(完整版)第三章晶格振动与晶体的热学性质

合集下载

第3章 晶格振动与晶体的热学性质

第3章 晶格振动与晶体的热学性质
温度较低: 热运动较弱——在平衡位置附近微振动,平衡位
置是晶格格点,所以称为晶格振动; 晶格振动是原子的热运动,对晶体的热学性能 起主要贡献。
温度较高:
热运动较强——少数原子脱离格点- 热缺陷; 热运动很强——整个晶体瓦解,溶解。
温度很高:
晶格振动的研究 —— 晶体的热学性质
固体热容量 ——是晶体热运动宏观性质的表现
系统有N个原胞
第2n+1个M原子的方程
第2n个m原子的方程 —— N个原胞,有2N个独立的方程
方程解的形式
—— 两种原子振 动的振幅A和B一 般来说是不同的
第2n+1个M原子
第2n个m原子
方程的解
—— A、B有非零的解,系数行列式为零
—— 一维复式晶格中存在两种独立的格波
—— 声学波
—— 光学波
第n个原子和第n+1个原子间的距离
平衡位置时,两个原子间的互作用势能 发生相对位移 后,相互作用势能
—— 常数
—— 平衡条件
简谐近似 —— 振动很微弱,势能展式中只保留到二阶项
相邻原子间的作用力
dU f d
—— 恢复力常数
原子的运动方程:
—— 只考虑相邻原子的作用,第n个原子受到的作用力
1
声子:晶格振动中格波的能量量子 声子这个名词是模仿光子而来(因为电磁波也 是一种简谐振动)。声子与光子都代表简谐振 动能量的量子。所不同的是光子可存在于介质 或真空中,而声子只能存在于晶体之中,只有 当晶体中的点阵由于热激发而振动时才会有声 子,在绝对零度下,即在OK时,所有的简正模 式都没有被激发,这时晶体中没有声子,称之 为声子真空。声子与光子存在的范围不同,即 寄居区不同。

第三章 晶格振动与晶体的热学性质(全部课件)

第三章 晶格振动与晶体的热学性质(全部课件)

3. 波数q: μ nq = Ae i (ωt − naq ) (3-22)
格波波数q具有2π/λ格式,量纲为[L]-1。aq改变2π的
整数倍,即aq→ n2π + aq 时所有原子振动没有不
同。如:
q1
格= 波24πa1(红相色位)差:aq1
=
π 2
格波2(绿色):
q2
=

/
4a 5
=
5π 2a
按一般小振动近似能保留到δ2,得到相邻原子间的 作用力为:
F
=
− dV dδ

−βδ
(3 - 20)
这说明了相邻原子间的力是正比于相对位移的弹性 恢复力。
1、建立运动方程和求解:
a) 建立方程(考查图中第n个原子的运动方程):
n-2 n-1
n
n+1 n+2
aa
β:力常数
β
β
μn-2
μn-1
μn
μn+1
4、分析力学得到的哈密顿量:
∑ H
=
1 2
3N
(
Q&
2 i
i=1
+
ω
2 i
Q
2 i
)
(3-7) (3-9)
1
5、正则方程及解形式 :
在简正坐标下的简谐振动就是简正振动,它的正则
方程(简正坐标下的运动方程):
Q&&i
+
ω
2 i
Qi
=0
i=1,2,…,3N (3-10)
这是3N个相互无关的方程,表明在简正坐标下的振 动是独立的简谐振动,其中的任意解为:
¾ 晶体中所有原子共同参与的同一频率的简谐振动称为 一种振动模式。

《固体物理基础》晶格振动与晶体的热学性质

《固体物理基础》晶格振动与晶体的热学性质

一、三维简单格子
二、三维复式格子
三、第一布里渊区
四、周期性边界条件
◇一个原胞内有P
个不同原子,则
有3P个不同的振
动模式,其中3支 声学波。
◇具有N个原胞的 晶体中共有3PN个
振动模式,其中
3N个声学波, 3N(P-1)个光学波。
四、周期性边界条件 总结
§ 3.4 声子
声子:晶格振动中格波的能量量子
二、一维单原子链的振动
格波
二、一维单原子链的振动
色散关系
二、一维单原子链的振动
色散关系
二、一维单原子链的振动
第一布里渊区
二、一维单原子链的振动
第一布里渊区
二、一维单原子链的振动
第一布里渊区
二、一维单原子链的振动
周期性边界条件
玻恩—卡曼边界条件
二、一维单原子链的振动
周期性边界条件
即q有N个独立的取值—晶格中的原胞数第一布
◇非弹性X射线散射、非弹性中子散射、可见光 的非弹性散射。
§ 3.4 声子
§ 3.4 声子
90K下钠晶体沿三个方向的色散关系
§ 3.5 晶格热容
一、晶格振动的平均能量
热力学中,固体定容热容:
根据经典理论,每一个自由度的平均能量是kBT, kBT/2为平均动能,kBT/2为平均势能,若固体有
N个原子,总平均能量: 取N=1摩尔原子数,摩尔热容是:
二、一维单原子链的振动
一维单原子链的振动
二、一维单原子链的振动
简谐近似下的运动方程
二、一维单Hale Waihona Puke 子链的振动简谐近似下的运动方程
在简谐近似下,原子的相互作用像一个弹 簧振子。一维原子链是一个耦合谐振子,各原 子的振动相互关联传播,形成格波。

第三章晶格振动与晶体的热学性质

第三章晶格振动与晶体的热学性质

第三章晶格振动与晶体的热学性质第三章晶格振动与晶体的热学性质晶体中的格点表示原子的平衡位置,晶格振动便是指原子在格点附近的振动。

晶格振动对晶体的电学、光学、磁学、介电性质、结构相变和超导电性都有重要的作用。

本章的主题用最邻近原子间简谐力模型来讨论劲歌振动的本征频率;并用格波来描述晶体原子的集体运动;再用量子理论来表述格波相应的能量量子、3.1 连续介质中的波波动方程22220u ux Y tρ??-=??对足够长的介质,求行波的解:s v q ω=其中波相速ω=称作色散关系。

3.2 一维晶格振动格波讨论晶格振动时采用了绝热近似,近邻近似和简谐近似。

绝热近似:考虑离子运动时,可以近似认为电子很快适应离子的位置变化。

为简单化,可以将离子的运动看成是近似成中性原子的运动。

近邻近似:在晶格振动中,只考虑最近邻的原子间的相互作用;简谐近似:在原子的互作用势能展开式中,只取到二阶项。

0020021()()()()......2r r dU d U U r U r dr dr δ+=+++简谐近似——振动很微弱,势能展式中作二级近似:00'''001()()||2r r U r U r U U δ+=++相邻原子间的作用力02222,r Ud U d U f dr dr δβδβδ=-=-=-= ? ??????一维晶格振动格波考虑第n 个例子的受力情况,它只受最近邻粒子的相互作用即分别受到来自第n-1个粒子及第n+1个例子的弹性力11()n n n f u u β--=-- 11()n n n f u u β++=--1111(2)n n n n n n f f f u u u β-++-=-=--- 2112(2)n n n n d uf ma m u u u dtβ+-===---试探解以行波作试探解()i t naq nq u Ae ω-=2()()(2)i t naq i t naq iaq iaq m e e e e ωωωβ----=---利用:222cos()24sin (/2)iaq iaq e e qa qa -+-=-=得224sin (/2)qa m βω=,/2)qa ω=色散关系 s i n (/2)qa ω=长波极限因为色散曲线是周期的且关于原点对称,在0/q a π<<的区间内,频率仅覆盖在0m ωω<<的范围内。

晶格振动与晶体的热学性质

晶格振动与晶体的热学性质

格波: 连续介质弹性波:
Ae
i t naq
i t xq
Ae
将 µ nq
Ae i t qna
i t naq
代入运动方程得
m 2 Ae
Ae
m 2 eiaq eiaq 2 2 cos aq 1
解 得
第三章 晶格振动与晶体的热学性质
布拉伐晶格晶体中的格点表示原子的平衡位置,原子在格点附近作热振动,由于晶体内 原子之间存在相互作用力,各个原子的振动不是孤立的,而是相互联系在一起的,因此在晶 体中形成各种模式的波,称为格波。只有当振动非常微弱时,原子间的相互作用可以认为是 简谐的,非简谐的相互作用可以忽略,在简谐近似下,振动模式才是独立的。由于晶体的平 移对称性,振动模式所取的能量值不是连续的,而是分立的。通常用一系列独立的简谐振子 来描述这些独立的振动模,它们的能量量子称为声子。
nj Aje
i jt naqj


频率为 j 的特解:
方程的一般解:
n

线性变换系数正交条件: 系统的总机械能化为:
Ae
j j
i jt naqj


Q q, t einaq Nm
q
1
1 N
=N=晶体链的原胞数 晶格振动格波的总数=N· 1 =晶体链的自由度数 三、格波的简谐性、声子概念
1 2 n m 2 n 2 1 U n 晶体链的势能: n 1 2 n
晶体链的动能:T

系 统 的总 机械 能 即 体系的哈密顿量为:
H

2 1 1 2 n m n n 1 2 n 2 n
1 d2V dV V a V a 2 2 d x a d x

第3章 晶格振动与晶体热学性

第3章 晶格振动与晶体热学性
1/70
晶格周期性使晶格振动具有波的形式——格波。 格波研究 首先,考虑一维,计算原子间相互作用力; 写出原子运动方程,最后求解方程。 推广到三维情况 本章重点: 一维单/双原子链模型及其色散关系的推导; 晶格比热(爱因斯坦模型/德拜模型); 运用非简谐振动解释热膨胀/热传导;
2/70
§3.1 一维原子链的振动
首先,简谐振子运动方程:
ma f m d 2x kx dt 2
2
一维简单晶格运动方程
2
k m
一维原子链/布喇菲格子每个原子质量 布喇菲格子每个原子质量m,平衡时原子 间距a。第n个原子平衡位置rn=na,相对平衡位置位移 xn(n=1, (n=1, 2, …N)。相邻原子相对位移: xn-xn-1, xn-xn+1
n n+1 n+2
E总 E动 E势
p 1 kx 2 2m 2
2
k
d E势 dx
3/70
n-2
n-1
2
a
xn-2 xn-1
a
xn
a
a
xn+1 xn+2
第一个近似
4/70
力常数==势函数二阶导数
n-2
n-1
n
n+1
n+2
a
xn-2 xn-1
a
xn
a
a
xn+1 xn+2
设方程组有下列形式解(行波解): 比较行波A A0ei ( kxt ) i ( qna t )
1
纵格波波形
色散关系讨论
(1) 两个特点: 两个特点:
2

m
sin(
qa ) 2

第三章_晶格振动与晶体的热学性质

第三章_晶格振动与晶体的热学性质

第三章 晶格振动与晶体的热学性质1.什么是简谐近似?解:当原子在平衡位置附近作微小振动时,原子间的相互作用可以视为与位移成正比的虎克力,由此得出原子在其平衡位置附近做简谐振动。

这个近似即称为简谐近似。

2.试定性给出一维单原子链中振动格波的相速度和群速度对波矢的关系曲线,并简要说明其意义。

解:由一维单原子链的色散关系2sin2qamβω= ,可求得一维单原子链中振动格波的相速度为22s i nqa qa m aq v p βω== (1)2cos qam a dq d v g βω==。

由(1)式及结合上图3.1中可以看出,由于原子的不连续性,相速度不再是常数。

但当0→q 时,mav p β=为一常数。

这是因为当波长很长时,一个波长范围含有若干个原子,相邻原子的位相差很小,原子的不连续效应很小,格波接近与连续媒质中的弹性波。

由(2)式及结合上图3.1中可以看出,格波的群速度也不等于相速度。

但当0→q ,mav v p g β==,体现出弹性波的特征,当q 处于第一布区边界上,即aq π=时,0=g v ,而ma v p βπ2=,这表明波矢位于第一布里渊区边界上的格波不能在晶体中传播,实际上它是一种驻波。

3.周期性边界条件的物理含义是什么?引入这个条件后导致什么结果?如果晶体是无限大,q 的取值将会怎样?解:由于实际晶体的大小总是有限的,总存在边界,而显然边界上原子所处的环境与体内原子的不同,从而造成边界处原子的振动状态应该和内部原子有所差别。

考虑到边界对内部原子振动状态的影响,波恩和卡门引入了周期性边界条件。

其具体含义是设想在一长为Na 的有限晶体边界之外,仍然有无穷多个相同的晶体,并且各块晶体内相对应的原子的运动情况一样,即第j 个原子和第j tN +个原子的运动情况一样,其中t =1,2,3…。

引入这个条件后,导致描写晶格振动状态的波矢q 只能取一些分立的不同值。

如果晶体是无限大,波矢q 的取值将趋于连续。

第三章_晶格振动与热学性质

第三章_晶格振动与热学性质

fn =fnR - fnL = (un+1-un) - (un-un-1)
= (un+1+un-1-2un)
n-1 n n+1 n-1 n n+1 fnL fnR un-1 un un+1
10
第n个原子在平衡位置的运动方程为:
d un m 2 ( un 1 un 1 2un ) dt
得到:
M 2 A 1( B A ) ( A Be
)
m 2 B 2 ( Aeiqa B) 1 ( B A)
整理,得:
(1 2 M 2 ) A (1 2e iqa ) B 0 (1 2e ) A (1 2 m ) B 0
a 一维单原子链
6
在t时刻,第n个原子偏离平衡位置的位移为un
n-2 n-1 n n+1 n+2
a
un-2
un-1
un
r un+1
un+2
一维简单晶格振动
r - a = un+1 -un的意义 表示相邻格点的相对位移: > 0:伸长;< 0:缩短
r = un+1 + a -un
7
序号n和n+1的两个原子在t时刻的距离为:
e
iqNa
un Ae
i ( qnat )
1


a
q
2l q Na
a
l 是整数

N N l 2 2
允许的波矢数目等于N (原胞数)
21
二、一维复式格子
一维复式格子的格波解:
力常数 晶格常数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a 2 a
=N=晶体链的原胞数
晶格振动格波的总数=N·1 =晶体链的自由度数
四、格波的简谐性、声子概念
晶体链的动能:
T
1 2
n
m&n2
晶体链的势能:
U
1
2
n
n n1 2
系统的总机械能:
H
1 2
n
m&n2
1 2
n
n n1 2
频率为j的特解:nj Ajeijtnaqj
方程的一般解: n Ajeijtnaqj
原胞的质心基本保持不动 。
当q0时,+,原胞中两种原子振动位相完全相反。
n n
q0
m M
离子晶体在某种光波的照射下,光波的电场可以激发这 种晶格振动,因此称这种振动为光学波或光学支或光频支。
对于单声子过程(一级近
(q) =c0q
似),电磁波只与波数相同的格 +(0) 波相互作用。如果它们具有相同
B
2
cos
1 2
aq
ei
1 2
aq
2 M2
M
2m
cos
1 2
aq
ei
1 2
aq
m M 2 m2 2Mmcosaq
R ei
R:大于零的实数,反映原胞中P、Q两原子的振幅比 :原胞内P、Q两原子的振动位相差
1. 光学波(optical branch)
n n
M
m
2m cos
1 2
aq
动,不同原子间有振动位相差,这种振动以波 的形式在整个晶体中传播,称为格波。
q取不同的值,相邻两原子间的振动位相差不同,则
晶格振动状态不同。
若 q q 2 l (ℓ=整数) 则 q 与 q描述同一晶格
振动状态 a
例:
1 4a
2
4 5
a
q1
2 1
2a
q2
2 2
5
2a
q2
q1
2
a
三、周期性边界条件(Born-Karman边界条件)
第三章 晶格振动与晶体的热学性质
§3.1 一维单原子链的振动
一、运动方程及其解
n-2 n-1
n
n+1 n+2
aa
n-2
n-1
n
n+1
n+2
:力常数
只考虑最近邻原子间的相互作用:
fn n n1 n n1 n1 n1 2n
第n个原子的运动方程:
m&&n n1 n1 2n
j
1
Q q,t einaq
Nm q
线性变换系数正交条件: 系统的总机械能化为:
1
N
einaqq q,q
n
H
1 2
Q&* q
q, t Q& q, t
2
qQ*
q,tQ q,t
Q(q, t)代表一个新的空间坐标,它已不再是描述某 个原子运动的坐标了,而是反映晶体中所有原子整体运 动的坐标,称为简正坐标。
N+1
12
n
N N+2 N+n
N n
n
Aeit N naq Aeitnaq
eiNaq 1 ei2h 1
q 2 h
Na
h =整数
在q轴上,每一个q的取值所占的空间为 2
Na
q的分布密度:
q Na L
2 2
L=Na ——晶体链的长度
简约区中波数q的取值总数 q 2 Na 2
+
的频率,就会发生共振。
q 0
光波: =c0q, c0为光速
对于实际晶体, +(0)在1013 ~ 1014Hz,对应于远 红外光范围。离子晶体中光学波的共振可引起对远红外 光在 +(0)附近的强烈吸收。
2. 声学波(acoustic branch)
ei
1 2
aq
M 2 m2 2Mmcosaq
M
2m cos m M2
1 2
aq
m2
ei
1 2
aq
2Mmcosaq
R ei
Q q
a
a
cos
1 2
aq
0
1 aq
2
2
3
2
+在Ⅱ、Ⅲ象限之间,属于反位相型
物理图象:原胞中两种不同原子的振动位相基本上相反,
即原胞中的两种原子基本上作相对振动,而
m2
(q)
—— 色散关系
q —— 简约区
a
a
q
- - 2 0 2
aa
aa
连续介质弹性波: Aeitxq
格波: Aeitnaq
➢ 对于确定的n:第n个原子的位移随时间作简谐振动 ➢ 对于确定时刻t:不同的原子有不同的振动位相 q的物理意义:沿波的传播方向(即沿q的方向)上,单
位距离两点间的振动位相差。 格波解:晶体中所有原子共同参与的一种频率相同的振
两个色散关系即有两支格波:(+:光学波; -:声学波)
简约区: q
a
a
π a
π a
对于不在简约区中的波数q’ ,一定可在简约区中
找到唯一一个q,使之满足:
q q
2
a
l
Gl
Gl 为倒格矢
二、光学波和声学波的物理图象
第n个原ቤተ መጻሕፍቲ ባይዱ中P、Q两种原子的位移之比
n n
A
ei
1 2
aq
{ Bei
t
n
1 2
aq
n
(设M > m)
{ 代入方程:
2
M
2
A
2
cos
1 2
aq
B
0
2
cos
1 2
aq
A
2
m
2
B
0
2 M2
久期方程:
2
cos
1 2
aq
0
2 cos
1 2
aq
2 m 2
2
Mm
M
m
M
2
m2
2Mmcosaq

M Mm
m
1
1
4Mm
M m2
sin2
1 2
aq
运动方程: Q&&j q,t j2 qQj q,t 0
晶体中所有原子共同参与的同一频率的简谐振动称为 一种振动模式。
能量本征值: 声子的概念:
Ej
n
j
1 2
h
j
nj 0,1, 2,L
声子是晶格振动的能量量子 h j
一种格波即一种振动模式称为一种声子,对于由N个原 子组成的一维单原子链,有N个格波,即有N种声子, nj:声子数
试解 n Aeitnaq —— 格波方程
m2 Aeitnaq Aeitnaqiaq Aeitnaqiaq 2Aeitnaq
m2 eiaq eiaq 2 2 cosaq 1
解得
2 sin 1 aq —— 色散关系
m2
二、格波的简约性质、简约区
2 sin 1 aq
当电子或光子与晶格振动相互作用时,总是以 hj 为
单元交换能量 r
声子具有能量 h j ,也具有准动量 hq ,但声子只是反映
晶体原子集体运动状态的激发单元,它不能脱离固体而
单独存在,它并不是一种真实的粒子, 只是一种准粒子
声子的作用过程遵从能量守恒和准动量守恒
由N个原子组成的一维单原子链,晶格振动的总能量为:
E
N j=1
n
j
1 2
h
j
§3.2 一维双原子链的振动
考虑由P、Q两种原子等距相间排列的一维双原子链
一、运动方程及其解
a Mm
{
n-1 n n n+1
只考虑近邻原子间的弹性相互作用
{ 运动方程: M &&n n n1 2n
m&&n n n1 2n
试解:
it naq
Ae n
相关文档
最新文档