方程.22.求xy ′−y =2023x 2满足y |x=1=2024的特解.23.已知定义在(−∞,0)∪(0,+∞)上的可导函数f(x)满足方程f(x)−4x∫1xf(t)d t =x 2,试求: 该函数的单调区间、极值. 四、综合题 (共3小题20分)24.求∑n=1∞(−1)n−1n(2n−1)x2n 的收敛区间及其和函数. 25.设直线y =ax(0<a <1)与拋物线y =x 2围成图形D 1面积记作A 1;由直线y =ax(0<a <1)、抛物线y =x 2及直线x =1围成图形D 2面积记作A 2.26.设函数f(x)在[0,2]连续,(0,2)可导, 且f(0)=0,∫02f(x)d x =2, 试证明: 至少存在ξ∈(0,2), 使得f ′(ξ)=f(ξ)−ξ+1.。

最新专升本考试高等数学模拟题10套(含答案解析)

最新专升本考试高等数学模拟题10套(含答案解析)

1
1.若 f x
1 ex
1
,则 x 0 是 f x 的(
1
x 3n
10.幂级数
的收敛域为
n1 n
。 。
4 1y4
11.交换二次积分的积分次序 dy 2 f x, ydx = 0 4 y
y 12.函数 z ln 在点(2,2)处的全微分 dz =
x
三、计算题(本大题共 8 小题,每小题 8 分,满分 64 分)
sin x sin(sin x)
1 x , y , x 2及x 轴所围成的平面区域。
x
D
yx
20.求微分方程 y y 2x 1满足 lim 1的特解。 x0 x
四、证明题(本大题共 2 小题,每小题 9 分,共 18 分)
21.证明:当 x 0 时, ex x 2 cos x 。
2 x2
1
cos
x
x0
22.设函数
(1)求常数 k 的值,使 D1 与 D2 的面积相等; (2)当 D1 与 D2 的面积相等时,求 D1 绕 y 轴旋转一周所成的旋转体体积Vy 和 D2 绕 x 轴旋
转一周所成的旋转体体积Vx 。
全真模拟测试卷2
一、选择题(本大题共 6 小题,每小题 4 分,共 24 分。在每小题给出的四个选项中,只
ln1 x2
x0
2.设 f (x) x
,其中 (x) 是有界函数,则f (x)在x =0处( )。
x2x x 0
A.极限不存在 B.极限存在但不连续 C.连续但不可导 D.可导
3.设 f x 的导数为 ex ,且 f (0) 0 ,则 f xdx =( )。
A. ex x C B. ex x C C. ex x C D. ex x C

专升本高数考试题及答案

专升本高数考试题及答案

专升本高数考试题及答案一、选择题(每题4分,共20分)1. 函数f(x)=x^2+3x+2的导数是()A. 2x+3B. x^2+3C. 2x+6D. 2x2. 极限lim(x→0) (sin(x)/x)的值是()A. 0B. 1C. 2D. 33. 以下哪个选项是无穷小量()A. 1/xB. x^2C. sin(x)/xD. x^34. 曲线y=x^3在点(1,1)处的切线斜率是()A. 3B. 1C. 3/2D. 1/35. 定积分∫(0 to 1) x dx的值是()A. 1/2B. 1C. 2D. 0二、填空题(每题4分,共20分)1. 函数f(x)=x^3-6x^2+11x-6的极值点是______。

2. 函数f(x)=e^x的不定积分是______。

3. 函数y=ln(x)的导数是______。

4. 函数y=x^2-4x+4的最小值是______。

5. 曲线y=x^2在点(2,4)处的法线方程是______。

三、解答题(每题10分,共60分)1. 计算极限lim(x→2) (x^2-4)/(x-2)。

2. 求函数f(x)=x^3-3x+1在区间[-1,2]上的最大值和最小值。

3. 计算定积分∫(0 to 2) (2x+3) dx。

4. 求曲线y=x^3-6x^2+9x+1在点(1,4)处的切线方程。

5. 计算二重积分∬(D) xy dA,其中D是由x=0, y=0, x=2, y=2x围成的区域。

6. 解微分方程dy/dx=2x+y。

四、附加题(每题10分,共10分)1. 证明:如果函数f(x)在区间[a,b]上连续,并且f(a)f(b)<0,则至少存在一个c∈(a,b),使得f(c)=0。

答案:一、选择题1. A2. B3. C4. A5. A二、填空题1. x=1, x=22. e^x+C3. 1/x4. 05. x+2y-8=0三、解答题1. 极限lim(x→2) (x^2-4)/(x-2) = 42. 最大值f(2)=3,最小值f(-1)=-53. 定积分∫(0 to 2) (2x+3) dx = 84. 切线方程:y-4=12(x-1),即y=12x-85. 二重积分∬(D) xy dA = 46. 解微分方程dy/dx=2x+y,得到y=e^(-2x)(C-1)+1四、附加题1. 证明略。

专升本高数试题及答案

专升本高数试题及答案

专升本高数试题及答案一、选择题(每题5分,共20分)1. 已知函数f(x)=x^2-6x+8,求f(3)的值。

A. 1B. 5C. 9D. 11答案:C2. 计算定积分∫(0,2) (x^2-3x+2)dx的值。

A. 2B. 4C. 6D. 8答案:B3. 设函数f(x)=x^3-3x+1,求f'(x)。

A. 3x^2-3B. x^2-3C. 3x^2-1D. x^2+3答案:A4. 求极限lim(x→0) [sin(x)/x]。

A. 0B. 1C. -1D. ∞答案:B二、填空题(每题5分,共20分)1. 设函数f(x)=x^2-4x+c,若f(1)=0,则c的值为______。

答案:32. 已知等比数列的前三项分别为2,4,8,则该数列的公比q为______。

答案:23. 设函数f(x)=ln(x),求f'(x)=______。

答案:1/x4. 计算级数1+2+3+...+100的和为______。

答案:5050三、解答题(每题15分,共30分)1. 求函数f(x)=x^3-6x^2+11x-6的极值点。

答案:首先求导数f'(x)=3x^2-12x+11。

令f'(x)=0,解得x=1或x=11/3。

检查二阶导数f''(x)=6x-12。

当x=1时,f''(1)<0,说明x=1是极大值点。

当x=11/3时,f''(11/3)>0,说明x=11/3是极小值点。

2. 计算定积分∫(0,1) x^2 dx。

答案:∫(0,1) x^2 dx = [x^3/3](0,1) = 1/3。

四、证明题(每题10分,共20分)1. 证明:若x>0,y>0,则x+y≥2√(xy)。

答案:证明:(x+y)^2 = x^2 + 2xy + y^2 ≥ 4xy(因为x^2 + y^2 ≥ 2xy)。

所以,x+y ≥ 2√(xy)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

普通高校专升本考试高等数学模拟试题及答案
普通高等教育福建专升本考试
《高等数学》模拟试题及答案
一、选择题
1、函数的定义域为
A,且B, C, D,且
2、下列各对函数中相同的是:
A, B,
C,D,
3、当时,下列是无穷小量的是:
A, B, C, D,
4、是的
A、连续点
B、跳跃间断点
C、可去间断点
D、第二类间断点
5、若,则
A、-3
B、-6
C、
-9 D、-12
6. 若可导,则下列各式错误的是
A B
C D
7. 设函数具有阶导数,且,则
A B
C 1 D
8. 设函数具有阶导数,且,则
A 2 B
C D
9. 曲线
A 只有垂直渐近线
B 只有水平渐近线
C 既有垂直又有水平渐近线 D既无垂直又无水平渐近线
10、下列函数中是同一函数的原函数的是:
A, B, C, D,
11、设,且,则
A, B, +1 C,3 D,
12、设,则
A, B, C, D,13、,则
A,B,C,
D,
14. 若,则
A B C D
15.下列积分不为0的是
A B C D
16. 设在上连续,则
A B
C D
17.下列广义积分收敛的是___________.
A
B C
D
18、过(0,2,4)且平行于平面的直线方程为
A, B,
C, D,无意义
19、旋转曲面是
A,面上的双曲线绕轴旋转所得 B,面上的双曲线绕轴旋转所得
C,面上的椭圆绕轴旋转所得 D,面上的椭圆绕轴旋转所得
20、设,则
A,0 B, C,不存在 D,1
21、函数的极值点为
A,(1,1) B,(—1,1) C,(1,1)和(—1,1) D,(0,0)
22、设D:,则
A,B,C,
D,
23、交换积分次序,
A, B,
C, D,
24. 交换积分顺序后,__________。

A B
C D
25. 设为抛物线上从点到点的一段弧,则
A B C D。

相关文档
最新文档