PLC与继电器控制系统的比较
plc控制系统与传统的继电器控制系统有何区别

plc 控制系统与传统的继电器控制系统有何区别PLC 控制系统与继电器控制系统的区别
(1)从控制方法上看
电器控制系统控制逻辑采用硬件接线,利用继电器机械触点的串联或井联等组合成控制逻辑,其连线多且复杂、体积大、功耗大,系统构成后,想再改变或增加功能较为困难。
另外,继电器的触点数量有限,所以电器控制系统的灵活性和可扩展性受到很大限制。
而PLC 采用了计算机技术,其控制逻辑是以程序的方式存放在存储器中,要改变控制逻辑只需改变程序,因而很容易改变或增加系统功能。
系统连线少、体积小、功耗小,而且PLC 的“软继电器”实质上是存储器单元的状态,所以“软继电器”的触点数最是无限的,PLC 系统的灵活性和可扩展性好。
(2)从工作方式上看
在继电器控制电路中。
当电源接通时,电路中所有继电器都处于受制约状态,即该吸合的继电器都同时吸合。
不该吸合的继电器受某种条件限制而不能吸合,这种工作方式称为并行工作方式。
而PLC 的用户程序是按一定顺序循环执行的,所以各软继电器都处于周期性循环扫描接通中,受同一条。
PLC与传统继电器的比较

PLC与传统继电器的比较PLC(可编程逻辑控制器)和传统继电器都是用于工业自动化控制的重要设备。
在这篇文章中,我们将比较这两者之间的特性、优势和不足。
通过深入了解PLC和传统继电器的区别,我们可以更好地理解它们在工业控制系统中的应用。
1. 简介PLC是一种电子装置,它能够通过可编程的逻辑来实现控制系统的功能。
PLC通过内置的处理器和软件进行编程,具有高度灵活性。
传统继电器则是电磁开关,通过电磁原理来控制电路的通断。
2. 特性比较2.1. 灵活性PLC具有高度灵活性,可以通过编程进行功能的修改和扩展。
这样,当控制需求变化时,可以通过简单的程序更改来适应新的需求。
相比之下,传统继电器需要手动替换或添加继电器,无法像PLC那样快速适应变化。
2.2. 可编程性PLC是可编程的,可以使用多种编程语言来实现控制逻辑。
这使得PLC能够处理复杂的控制任务,并且可以与其他设备进行通信和集成。
传统继电器则只能完成基本的开关控制,不具备编程能力。
2.3. 可靠性PLC相对于传统继电器更加可靠。
PLC采用了纯电子元件,没有机械部件,因此不受机械故障的影响。
此外,PLC具有自动故障检测功能,可以实时监测系统的运行状态。
相比之下,传统继电器容易受到机械故障的影响,需要定期维护和更换。
3. 应用场景比较3.1. 复杂控制系统对于复杂的控制系统而言,PLC更适合。
PLC的编程功能和灵活性使其能够处理多个输入和输出,并实现复杂的控制逻辑。
传统继电器在面对复杂控制任务时受限于其简单的开关功能。
3.2. 简单控制任务传统继电器在一些简单的控制任务上仍然有其应用价值。
由于其结构简单且易于维护,传统继电器在一些较小规模的工业控制系统中仍然被广泛使用。
4. 总结综上所述,PLC相对于传统继电器具有更高的灵活性、可编程性和可靠性。
PLC适用于处理复杂的控制任务和大规模的工业自动化系统,而传统继电器则在简单控制任务和小规模系统中可能更加适用。
plc控制与继电器控制的区别

plc控制与继电器控制的区别继电器控制与PLC控制系统的区别有哪些?简单地说,PLC是一种在继电器、接触器控制基础上逐渐发展起来的以计算机技术为依托,运用先进的编程语言来实现诸多功能的新型控制系统。
采用程序控制方式是PLC与继电器控制系统的主要区别。
在PLC问世以前,在农机、机床、建筑、电力、化工、交通运输等行业中是以继电器控制系统占主导地位的。
继电器控制系统因为结构简单、价格低廉、易于操作等优点得到了广泛的应用。
然而,随着工业控制的精细化程度和智能化水平的提升,以继电器为核心的控制系统的结构越来越复杂。
在某些较为复杂的系统中,可能需要使用成百上千个继电器,这不仅使得整个控制装置体积十分庞大,而且由于元器件数量的增加、复杂的接线关系还会造成整个控制系统的可靠性降低。
更重要的是,一旦控制过程或控制工艺发生变化,则控制柜内的继电器和接线关系都要重新调整。
可以想象,如此巨大的调整一定会花费大量的时间、精力和金钱,其成本的投入有时要远远超过重新制造一套新的控制系统,这势必又会带来很大的浪费(原先系统报废)。
为了应对继电器控制系统的不足(既能使工业控制系统的成本降低,又能很好地应对工业生产中的变化和调整),工程人员将计算机技术、自动化技术以及微电子和通信技术相结合,研发出了更加先进的自动化控制系统,这就是PLC。
PLC作为专门为工业生产过程提供自动化控制的装置,采用了全新的控制理念。
PLC通过强大的输入/输出接口与工业控制系统中的各种部件(如控制按钮、继电器、传感器、电动机、指示灯)相连通过编程器编写控制程序(PLC语句),将控制程序存入PLC中的存储器,并在微处理器(CPU)的作用下执行逻辑运算、顺序控制、计数等操作指令。
这些指令会以数字信号(或模拟信号)的形式送到输入端、输出端,从而控制输入端、输出端接口上连接的设备,协同完成生产过程。
PLC与传统继电器控制的比较与优势分析

PLC与传统继电器控制的比较与优势分析在现代工业自动化领域,PLC(可编程逻辑控制器)和传统继电器控制是两种常见的控制方式。
本文将从多个角度比较这两种控制方式的特点和优势,以及它们在实际应用中的适用性。
一、可编程性PLC相较于传统继电器控制拥有更高的可编程性。
PLC的编程语言通常是IEC 61131-3标准中所规定的,如梯形图(Ladder Diagram)或结构化文本(Structured Text)。
这种标准化编程语言使得PLC的程序易于编写、理解和维护。
而传统继电器控制则需要手动布线,每次更改控制逻辑都需要调整继电器的接线,操作繁琐且容易出错。
二、灵活性PLC在控制逻辑的灵活性上优于传统继电器控制。
PLC可以通过编写程序实现多种复杂的逻辑判断和控制,如计时、计数、PID控制等。
而传统继电器控制则需要通过更多的继电器组合来实现类似的功能,增加了系统的复杂度和成本。
三、可靠性PLC的可靠性相对于传统继电器控制更高。
PLC采用固态元件进行电路控制,无机械部件,因此抗震动、抗干扰能力强,不容易出现接触不良或触点老化等问题。
而传统继电器控制中的继电器接触不良或损坏可能导致系统故障或运行不稳定。
四、维护性PLC相对于传统继电器控制更易于维护和诊断。
PLC编程语言的标准化和模块化使得程序的修改和调试更加简单。
此外,PLC通常配备有监控和诊断功能,可以实时监测系统状态和故障信息,便于维护人员进行故障排除。
而传统继电器控制的维护则需要依靠手动排除故障,效率较低。
五、成本效益从成本效益的角度看,PLC与传统继电器控制各有优势。
虽然PLC的硬件设备价格相对较高,但由于PLC具有可编程性和灵活性,可以减少系统中的继电器数量和布线长度,从而节省了成本。
另外,PLC的可靠性和维护性也减少了系统的停机时间和维修成本。
而传统继电器控制的硬件成本相对较低,但由于系统复杂度较高,布线繁琐,维护成本相对较高。
综上所述,PLC与传统继电器控制各有优势,在实际应用中需根据具体情况来选择。
PLC控制系统与继电器控制系统的比较

PLC控制系统与继电器控制系统的比较
1、从掌握方法上
继电器掌握系统采纳机械触点的串、并联的硬接线来实现对设备的掌握,同时继电器的触点数量有限,使系统构成后敏捷性和扩展性受到很大限制。
plc采纳程序(软)的方式来实现对设备的掌握,系统连线少要转变掌握规律只需转变程序。
同时PLC中的各种软继电器实际上是存储器中的触发器,当软继电器通时相当于该触发器为“1”,反之为“0”,而触发器的状态可取用任意次,因此每个软继电器的触点数量是无限的。
2、从工作方式上
继电器掌握系统为并行工作方式,即该吸合的继电器都同时吸合。
PLC掌握系统为串行工作方式,其程序按肯定挨次循环执行,各软继电器处于周期性循环扫描接通状态,其动作挨次取决于程序的扫描挨次。
3、从掌握速度上
继电器掌握系统依靠机械触点来实现掌握,动作慢,存在抖动现象。
PLC掌握系统采纳程序方式来实现掌握,指令的执行时间在微秒级。
4、从定时和计数方式上
继电器掌握系统的时间继电器的延时精度易受环境温度和湿度的影响,精度不高。
无计数功能。
PLC掌握系统的时钟脉冲由晶振产生,精度高,范围宽。
5、从牢靠性和可维护性上
继电器掌握系统采纳机械触点,寿命短,连线多,牢靠性和可维护性差。
PLC掌握系统采纳微电子技术,体积小,牢靠性高,同时PLC还有自诊断功能,为调试和维护供应了便利。
继电器控制、单片机控制和PLC控制的区别和优缺点

PLC的功能PLC 经过多年在工业领域的运用后,按其功能,它主要应用在以下几个方面(1)数据处理:PLC是具有微处理器的一种智能电子产品, 它具有数值运算、数据比较、数制转换、以及数据传输通信等功能.(2)逻辑控制:PLC具有逻辑运算功能,可实现多种通断控制.(3)定时控制:由于PLC为用户提供了很多计时器, 且时间设定值可由用户程序设定修改,所以有很强的定时功能。
(4)计数功能:同时PLC 为用户提供了很多的计数器,也可通过软件进行计数值的设定。
(5)顺序控制:可依据生产加工过程,实现定位输出、顺序启动等控制.(6)通信联网:可以对调节器、变频器等实现远程控制。
也可与其它PLC或计算机之间进行数据传输通信, 构成“ 集中管理分散控制” 的分布式控制系统。
PLC控制与继电器控制相比较(1)逻辑控制继电器控制是利用各电器件机械触点的串、并联组合成逻辑控制。
采用硬线连接,连线多而复杂,对今后的逻辑修改、增加功能很困难。
而PLC中逻辑控制是以程序的方式存储在内存当中, 改变程序, 便可改变逻辑。
连线少、体积小、方便可靠。
(2)控制速度依靠机械触点的吸合动作来完成控制的继电器控制系统, 工作频率低,工作速度慢.而PLC 由于采用程序指令控制半导体电路来实现控制,稳定、可靠,运行速度大大提高了。
(3)顺序控制继电器控制是利用时间继电器的滞后动作来完成时间上的顺序控制。
时间继电器内部的机械结构易受环境温度和湿度变化的影响, 造成定时的精度不高。
在PLC内部是由半导体电路组成的定时器以及由晶体振荡器产生的时钟脉冲计时, 定时精度高。
使用者根据需要, 定时值在程序中便可设置,灵活性大,定时时间不受环境影响.(4)灵活性可扩展性继电器系统安装后, 受电器设备触点数目的有限性和连线复杂等原因的影响, 系统在今后的灵活性、扩展性很差。
而 比具有专用的翰人和输出模块,理论上连接可以无穷多.连线少, 灵活性可扩展性好.(5)计数功能继电器控制可实现逻辑功能, 但不具备计数的功能。
PLC控制与继电器控制的区别

PLC控制与继电器控制的优缺点作为电气工作者,PLC、继电器是大家常接触的控制元件,两者作为控制产品,其作用有相同之处,但其控制逻辑却大不相同。
PLC控制的优点是功能比继电器控制的多,像模拟量的控制,微积分的控制等等,还有就是可以方便的修改程序,改变控制方法和控制对象。
继电器控制只能实现一些简单的逻辑控制。
如果详细罗列PLC与继电器控制的不同,大概可以从以下几个方面来对比:①控制逻辑:继电器控制逻辑采用硬接线逻辑,利用继电器机械触点的串联或并联及延时继电器的滞后动作等组合成控制逻辑,其连线多而复杂,体积大,功耗大,一旦系统构成后,想再改变或增加功能都很困难。
另外继电器触点数目有限,每只一般只有4~8对触点,因此灵活性和扩展性都很差。
而PLC采用存储逻辑,其控制逻辑以程序方式存储在内存中,要改变控制逻辑,只需改变程序,故称为“软接线”,其连线少,体积小,加之PLC中每只软继电器的触点数理论上无限制,因此灵活性和扩展性都很好。
PLC由中大规模集成电路组成,功耗小。
②工作方式:当电流接通时,继电控制线路中各继电器都处于受约状态,即该吸合的都应吸合,不该吸合的都因受某种条件限制不能吸合。
而PLC的控制逻辑中,各继电器都处于周期性循环扫描接通之中,从宏观上看,每个继电器受制约接通的时间是短暂的。
③控制速度:继电控制逻辑依靠触点的机械动作实现控制,工作频率低。
触点的开闭动作一般在几十毫秒数量级。
另外机械触点还会出现抖动问题。
而PLC 是由程序指令控制半导体电路来实现控制的,速度极快,一般一条用户指令的执行时间在微秒数量级。
PLC内部还有严格的同步,不会出现抖动问题。
④限时控制:继电控制逻辑利用时间继电器的滞后动作进行限时控制。
时间继电器一般分为空气阻尼式、电磁式、半导体式等,其定时精度不高,定时时间易受环境湿度和温度变化的影响,调整时间困难。
有些特殊的时间继电器结构复杂,不便维护。
PLC使用半导体集成电路作定时器,时基脉冲由晶体振荡器产生,精度相当高,定时范围一般从0.1 s到若干分钟甚至更长,用户可根据需要在程序中设定定时值,然后由软件和硬件计数器来控制定时时间,定时精度小于10 ms且定时时间不受环境的影响。
PLC与传统继电器的比较哪个更适合你的应用

PLC与传统继电器的比较哪个更适合你的应用在工业自动化控制领域,PLC(可编程逻辑控制器)和传统继电器是两种常见的控制设备。
本文将比较PLC和传统继电器,探讨哪种设备更适合应用。
一、性能比较PLC是一种数字设备,具有强大的计算和控制能力。
它可以处理复杂的逻辑运算和算法,并能够实时监测和控制多个输入输出信号。
相比之下,传统继电器是一种机械开关,只能处理简单的开关操作,功能相对有限。
二、可编程性比较PLC可以通过编程实现逻辑控制、算法运算、通信接口等功能,具有很强的可编程性。
而传统继电器的功能是固定的,无法通过编程进行扩展和优化。
三、可靠性比较PLC采用固态电子元件,其结构简单,故障率相对较低,运行稳定可靠。
传统继电器则需要机械动作,容易因长时间使用导致磨损、接触不良等问题,故障率较高。
四、安装和维护比较PLC体积较小,安装方便,占用空间相对较少。
传统继电器体积较大,需要更多的布线空间。
在维护方面,PLC可以通过软件进行远程诊断和维护,较为便捷。
而传统继电器需要人工逐一检查和更换。
五、成本比较在成本方面,PLC较传统继电器要高。
由于PLC具有更多功能和较高的可编程性,所以价格较传统继电器更贵。
但是考虑到PLC的性能和可靠性,以及其可以减少布线和维护成本,从长远来看,PLC的总体成本可能更低。
总结起来,PLC相对于传统继电器具有更强大的计算和控制能力,更高的可编程性,更可靠的性能,更方便的安装和维护,但价格更高。
对于复杂的工业自动化应用,特别是需要进行逻辑控制、数据处理和通信等功能的场景,PLC更适合。
而在一些简单的开关操作场合,传统继电器可能更为经济实用。
然而,具体选择PLC还是传统继电器,需根据实际应用需求、系统复杂度、成本预算等综合因素综合考量。
最终选择合适的设备,能够提高自动化控制的效率和稳定性,满足应用需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、 PLC与继电器控制系统的比较 1 控制方式:继电器的控制是采用硬件接线实现的,是利用继电器机械触点的串联或并联极延时继电器的滞后动作等组合形成控制逻辑,只能完成既定的逻辑控制。
PLC采用存储逻辑,其控制逻辑是以程序方式存储在内存中,要改变控制逻辑,只需改变程序即可,称软接线。
2 控制速度继电器控制逻辑是依靠触点的机械动作实现控制,工作频率低,毫秒级,机械触点有抖动现象。
PLC是由程序指令控制半导体电路来实现控制,速度快,微秒级,严格同步,无抖动。
3 延时控制继电器控制系统是靠时间继电器的滞后动作实现延时控制,而时间继电器定时精度不高,受环境影响大,调整时间困难。
PLC用半导体集成电路作定时器,时钟脉冲由晶体振荡器产生,精度高,调整时间方便,不受环境影响。
一、PLC与继电器控制系统的比较 1 控制方式:继电器的控制是采用硬件接线实现的,是利用继电器机械触点的串联或并联极延时继电器的滞后动作等组合形成控制逻辑,只能完成既定的逻辑控制。
PLC采用存储逻辑,其控制逻辑是以程序方式存储在内存中,要改变控制逻辑,只需改变程序即可,称软接线。
2 控制速度继电器控制逻辑是依靠触点的机械动作实现控制,工作频率低,毫秒级,机械触点有抖动现象。
PLC是由程序指令控制半导体电路来实现控制,速度快,微秒级,严格同步,无抖动。
3 延时控制继电器控制系统是靠时间继电器的滞后动作实现延时控制,而时间继电器定时精度不高,受环境影响大,调整时间困难。
PLC用半导体集成电路作定时器,时钟脉冲由晶体振荡器产生,精度高,调整时间方便,不受环境影响。
对此问题的相关回复:1、PLC和继电器逻辑控制在欧洲70年代-现在从来没有抵触过。
PLC和继电器在控制系统中是相辅相成,直到现在继电器从来没有停止进一步的发展,包括SIEMENS在内从来没有承诺普通PLC是安全的,如:设备的安全控制(停电、重起、人身防护)都是由专门安全继电器来保证,所以至今欧洲还有许多专门生产商在生产、研发。
2、本人对此有不同的看法。
PLC是好,但不能包罗万象,对于一个控制系统,或一台单机来说,你要怎么选择是主要的,要考虑到生产的成本。
如果用800元能解决,你非要2000多元的PLC,那老板会炒你的。
如果加几块控温仪表能解决的事,你非要花高价把它集成在PLC里也是不合适的,总之,不是绝对的。
要针对具体的情况来使用。
3、不错,PLC和继电器,各有好处就看他们的利用环境和变量,继电器经济实惠,但有他工作的局限性,PLC也一样,用什么还是看情况而定。
PLC不是完全顶替继电器电路,只不过是顶替多设备电路中的连锁及关联关系的这一部分,单台设备的手动(现场)控制,是必不可少的,也只有靠继电器回路控制才是更好的选择,PLC的厂家似乎也从来没想过去替代这些继电器设备。
与继电器线路比较PLC有何优势1、功能强,性能价格比高一台小型PLC内有成百上千个可供用户使用的编程元件,有很强的功能,可以实现非常复杂的控制功能。
与相同功能的继电器相比,具有很高的性能价格比。
可篇程序控制器可以通过通信联网,实现分散控制,集中管理。
2、硬件配套齐全,用户使用方便,适应性强可编程序控制器产品已经标准化,系列化,模块化,配备有品种齐全的各种硬件装置供用户选用。
用户能灵活方便的进行系统配置,组成不同的功能、不规模的系统。
楞编程序控制器的安装接线也很方便,一般用接线端子连接外部接线。
PLC有很强的带负载能力,可以直接驱动一般的电磁阀和交流接触器。
3、可靠性高,抗干扰能力强传统的继电器控制系统中使用了大量的中间继电器、时间继电器。
由于触点接触不良,容易出现故障,PLC用软件代替大量的中间继电器和时间继电器,仅剩下与输入和输出有关的少量硬件,接线可减少互继电器控制系统的1/10--1/100,因触点接触不良造成的故障大为减少。
PLC采取了一系列硬件和软件抗干扰措施,具有很强的抗干扰能力,平均无故障时间达到数万小时以上,可以直接用于有强烈干扰的工业生产现场,PLC已被广大用户公认为最可靠的工业控制设备之一。
4、系统的设计、安装、调试工作量少PLC用软件功能取代了继电器控制系统中大量的中间继电器、时间继电器、计数器等器件,使控制柜的设计、安装、接线工作量大大减少。
PLC的梯形图程序一般采用顺序控制设计方法。
这种编程方法很有规律,很容易掌握。
对于复杂的控制系统,梯形图的设计时间比设计继电器系统电路图的时间要少得多。
PLC的用户程序可以在实验室模拟调试,输入信号用小开关来模拟,通过PLC上的发光二极管可观察输出信号的状态。
完成了系统的安装和接线后,在现场的统调过程中发现的问题一般通过修改程序就可以解决,系统的调试时间比继电器系统少得多。
5、编程方法简单梯形图是使用得最多的可编程序控制器的编程语言,其电路符号和表达方式与继电器电路原理图相似,梯形图语言形象直观,易学易懂,熟悉继电器电路图的电气技术人员只要花几天时间就可以熟悉梯形图语言,并用来编制用户程序。
梯形图语言实际上是一种面向用户的一种高级语言,可编程序控制器在执行梯形图的程序时,用解释程序将它“翻译”成汇编语言后再去执行。
6、维修工作量少,维修方便PLC的故障率很低,且有完善的自诊断和显示功能。
PLC或外部的输入装置和执行机构发生故障时,可以根据PLC上的发光二极管或编程器提供的住处迅速的查明故障的原因,用更换模块的方法可以迅速地排除故障。
7、体积小,能耗低对于复杂的控制系统,使用PLC后,可以减少大量的中间继电器和时间继电器,小型PLC的体积相当于几个继电器大小,因此可将开关柜的体积缩小到原来的确1/2-1/10。
PLC的配线比继电器控制系统的配线要少得多,故可以省下大量的配线和附件,减少大量的安装接线工时,可以减少大量费用。
学得辛苦,做得舒服。
PLC与继电器控制系统的比较一、PLC与继电器控制系统的比较 1 控制方式:继电器的控制是采用硬件接线实现的,是利用继电器机械触点的串联或并联极延时继电器的滞后动作等组合形成控制逻辑,只能完成既定的逻辑控制。
PLC采用存储逻辑,其控制逻辑是以程序方式存储在内存中,要改变控制逻辑,只需改变程序即可,称软接线。
2 控制速度继电器控制逻辑是依靠触点的机械动作实现控制,工作频率低,毫秒级,机械触点有抖动现象。
PLC是由程序指令控制半导体电路来实现控制,速度快,微秒级,严格同步,无抖动。
3 延时控制继电器控制系统是靠时间继电器的滞后动作实现延时控制,而时间继电器定时精度不高,受环境影响大,调整时间困难。
PLC用半导体集成电路作定时器,时钟脉冲由晶体振荡器产生,精度高,调整时间方便,不受环境影响。
PLC自动控制系统可靠性分析1、引言可编程控制器由于抗干扰能力强,可靠性高,编程简单,性能价格比高,在工业控制领域得到越来越广泛应用。
工业年月机作为中央控制单元,配有组态软件,选用大屏幕实时监视界面,实现各控制点的动态显示、数据修改、故障诊断、自动报警,还可显示查询历史事件记录,系统各主要部件累计运行时间,各装置工艺流程,各装置结构等。
中央控制单元和下位机PLC之间采用串行通讯方式进行数据交换,通常距离在1000m以内选用485双绞线通讯方式,较常距离可选用光纤通讯,更长距离也可选用无线通讯方式。
下位机选用PLC控制,根据控制对象的多少,控制对象的范围,可选用一台或多台PLC进行控制,PLC之间数据交换是利用内部链接寄存器,实现数据交换和共享。
由于PLC对现场进实时监控具有很高的可靠性,且编程简单、灵活,因此越来越受到人们重视。
2、控制系统可靠性降低的主要原因虽然工业控制机和可编程控制器本身都具有很高的可靠性,但如果输入给PLC的开关量信号出现错误,模拟量信号出现较大偏差,PLC输出口控制的执行机构没有按要求动作,这些都可能使控制过程出错,造成无法挽回的经济损失。
影响现场输入给PLC信号出错的主要原因有:1)造成传输信号线短路或断路(由于机械拉扯,线路自身老化,特别是鼠害),当传输信号线出故障时,现场信号无法传送给PLC,造成控制出错;2)机械触点抖动,现场触点虽然只闭合一次,PLC却认为闭合了多次,虽然硬件加了滤波电路,软件增加微分指令,但由于PLC扫描周期太短,仍可能在计数、累加、移位等指令中出错,出现错误控制结果;3)现场变送器,机械开关自身出故障,如触点接触不良,变送器反映现场非电量偏差较大或不能正常工作等,这些故障同样会使控制系统不能正常工作。
影响执行机构出错的主要原因有:1)控制负载的接触不能可靠动作,虽然PLC发出了动作指令,但执行机构并没按要求动作;2)控制变频器起动,由于变频器自身故障,变频器所带电机并没按要求工作;3)各种电动阀、电磁阀该开的没能打开,该关的没能关到位,由于执行机构没能按PLC的控制要求动作,使系统无法正常工作,降低了系统可靠性。
要提高整个控制系统的可靠性,必须提高输入信号的可靠性和执行机构动作的准确性,否则PLC应能及时发现问题,用声光等报警办法提示给操作人员,尽快排除故障,让系统安全、可靠、正确地工作。
3、设计完善的故障报警系统在自动控制系统的设计中我们设计了3级故障显示报警系统,1级设置在控制现场各控制柜面板,用指示灯指示设备正常运行和故障情况,当设备正常运行时对应指示灯亮,当该设备运行有故障时指示灯以1Hz的频率闪烁。
为防止指示灯灯泡损坏不能正确反映设备工作情况,专门设置了故障复位/灯测试按钮,系统运行任何时间持续按该按钮3s,所有指示灯应全部点亮,如果这时有指示等不亮说明该指示灯已坏,应立即更换,改按钮复位后指示灯仍按原工作状态显示设备工作状态。
2级故障显示设置在中心控制室大屏幕监视器上,当设备出现故障时,有文字显示故障类型,工艺流程上对应的设备闪烁,历史事件表中将记录该故障。
3级故障显示设置在中心控制室信号箱内,当设备出现故障时,信号箱将用声、光报警方式提示工作人员,及时处理故障。
在处理故障时,又将故障进行分类,有些故障是要求系统停止运行的,但有些故障对系统工作影响不大,系统可带故障运行,故障可在运行中排除,这样就大大减少整个系统停止运行时间,提高系统可靠性运行水平。
4、输入信号可靠性研究要提高现场输入给PLC信号的可靠性,首先要选择可靠性较高的变送器和各种开关,防止各种原因引起传送信号线短路、断路或接触不良。
其次在程序设计时增加数字滤波程序,增加输入信号的可信性。
在现场输入触点后加一定时器,定时时间根据触点抖动情况和系统要的响应速度确定,一般在几十ms,这样可保证触点确实稳定闭合后,才有其它响应。
模拟信号滤波可采用程序设计方法,对现场模拟信号连续采样3次,采样间隔由A/D转换速度和该模拟信号变化速率决定。
3次采样数据分别存放在数据寄存器DT10、DT11、DT12中,当最后1次采样结束后利用数据比较、数据交换指令、数据段比较指令去掉最大和最小值,保留中间值作为本次采样结果存放在数据寄存器DT0中。