工程力学材料力学 知识点 及典型例题
材料力学(资料例题)

材料力学(一)轴向拉伸与压缩【内容提要】材料力学主要研究构件在外力作用下的变形、受力与破坏、失效的规律。
为设计既安全可靠又经济合理的构件,提供有关强度、刚度与稳定性分析的基本理论与方法。
【重点、难点】重点考察基本概念,掌握截面法求轴力、作轴力图的方法,截面上应力的计算。
【内容讲解】一、基本概念强度——构件在外力作用下,抵抗破坏的能力,以保证在规定的使用条件下,不会发生意外的断裂或显著塑性变形。
刚度——构件在外力作用下,抵抗变形的能力,以保证在规定的使用条件下不会产生过分的变形。
稳定性——构件在外力作用下,保持原有平衡形式的能力,以保证在规定的使用条件下,不会产生失稳现象。
杆件——一个方向的尺寸远大于其它两个方向的尺寸的构件,称为杆件或简称杆。
根据轴线与横截面的特征,杆件可分为直杆与曲杆,等截面杆与变截面杆。
二、材料力学的基本假设工程实际中的构件所用的材料多种多样,为便于理论分析,根据它们的主要性质对其作如下假设。
(一)连续性假设——假设在构件所占有的空间内均毫无空隙地充满了物质,即认为是密实的。
这样,构件内的一些几何量,力学量(如应力、位移)均可用坐标的连续函数表示,并可采用无限小的数学分析方法。
(二)均匀性假设——很设材料的力学性能与其在构件中的位置无关。
按此假设通过试样所测得的材料性能,可用于构件内的任何部位(包括单元体)。
(三)各向同性假设——沿各个方向均具有相同力学性能。
具有该性质的材料,称为各向同性材料。
综上所述,在材料力学中,一般将实际材料构件,看作是连续、均匀和各向同性的可变形固体。
三、外力内力与截面法(一)外力对于所研究的对象来说,其它构件和物体作用于其上的力均为外力,例如载荷与约束力。
外力可分为:表面力与体积力;分布力与集中力;静载荷与动载荷等。
当构件(杆件)承受一般载荷作用时,可将载荷向三个坐标平面(三个平面均通过杆的轴线,其中两个平面为形心主惯性平面)内分解,使之变为两个平面载荷和一个扭转力偶作用情况。
材料力学练习-知识归纳整理

知识归纳整理第1章1-1 什么是构件的强度、刚度和稳定性?1-2 材料力学对变形固体有哪些假设?第2章2-1 试作图示各杆的轴力图,并确定最大轴力| FN |max 。
2-2 试求图示桁架各指定杆件的轴力。
2-3 试作图示各杆的扭矩图,并确定最大扭矩| T|max 。
2-4 图示一传动轴,转速n=200 r/min ,轮C为主动轮,输入功率P=60 kW ,轮A、B、D均为从动轮,输出功率为20 kW,15 kW,25 kW。
(1)试绘该轴的扭矩图。
(2)若将轮C与轮D 对调,试分析对轴的受力是否有利。
2-5 试列出图示各梁的剪力方程和弯矩方程。
作剪力图和弯矩图,并确定| Fs |max及| M求知若饥,虚心若愚。
|max 值。
2-6 试用简易法作图示各梁的剪力图和弯矩图,并确定| F s |max及| M|max值,并用微分关系对图形举行校核。
2-7 图示起重机横梁AB承受的最大吊重F P=12kN,试绘出横梁A B 的内力图。
2-8 图示处于水平位置的控制手柄,在自由端C处受到一铅垂向下的集中力F p作用。
试画出AB段的内力图。
千里之行,始于足下。
第3章3-1图示圆截面阶梯杆,承受轴向荷载F1=50kN与F2的作用,AB与BC段的直径分别为d1=20mm与d2=30mm,如欲使AB与BC段横截面上的正应力相同,试求荷载F2之值。
3-2变截面直杆如图所示。
已知A1=8cm2,A2=4cm2,E=200GPa 。
求杆的总伸长量。
3-3 在图示结构中,AB为刚性杆,CD为钢斜拉杆。
已知F P1=5kN ,F P2=10kN ,l=1m ,杆CD的截面积A=100mm2 ,钢的弹性模量E=200GPa 。
试求杆CD的轴向变形和刚性杆AB在端点B 的铅垂位移。
3-4 一木柱受力如图所示。
柱的横截面为边长200mm的正方形,材料可以为符合胡克定律,其弹性模量E=10GPa。
如不计柱的自重,试求:求知若饥,虚心若愚。
工程力学复习题(材料力学部分)培训资料

工程力学复习题(材料力学部分)工程力学作业(材料力学)第一、二章 拉伸、压缩与剪切一、填空题1、铸铁压缩试件,破坏是在 截面发生剪切错动,是由于引起的。
2、a 、b 、c 三种材料的应力-应变曲线如图所示。
其中强度最高的材料 是 ,弹性模量最小的材料是 ,塑性最好的材料是 。
3、图示结构中杆1和杆2的截面面积和拉压许用应力均相同,设载荷P 可在刚性梁AD 上移动。
结构的许可载荷[ P ]是根据P 作用于 点处确定的。
aa 1 2 P C DB A O σεa bc4、五根抗拉刚度EA 相同的直杆铰接成如图所示之边长为a 的正方形结构,A 、B 两处受力 P 作用。
若各杆均为小变形,则A 、B 两点的相对位移∆AB = 。
5、图示结构中。
若1、2两杆的EA 相同,则节点A 的竖向位移∆Ay = ,水平位移为∆Ax = 。
6、铆接头的连接板厚度t = d ,则铆钉的切应力τ为 , 挤压应力σ bs 为 。
P / 2 P / 2二、选择题1、当低碳钢试件的试验应力σ=σs时,试件将:(A) 完全失去承载能力; (B) 破断;(C) 发生局部颈缩现象; (D) 产生很大的塑性变形。
正确答案是。
2、图示木接头,水平杆与斜杆成α角,其挤压面积为A bs为:(A)b h;(B)b h tan α;(cos α sin α)。
正确答案3、图示铆钉联接,铆钉的挤压应力为:(A)2 P / ( π d2 );(B)P / (2 d t );(C)P/ (2 b t );(D)4 P/ ( π d2 )。
正确答案4、等截面直杆受轴向拉力P 作用而产生弹性伸长,已知杆长为l ,截面积为A ,材料弹性模量为E ,泊松比为ν,拉伸理论告诉我们,影响该杆横截面上应力的因素是:(A )E 、ν、P ; (B )l 、A 、P; (C )l 、A 、E 、ν、P ; (D )A 、P 。
正确答案是 。
5、等截面直杆受轴向拉力P 作用而产生弹性伸长,已知杆长为截面积为A ,则横截面上的正应力和45º斜截面上的正应力分别为:(A )P / A ,P / ( 2 A ); (B )P / A ,P / ( 2 1 / 2 A ); (C )P / ( 2 A ),P / ( 2 A ); (D )P / A ,2 1 / 2 P / A 。
材料力学总复习

一、基本变形
外力
拉伸与压缩
扭转
弯曲
内力
FN F
应力 强度条件
变形
FN
A
max [ ]
l FNl EA
刚度条件
T Me
T
IP
max [ ]
Mnl
GI P
FS 外力
M 外力对形心之矩
My
,
FS
S
* z
Iz
bI z
, max [ ] max [ ]
1、积分法
2、叠加法
∑Fix= 0, FN1 cos30°+FN2=0 (1)
(2)画节点A的位移图(见图c) (3)建立变形方程
△L1=△L2cos30°
(4)建立补充方程
△L1=△LN1+△LT,
即杆①的伸长△l1由两部份组成,△l N1表示由轴力FN1引起的变形, △lT表示温度升高引起的变形,因为△T 升温,故△lT 是正值。
因为AB 杆受的是拉力,所以沿AB 延
长线量取BB1等于△L1;同理,CB 杆受
的也是拉力,所以沿杆CB 的延长线量取
BB2 等于△L。
分别在点B1 和B2 处作BB1 和BB2 的垂
线,两垂线的交点B′为结构变形后节点
B应有的新位置。即结构变形后成为
ABˊC 的形状。图c称为结构的变形图。
为了求节点B的位置,也可以单独作出节点B的位移图。位移图的作 法和结构变形图的作法相似,如图d所示。
C1 5、求应力并校核强度:
A1
1
FN 1 A
66 .7 MPa ,
2
FN 2 A
133 .2MPa ,
剪切
F AB A1
F BC A2
工程力学---材料力学第七章-梁弯曲时位移计算与刚度设计经典例题及详解

P
B C
l 2 l 2
A
x
P 解:AC段:M ( x ) x 2 y P EIy x 2 A P 2 EIy x C x 4 l 2 P 3 EIy x Cx D 12
P
B C
l 2
x
由边界条件: x 0时,y 0
l 由对称条件: x 时,y 0 2
梁的转角方程和挠曲线方程分别为:
最大转角和最大挠度分别为:
11qa max A 1 x1 0 6 EI 19qa 4 ymax y2 x2 2 a 8EI
3
例5:图示变截面梁悬臂梁,试用积分法
求A端的挠度 P
I
2I
l
fA 解: AC段 0 x l
B
P 3 2 EIy x C2 x D2 6
由边界条件: x l时,y=0, =0
得:
C2
1 1 Pl 2 , D2 Pl 3 2 3
l x 时,yC左 =yC右 , C左 = C右 由连续条件: 2
5 3 2 C1 Pl , D1 Pl 3 16 16
由连续条件: x1 x2 a时, y1 y2 , y1 y2
由边界条件: x1 0时, y1 0
0 x 2 a 时 , y 由对称条件: 2 2
得 D1 0
C1 C2 得 D1 D2
11 3 得 C2 qa 6
qa 1 (11a 2 3 x12 ) 0 x1 a 6 EI q 2 [3ax2 2 ( x2 a)3 11a 3 a x2 2a 6 EI qa y1 (11a 2 x1 x13 ) 0 x1 a 6 EI q y2 [4ax23 ( x2 a) 4 44a 3 x2 ] a x2 2a 24 EI
工程力学材料力学篇复习资料

工程力学材料力学篇学习资料声明一:材料力学篇书上有好多经典的例题,需要你认真琢磨~考试比重来讲静力学也就占20分,而材料力学则占80分,所以要认真复习哦~声明二:本资料列出的都是考试重点,可能不会包含程老师上课讲的所有内容,彻底掌握本资料上的所有内容考试就ok啦~声明三:由于本人比较笨,有些图片不会用电脑生成,只能用相机照下来再插进去,可能效果不太好,望见谅声明四:本资料在编辑过程中难免会出现一些错误,本人也会尽最大努力保证资料的准确性,避免严重性的错误,如发现错误,还望见谅并告诉笔者,笔者会第一时间进行修正。
声明五:本资料会先说知识点后讲题,基本都是课后练习题(我们那届留的作业~但可能会跟你们的有些出入)声明六:本资料的所有解释与注释都是本人原创,全世界独一无二~如有盗版,追究到底!PS:吐血整理B Y吴奂……下面进入正题第七章:绪论本章概况:本章会引入几个新的概念,了解并且掌握就可以了重点一:何谓应力?答:应力有点类似我们初中学的压强一样,如图所示,在界面m-m上任意一点k的周围取一微笑面积△A,并设作用在该面积上的内力为△F,则△A与△F的比值,称为△A内的平均应力,用p表示,即p=△F/△A,当△A趋近于0时,p称为k点处的应力或总应力。
重点二:何谓正应力与切应力?答:如图可知,应力p的方向与F的方向是一致的,为了分析方便,通常将应力p延截面法向与切线方向分解为两个分量,延截面法向的应力分量称为正应力,用σ表示;延截面切向的应力分量称为切应力,用τ表示;很显然p²=σ²+τ²。
重点三:单位换算力与面积的基本单位分别为N与m²,应力的单位是Pa,名为帕斯卡,1Pa=1N/m²,应力的常用单位是MPa,1MPa=10³x10³Pa(没有找到10的6次方这个符号,囧==!)PS:正应变与切应变考试不考,划重点的时候应该不会画,如果画了看看书120页就会了,本章没有课后练习题。
工程力学A(1)材料力学概念题

第一章是非判断题1-1材料力学是研究构件承载能力的一门学科。
( )1-2材料力学的任务是尽可能使构件安全地工作。
( )1-3材料力学主要研究弹性范围内的小变形情况。
( )1-4因为构件是变形固体,在研究构件的平衡时,应按变形后的尺寸进行计算。
( )1-5外力就是构件所承受的载荷。
( )1-6材料力学研究的内力是构件各部分间的相互作用力。
( )1-7用截面法求内力时,可以保留截开后构件的任一部分进行平衡计算。
( )1-8压强是构件表面的正应力。
( )1-9应力是横截面上的平均内力。
( )1-10材料力学只研究因构件变形引起的位移。
( )1-11线应变是构件中单位长度的变形量。
( )1-12构件内一点处各方向线应变均相等。
( )1-13切应变是变形后构件中任意两根微线段夹角角度的变化量。
( )1-14材料力学只限于研究等截面直杆。
( )1-15杆件的基本变形只是拉(压)、剪、扭和弯四种,如果还有另一种变形,必定是这四种变形的某种组合。
( )答案:1-1 √1-2 ×1-3 √1-4 ×1-5 ×1-6 ×1-7 √1-8 ×1-9 ×1-10 √1-11 ×1-12 ×1-13 ×1-14 ×1-15 √第二章1 是非判断题2-1使杆件产生轴向拉压变形的外力必须是一对沿杆轴线的集中力。
( )2-2拉杆伸长后,横向会缩短,这是因为杆有横向应力存在。
( )2-3虎克定律适用于弹性变形范围内。
( )2-4材料的延伸率与试件的尺寸有关。
( )2-5 只有超静定结构才可能有装配应力和温度应力。
( )2填空题2-6承受轴向拉压的杆件,只有在( )长度范围内变形才是均匀的。
2-7根据强度条σ≤[σ]可以进行( )三个方面的强度计算。
2-8低碳钢材料由于冷作硬化,会使( )提高,而使( )降低。
2-9铸铁试件的压缩破坏和( )应力有关。
工程力学--材料力学(第五、六章)经典例题及讲解

P
A
0.5 m
C D
0.4 m 1m
B
20
40
解:C点的应力 σ C = E ε = 200 × 10 3 × 6 × 10 − 4
= 120M Pa
C截面的弯矩
M C = σ C W z = 640 N ⋅ m
由 M C = 0.5 R A = 0.5 × 0.4 P = 0.2 P = 640 N ⋅ m 得 P = 3.2kN
度减小一半时,从正应力强度条件考虑, 该梁的承载能力将是原来的多少倍? 解: 由公式
σ max
M max M max = = 2 Wz bh 6
可以看出:该梁的承载能力将是原来的2 可以看出:该梁的承载能力将是原来的2倍。
例4:主梁AB,跨度为l,采用加副梁CD AB,跨度为l 采用加副梁CD
的方法提高承载能力, 的方法提高承载能力,若主梁和副梁材料 相同,截面尺寸相同, 相同,截面尺寸相同,则副梁的最佳长度 a为多少? 为多少?
2 2
2
bh b( d − b ) Wz = = 6 6
2 2 2
∂ Wz d 2 b 2 = − =0 ∂b 6 2
d 由此得 b = 3
d
2 2
h
h = d −b =
h = 2 ≈3:2 b
2 d 3
b
例12:跨长l =2m的铸铁梁受力如图示,已知材料许用拉、 12:跨长l =2m的铸铁梁受力如图示 已知材料许用拉、 的铸铁梁受力如图示,
10 kN / m
200 2m 4m 100
10 kN / m
200
2m
Fs( kN ) 25 Fs(
45 kN
4m
100
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6、约束力(约束反力):约束作用于被约束物体上的力。
约束力的方向总是与约束所能限制的运动方向相反。
约束力的作用点,在约束与被约束物体的接处
7、主动力:使物体产生运动或运动趋势的力。作用于被约束物体上的除约束力以外的其它力。
8、柔性约束:如绳索、链条、胶带等。
力偶矩的计算公式:MO(F)=±F×d[其中:d---力偶臂(两平行力之间的距离)]
规定逆时针转向的力偶其力偶矩取正(+),顺时针转向的力偶其力偶矩取负号(-)。
力偶的基本性质:
(1)、力偶无合力,力偶在任一座标轴上的投影等于零。
(2)、力偶对其作用面内任一点之矩等于力偶矩。与矩心位置无关。
(3)、力偶的等效性:只要保证力偶的三要素相同,两力偶的作用效果相同。
(2)约束反力的特点:固定铰支座的约束反力同中间铰的一样,也是方向未定的一个力;用一对正交的力来表示,指向假定。()
12、可动铰支座
(1)约束的构造特点把固定铰支座的底部安放若干滚子,并与支撑连接则构成活动铰链支座约束,又称锟轴支座。
(2)约束反力的特点:垂直于支承面的一个力,指向假定。()
13、二力杆约束
15、画受力图的步骤:
(1)确定研究对象,取脱离体。(只画研究对象本身,ห้องสมุดไป่ตู้能画与它相连接的周围其它物体!)
(2)画主动力。(只画研究对象直接受到的主动力)
(3)画约束反力。(只画研究对象以外的其它物体对研究对象的约束反力,按每种约束的反力特点画)()
16、物系:由两个及两个以上的物体构成的物体系统。
(1)运动效应:力使物体的机械运动状态发生变化的效应。
(2)变形效应:力使物体的形状发生和尺寸改变的效应。
3、力的三要素:力的大小、方向、作用点。
4、力的表示方法:
(1)力是矢量,在图示力时,常用一带箭头的线段来表示力;(注意表明力的方向和力的作用点!)
(2)在书写力时,力矢量用加黑的字母或大写字母上打一横线表示,如F、G、F1等等。
6、平面任意力系的平衡方程:
一矩式:
∑FX=0 (该受力图上所有力在X轴上投影的代数和等于零)
∑FY=0 (该受力图上所有力在Y轴上投影的代数和等于零)
∑MO(F)=0(该受力图上所有力对任意一点之矩的代数和等于零)
二矩式:
∑FX=0
∑MA(F)=0(A、B两点的连线不能与X轴垂直)
力矩的计算公式:MO(F)=±F×d
4、合力矩定理:合力对某一点之矩等于各分力对同一点之矩的代数和。
MO(FR)=MO(F1)+MO(F2)+...MO(Fn)=∑MO(F)
分布力对某点之矩等于分布力的合力对该点之矩。均匀分布的分布力的合力作用点在分布段的中点。
5、力偶:力偶是等值、反向、相互平行的一对特殊的力。力偶对物体只起转动效果。
(1)约束的特点:只能限制物体原柔索伸长方向的运动。
(2)约束反力的特点:约束反力沿柔索的中心线作用,离开被约束物体。()
9、光滑接触面:物体放置在光滑的地面或搁置在光滑的槽体内。
(1)约束的特点:两物体的接触表面上的摩擦力忽略不计,视为光滑接触面约束。被约束的物体可以沿接触面滑动,但不能沿接触面的公法线方向压入接触面。
(2)约束反力的特点:光滑接触面的约束反力沿接触面的公法线,通过接触点,指向被约束物体。()
10、铰链约束:两个带有圆孔的物体,用光滑的圆柱型销钉相连接。
约束反力的特点:是方向未定的一个力;一般用一对正交的力来表示,指向假定。()
11、固定铰支座
(1)约束的构造特点:把中间铰约束中的某一个构件换成支座,并与基础固定在一起,则构成了固定铰支座约束。
17、作用与反作用公理:两物体之间的相互作用力总是大小相等、方向相反、作用在同一直线上。
例2:求图示外伸梁A、B处的反力。
解:1、取AB为研究对象,画出AB杆的受力图如图(b)
2、建立直角坐标系如图
3、列平衡方程,求解未知量
ΣFX=0
ΣFy=0
ΣMA(F)=0
RAX=0
-10×2+RAY-30+RB=0
(1)约束的构造特点:杆件的自重不计,杆件的两端均用铰链(或固定铰支座)与周围的其它物体相连接。两铰链之间不受任何力作用。
杆件可以是直杆或曲杆。二力杆约束又称链杆约束,约束中的杆件又称之为二力杆。
(2)约束的约束特:性限制了物体沿杆件两端铰链连线方向的运动。但不能阻止物体沿铰链的转动。()
(3)约束反力特点:根据二力平衡公理,二力杆约束的约束反力的方向必沿杆件两端铰链中心的连线,指向不定的一个力。
力的投影有正负,力的箭头指向与座标的正向一致为正;反之为负。若力与正向夹角为α,则:
Fx=Fcosα
Fy=-Fcosα
合力投影定理:力系的合力在任意轴上的投影等于各分力在同一轴上投影的代数和。
RX=F1X+F2X+...FnX=∑FX
RY=F1Y+F2Y+...FnY=∑FY
3、力矩:力矩是力对物体绕某一点转动其转动效果大小的度量。它等于力的大小(F)乘以该点到力的距离(力臂d)。并规定,力使物体绕该点顺转为负,逆转为正。
例1:作出图中指定物体的受力图。()
作出图中AB杆的受力图。
A处固定铰支座
B处可动铰支座
作出图中AB、AC杆及整体的受力图。
B、C光滑面约束
A处铰链约束
DE柔性约束
作图示物系中各物体及整体的受力图。
AB杆:二力杆
E处固定端
C处铰链约束
知识点:
1、力的定义:力是物体间相互的机械作用。
2、力的两种作用效应:外效应(运动效应)、内效应(变形效应)。
(二力平衡公理:一个刚体受两个力作用处于平衡的必要和充分条件:两个力等值、反向、共线)
13、固定端约束:
(1)约束的构造特点把杆件的端部与周围物体进行刚性连接。两连接物体不能绕连接点有任何的相对转动。
(2)约束反力的特点:用一对正交的力和一个反力偶(用M表示)来表示。
()
14、受力图:反映物体受力情况的图形。
-20+10×2×1-30×2+RB×6=0
RAX=0
RAY=40kN(↑)
RB=10kN(↑)
知识点:
1、平衡:物体相对于地面处于静止或作匀速直线运动。(物体受到的力的合力等于零)
2、力在坐标轴上的投影:通过力的起点和终点分别作坐标轴的垂线,两垂线与坐标轴的交点之间的线段就是力在坐标轴上的投影。(如图中的Fx和Fy)