八年级上册《分式》知识点归纳与总结上课讲义

合集下载

人教版八年级数学上册《分式》知识点复习及典例解析

人教版八年级数学上册《分式》知识点复习及典例解析

人教版八年级数学上册《分式》知识点复习及典例解析《分式》知识点复习及典例解析一、复习目标1.理解并记住分式的乘法法则、除法法则,会进行简单的分式乘除法计算.能解决一些与分式的乘除运算有关的简单的实际问题.2.了解同分母分式的加减法法则,会进行同分母分式的加减运算,理解通分的意义,会通过通分把异分母的分式加减转化为同分母的分式加减.3.能熟练地进行分式的加减乘除混合运算,提高类比的能力和代数化归的能力.4.了解分式方程的概念,掌握解一元一次方程的分式方程的方法,了解产生增根的原因,会检捡一个数是不是分式方程的增根.5.能够列出可化为一元一次方程的分式方程解简单实际问题.二、重点难点重点:分式乘除法、加减法法则的应用. 分式方程的概念,分式方程的解法难点:异分母分式加减法. 解分式方程时,去分母可能会出现增根。

三、知识概要1. 分式的乘除乘法法则:分式乘分式时,分子的积作积的分子,分母的积作积的分母. 除法法则:分式除以分式,把除式的分子和分母颠倒位置后与被除式相乘. 式子表示:.;bcad c d b a d c b a bd ac d c b a =?=÷=? 2. 分式的加减(1)分式的通分:把几个异分母的分式化成与原来的分式相等的同分母的分式叫通分.(2)法则:同分母分式相加减,分母不变,分子相加减.异分母分式相加减,先通分,变为同分母的分式,再加减.式子表示:;c b a c b c a ±=±.bdbc ad bd bc bd ad d c b a ±=±=± 3.分式方程的概念分式是一种表示具体情境中数量的模型,分式方程则是表示这些数量关系之间相等关系的模型,分式方程是分母中含有未知数的方程.4.分式方程的解法分式方程是转化为一元一次方程来求解,它是通过去分母实现转化的.主要步骤:去分母,去括号,移项,合并同类项,系数化为1,检验.因为分式方程可能产生增根,所以解分式方程最后一步“检验”,检查所解整式方程的根到底是不是分式方程的根.5.去分母的技巧解分式方程的基本思路是“转化”,即把分式方程化为我们熟悉的整式方程,转化的途径是“去分母”,即方程两边都乘以最简公分母.去分母是解分式方程的第一步,也是关键的一步,当分式方程中分式的分母是一次式时,可直接确定最简公分母,方程两边同乘以最简公分母后实现去分母,当各分式的分母中有二次式时,要先进行因式分解,再确定最简公分母,然后再去分母.6.验根的方法因为解分式方程可能出现增根,所以验根是必要的,验根的方法有两种,一种是把求得的未知数的值代入原方程进行检验,这种方法道理简单,而且可以检查解方程时有无计算错误,另一种是把求得的末知数的值代入最简公分母,看分母的值是否为零,这种方法比较简便,但不能检查解方程过程中出现的计算错误.7.列分式方程解决实际问题的方法步骤(1)、审:分析问题,寻找已知、未知及相相等关系,(2)、设:设恰当的未知数(3)、列:根据相等关系列出分式方程(4)、解:求出所列方程的解(5)、验:首先检验所求的解是不是分式方程的解,然后检验所求的解是否与实际符合(6)、答:写出答案.四、典例解析考点一、分式概念的运用例1.若分式||33x x --的值为零,则x 的值等于。

第1讲 分式的概念及性质 讲义 (知识精讲+典题精练)2023-2024学年人教八年级数学上册

 第1讲 分式的概念及性质 讲义 (知识精讲+典题精练)2023-2024学年人教八年级数学上册

第1讲分式的概念及性质【中考考纲】【知识框架】考点课标要求知识与技能目标了解理解掌握灵活应用分式的概念分式的概念√分式有意义的条件√分式值为零的条件√分式值的符号讨论√分式的基本性质分式的基本性质√分式的概念分式的基本性质分式有意义的条件分式值为零的条件分式值的符号讨论分式分式的概念1【知识精讲】一、分式的概念1.一般地,用A ,B 表示两个整式,A B 就可以表示成BA的形式.如果B 中含有字母,式子AB就叫做分式.2.分式有意义的条件:分式的分母不为零;3.分式的值为零的条件:分式的分子为零且分母不为零;4.分式值为正的条件:分式的分子分母符号相同(两种情况);5.分式值为负的条件:分式的分子分母符号不同(两种情况).【经典例题】【例1】下列各代数式:1x ,2x ,5xy ,()12a b +,x π,211x -,22a b a b --,13a-,1x y -中,整式有_____________,分式有_____________.【例2】若分式21x -有意义,则x 的取值范围是_____________.【例3】要使式子3234x x x x ++÷--有意义,则x 的取值是_____________.【例4】使分式2211a a -+有意义的a 的取值是__________.【例5】当3x =-时,下列分式中有意义的是().A.33x x +- B.33x x -+ C.()()()()3232x x x x +++- D.()()()()3232x x x x -++-【例6】x ,y 满足关系_____________时,分式x yx y-+ 无意义.【例7】当x =_________时,分式33x x -+的值是零.【例8】当x =_________时,分式293x x --的值为零.【例9】若分式223-1244x x x ++的值为0,则x 的值为_________.【例10】x 为何值时,分式2||656x x x ---:(1)值为零;(2)分式无意义?【例11】若分式21-2x x a+无论x 取何值时,分式的值恒为正,则a 的取值范围是_________.【例12】若使分式1-1m 的值为整数,这样的m 有几个?若使分式1-1m m +的值为整数,这样的m 有几个?【例13】若分式1||x a+对任何数x 的都有意义,求a 的取值范围.【例14】要使分式11x x-有意义,则x 的取值范围是_________.【例15】当x 取何值时,分式226x x -+的值恒为负?【例16】当x 取什么值时,分式25xx -值为正?2【知识精讲】一、分式的基本性质1.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变,用式子表示A A CB B C⋅=⋅,A A CB B C÷=÷(0C≠),其中A,B,C为整式.2.注意:(1)利用分式的基本性质进行分式变形是恒等变形,不改变分式值的大小,只改变形式;(2)应用基本性质时要注意0C≠,以及隐含的0B≠;(3)注意“都”,分子分母要同时乘以或除以.3.分式的通分和约分:关键是先分解因式.【经典例题】【例17】把分式yx中的x 和y 都扩大3倍,则分式的值______.【例18】如果把分式10xyx y+中的x ,y 都扩大十倍,则分式的值().A .扩大100倍B .扩大10倍C .不变D .缩小到原来的110【例19】对于分式11x -,恒成立的是().A.1212x x =--B .21111x x x +=--C .()21111x x x -=--D .1111x x -=-+【例20】下列各式中,正确的是().A .a m ab m b+=+B .0a ba b+=+C .1111ab b ac c +-=--D .221x y x y x y+=--【例21】与分式a ba b-+--相等的是().A .a b a b+-B .a b a b-+C .a b a b+--D .a b a b--+【例22】将分式253x yx y -+的分子和分母中的各项系数都化为整数,得().A .235x y x y -+B .1515610x y x y -+C .1530610x y x y -+D .253x y x y-+【例23】已知23a b =,求a bb+的值?【例24】化简:2323812a b cab c =________________.【例25】化简:22442y xy x x y-+=-________________.【例26】已知一列数1a ,2a ,3a ,4a ,5a ,6a ,7a ,且18a =,75832a =,356124234567a a a a a a a a a a a a =====,则5a 为().A .648B .832C .1168D .1944【例27】如果115x y +=,则2522x xy y x xy y-+=++____________.【例28】已知a b c d b c d a ===,则a b c da b c d-+-+-+的值是__________.【例29】化简:43211x x x x -+++.【例30】已知2215x x =+,求241x x +的值.【随堂练习】【习题1】若分式42121x x x --+的值为0,则x 的值是___________.【习题2】求证:无论x 取什么数,分式223458x x x x ---+一定有意义.【习题3】已知()1xf x x=+,求下列式子的值.111()()()(1)(0)(1)(2)(2011)(2012)201220112f f f f f f f f f ++++++++++ 【习题4】x 取______________值时,112122x +++有意义.【习题5】已知34y x =,求代数式2222352235x xy y x xy y -++-的值.【课后作业】【作业1】已知,,0a b c ≠,且0a b c ++=,则111111a b c b c c a a b ⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值是__________.【作业2】已知20y x -=,求代数式()()()()22222222xy x xy y xxy yxy+-+++-的值.【作业3】若实数x ,y 满足0xy ≠,则y xm x y=-的最大值是多少?【作业4】已知a ,b 为实数,且1ab =,设11a b P a b =---,1111Q a b =---,试比较P 和Q 的大小.【作业5】如果整数a (1a ≠)使得关于x 的一元一次方程:232ax a a x -=++的解是整数,则该方程所有整数解的和为__________.【作业6】已知分式()()811x x x -+-的值为零,则x 的值是__________.【作业7】要使分式241312a a a-++有意义,则a 的值满足__________.【作业8】已知210a a --=,且4232232932112a xa a xa a -+=-+-,求x 的值.。

分式知识点归纳总结

分式知识点归纳总结

《分式》知识点回顾及考点透视一、知识总览本章主要学习分式的概念,分式的基本性质,分式的约分、通分,分式的运算(包括乘除、乘方、加减运算),分式方程等内容,分式是两个整式相除的结果,且除式中含有字母,它类似于小学学过的分数,分式的内容在初中数学中占有重要地位,特别是利用分式方程解决实际问题,是重要的应用数学模型,在中考中,有关分式的内容所占比例较大,应重视本章知识的学习.二、考点解读考点1:分式的意义例1.(1)(2006年南平市)当x 时,分式11+x 有意义. 分析:要使分式有意义,只要分母不为0即可当x ≠-1时,分式11+x 有意义. (2)(2006年浙江省义乌市)已知分式11+-x x 的值是零,那么x 的值是( ) A .-1 B .0 C .1 D . 1±分析:讨论分式的值为零需要同时考虑两点:(1)分子为零;(2)分母不为零,当x=1时,分子等于零,分母不为0,所以,当x=1时,原分式的值等于零,故应选C . 评注:在分式的定义中,各地中考主要考查分式A B在什么情况下有意义、无意义和值为0的问题。

当B ≠0时,分式A B 有意义;当B=0时,分式A B无意义;当A=0且B ≠0时,分式A B 的值为0 考点2:分式的变形例2.(2006年山西省)下列各式与x y x y-+相等的是( ) (A )()5()5x y x y -+++(B )22x y x y -+(C )222()()x y x y x y -≠-(D )2222x y x y-+ 解析:正确理解分式的基本性质是分式变形的前提,本例选项(C )为原分式的分子、分母都乘以同一个不等于0的整式(x-y )所得,故分式的值不变.考点3:分式的化简分式的约分与通分是进行分式化简的基础,特别是在化简过程中的运算顺序、符号、运算律的应用等也必须注意的一个重要方面例2.(2006年临安市)化简:x -1x ÷(x -1x). 分析:本题要先解决括号里面的,然后再进行计算解:原式x x x x 112-÷-=)1)(1(1-+⨯-=x x x x x 11+=x 评注:分式的乘除法运算,就是将除法转化为乘法再进行约分即可.考点4:分式的求值例4.(2006年常德市)先化简代数式:22121111x x x x x -⎛⎫+÷ ⎪+--⎝⎭,然后选取一个使原式有意义的x 的值代入求值.分析:本题先要将复杂的分式进行化简,然后再取一个你喜欢的值代入(但你取的值必须使分式有意义).解:化简得:21x +,取x=0时,原式=1;评注:本题化简的结果是一个整式,如果不注意的话,学生很容易选1或-1代入,这是不行的,因为它们不能使分式有意义.考点5:解分式方程例5.(2006年陕西省)解分式方程:22322=--+x x x 分析:解分式方程的关键是去分母转化为整式方程解:)4(2)2(3)2(22-=+--x x x x ,82634222-=---x x x x , 27-=-x 72=x ,经检验:72=x 是原方程的解,∴原方程的解为72=x 点评:解分式方程能考查学生的运算能力、合情推理等综合能力,解分式方程要注意检验,否则容易产生增根而致误!考点6:分式方程的应用例6.(2006年长春市)A 城市每立方米水的水费是B 城市的1.25倍,同样交水费20元,在B 城市比在A 城市可多用2立方米水,那么A 、B 两城市每立方米水的水费各是多少元?分析:本题只要抓住两城市的水相差2立方米的等量关系列方程即可解:设B 城市每立方米水的水费为x 元,则A 城市为1.25x 元,25.120220xx =- 解得x = 2经检验x = 2是原方程的解。

初二分式知识点总结

初二分式知识点总结

初二分式知识点总结一、分式的概念分式是指分母为非零数的两个整数的比值。

在分式中,分子和分母分别表示为a和b,通常表示为a/b。

其中,分子表示为被分的数,分母表示为分的数。

分子分母在分式中扮演着不同的角色,分子代表了分子数量,分母代表了分母数量。

二、分式的性质1. 分数的一般形式分数通常写成a/b的形式,a称为分子,b称为分母。

这里要求b≠0。

2. 相反数分式若a/b≠0,则分式-a/b=(-a)/b。

3. 分式的倒数若a/b≠0,则分式1/(a/b)=b/a。

4. 分式的乘法若a/b、c/d均存在,则a/b✖c/d=(a✖c)/(b✖d)。

5. 分式的除法若a/b、c/d均存在,则a/b÷c/d=(a/b)✖(d/c)。

6. 分式的加法和减法若a/b、c/d均存在,则a/b±c/d=(ad±bc)/(bd)。

7. 分式的消去若分式a/b与c/d相等,且b≠0,d≠0,则ad=bc。

三、分式的化简与扩展分式化简就是把分式用最简形式表示,化简分式有两个问题要关心:①分子,分母是不是能约分;②能约分,约去的公因式是什么。

分式的扩展是指通过乘法将分子或分母扩大到某一倍数。

四、分式的概念1. 添加相同数的分数若分子相同而分母不同,或分子不同而分母相同,则两个分数相加或相减时,只需将他们的分子相加或相减,同时将他们的分母保持不变。

2. 乘法的运算律分数相乘还是原分数,只是分子与分母分别相乘。

3. 除法的运算律分数相除,乘以倒数。

五、分式的应用1. 充分利用分式解决问题2. 通过实例理解分式的意义分式的应用不仅仅是在数学中,还可以应用到日常生活中。

比如在工作中计算利润分配问题、在生活中计算食材比例等。

初中分式知识点总结到此结束,希望对大家有所帮助。

八年级数学上册《分式》知识点归纳

八年级数学上册《分式》知识点归纳

分 式一、概念:定义1:整式A 除以整式B ,可以表示成BA的形式。

如果除式..B .中含有分母.....,那么称BA为分式。

(对于任何一个分式,分母不为0。

如果除式B 中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。

分式:分母中含有字母。

整式:分母中没有字母。

而代数式则包含分式和整式。

)定义2:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分。

定义3:分子和分母没有公因式的分式称为最简分式。

(化简分式时,通常要使结果成为最简分式或者整式。

)定义4:化异分母分式为同分母分式的过程称为分式的通分。

定义5:分母中含有未知数的方程叫做分式方程 定义6:在将分式方程变形为整式方程时,方程两边同乘一个含有未知数的整式,并约去了分母,有时可能产生不适合原分式方程的解(或根),这种解通常称为增根。

二、基本性质:分式的基本性质:分式的分子与分母都.乘以(或除以)同.一个不等于零....的整式,分式的值不变。

三、运算法则:1、分式的乘法的法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;(用符号语言表示:b a ﹒d c =bdac)2、分式的除法的法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.(用符号语言表示:b a ÷dc =b a ﹒cd =bcad) 分式乘除法的运算步骤:当分式的分子与分母都是单项式时: (1)乘法运算步骤是:①用分子的积做积的分子,分母的积做积的分母;②把分式积中的分子与分母分别写成分子与分母的分因式与另一个因式的乘积形式,如果分子(或分母)的符号是负号,应把负号提到分式的前面;③约分。

(2)除法的运算步骤是:把除式中的分子与分母颠倒位置后,与被除式相乘,其它与乘法运算步骤相同。

当分式的分子、分母中有多项式,①先分解因式;②如果分子与分母有公因式,先约分再计算.③如果分式的分子(或分母)的符号是负号时,应把负号提到分式的前面. 最后的计算结果必须是最简分式或整式. 3、同分母分式加减法则是:同分母的分式相加减。

分式主要知识点总结

分式主要知识点总结

分式主要知识点总结一、分式的定义分式是指一个整体被分成若干个相等的部分,其中的一部分就是分式。

分式通常写成a/b的形式,其中a为分子,b 为分母,b≠0,a和b都是整数。

例如,1/2 就是一个分式,表示整体被分成两个相等的部分,其中一个部分为1。

分式中的a和b都是有一定的含义,a表示被分的份数,b表示整体被分成的份数。

二、分式的化简对于分式a/b,如果a和b有公因数,那么可以对分式进行约分。

化简分式的目的是为了使得分式变得更简单,更易于处理。

例如,对于分式6/8,可以约分得到3/4。

当然,有时候还需要对分式进行扩分。

化简分式的过程就是一个约分和扩分的过程。

三、分式的加减乘除1. 分式的加减:对于分式a/b和c/d,要将它们相加或相减,需要找到它们的公共分母,并且将它们的分子进行操作。

具体来说,如果a/b和c/d的分母不同,就需要找到它们的最小公倍数,然后将分子分别乘以对方的分母,再进行操作。

例如,对于分式1/2 + 1/3,找到它们的最小公倍数为6,然后乘上对方的分母,得到3/6 + 2/6 = 5/6。

2. 分式的乘法:对于分式a/b和c/d,它们的乘积可以直接相乘得到ac/bd。

3. 分式的除法:对于分式a/b和c/d,它们的除法可以变成乘法,即a/b ÷ c/d = a/b × d/c。

四、分式方程的求解分式方程是指方程中含有分式的方程。

它的解法与一般方程类似,但是需要更多的化简和约分操作。

对于一些特殊的分式方程,有时候需要进行分式更相等的变形,或者加减乘除操作。

例如,对于分式方程1/(x+1) = 1/(x-1),可以将等式两边同时乘以(x+1)(x-1),并观察出一元二次方程的形式,再进行解方程的操作。

五、分式在实际问题中的应用分式在实际问题中有着广泛的应用。

它可以用来表示比率关系、部分到整体的比例关系,例如表示打折时的折扣率、比赛中的获胜概率等。

分式也可以用来表示关系式、方程式,例如用来表示质量分数、比热容、密度等。

八上分式知识点总结

八上分式知识点总结

八上分式知识点总结一、分式的定义1. 分式的基本概念分式是由分子和分母组成的数学式,通常表示为a/b的形式,其中a为分子,b为分母,a和b都是整数且b不等于0。

2. 分式的类型在分式中,分母不为1的分式称为真分式;分子大于或等于分母的分式称为假分式;分母为1的分式称为整式。

二、分式的化简分式的化简是指将分式的分子和分母约分为最简形式的过程。

分式化简的方法包括约分、通分、提公因式等。

1. 约分当分子和分母有公约数时,可以将其约去最大公约数,使分式化简为最简形式。

2. 通分对于两个分式,如果它们的分母不同,可以通过通分的方法将它们的分母变为相同的数,然后进行运算。

3. 提公因式当分式的分子和分母都是多项式时,可以通过提取公因式的方法将分式化简为最简形式。

三、分式的加减乘除1. 分式的加减分式的加减可以通过通分后合并分子的方法,先将分母变为相同的数,再将分子相加或相减得到最终结果。

2. 分式的乘法分式的乘法可以通过分子相乘、分母相乘的方法,将两个分式相乘得到最终结果。

3. 分式的除法分式的除法可以通过分子乘除、分母乘除的方法,将两个分式相除得到最终结果。

四、分式的应用1. 分式在数轴上的表示分式可以表示在数轴上的一个点或一个数值,例如1/2表示在数轴上的0点和1点之间的1/2处。

2. 分式的应用分式在代数方程中有着广泛的应用,可以表示未知数的比例关系或者部分和总和的关系,解决实际问题。

以上就是八年级分式的知识点总结,分式是数学中的一个重要概念,掌握分式的知识对于学习代数和解决实际问题具有重要的意义。

希望同学们能够认真学习和掌握分式的相关知识,提高数学应用能力。

人教版八年级上册 分式的有关概念及分式的基本性质

人教版八年级上册  分式的有关概念及分式的基本性质

分式的有关概念及分式的基本性质一、【知识梳理】知识点1 分式的概念:形如BA(B A 、是整式,且B 中含有字母,0≠B )的式子叫做分式,其中A 叫做分式的分子,B 叫做分式的分母.[例1]:下列有理式中,哪些是整式,哪些是分式?()()21,1,41,1,,3,1,2-+++--a b a y y x x y x x a x a ab π❤温馨提示:判断一个有理式是否是分式,只看形式,不能以化简后的结果作为标准.▶变式赏析:下列各式不是分式的是( )A 、y x x +2 B 、π1C 、y x --1D 、x x 2知识点2 分式有意义和值为零的条件 (1)、要使分式有意义,分式的分母必须不等于零.[例2]:下列各式x 取何值时,分式有意义?(1)142-x x (2)222+x x(3)44+-x x(4)3||6--x x▶变式赏析:使分式2+x x有意义的x 的取值范围是()A 、2≠x B 、2-≠x C 、2->x D 、2<x(2)要使分式的值为零,应同时满足两个条件:分母不等于零,分子等于零(二者缺一不可). [例3]:下列各式中,x 为何值时,分式的值为零?(1)x x 334+ (2)21x x + (3)31+-x x (4)42||2--x x (5)4|1|5+--x x (6)562522+--x x x[例4]:若()0234322=+-++b a b a ,求ba 1+的值. ▶变式赏析:(1)当分式21+-x x 的值为0时,x 的值是( ) A 、0 B 、1 C 、1- D 、2-2、若分式xx x x ---22的值为零,则=x _________.★知识点3 分式的基本性质 1.分式的基本性质:MB MA MB M A B A ÷÷=⨯⨯=(M ≠0)分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变.用式子表示为[例5]:不改变分式的值,把下列分式中的各系数都化成整数.(1)01.002.025.0-+x x (2)y x yx 81416131+- (3)y x y x 41313221+-(4)ba ba +-04.003.02.0▶变式赏析:填空:(1)()()ba abb a 2=+ (2)()yx x xy x +=+22知识点4 分式的符号法则一个分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变. 分式的变号法则:bab a b a b a =--=+--=--(超级重点,避免失分) 试一试:不改变分式的值,把下列分式的分子、分母的首项的符号变为正号.(1)y x yx --+-(2)ba a ---(3)ba ---[例6]:不改变分式的值,使分式2244xx x x +---的分子与分母的最高次项的系数是正数.知识点5 约分 (1)、分数可以约分,分式与分数类似,也可以约分,根据分式的基本性质把一个分式的分子与分母的公因式约去,这种变形称为分式的约分. (2)、分式的分子、分母时单项式时,先找出它们的公因式,再把分式的分子、分母同除以公因式进行约分.分式的分子、分母是多项式时,通常将分子、分母进行因式分解,然后约去它们的公因式. (3)、一个分式的分子与分母没有公因式时,叫做最简分式. [例7]:将下列各式进行约分.(1)()()36123a b a b a ab -- (2)96922+--x x x (3)()()()()35223232222+-+---a a a a a a a a(4)322016xy yx - (5)n m m n --22 (6)64422--++x x x x .▶变式赏析:1、已知311=-yx ,求分式()()xy x y xy x y 232---+--的值. 2. 已知:511=+y x ,求y xy x y xy x +++-2232的值.3、知6252=-x x ,求22152525x x x x ----的值【同步达标】1、有理式①x 2,②5y x +,③a -21,④1-πx中,是分式的有__________2、 当2-=x 时,分式①23--x x ,②22+-x x ,③()()()()3232--++x x x x ,④()()()()3231-++-x x x x 中,有意义的是__________ 3、在5,53,81,7,32,,322yx y x y x y x y x x -+---中,属于整式集合的有_______,属于分式集合的有______. 4、不改变分式的值,使分式的分子与分母的最高次项的系数为正数: (1).____________213=---b a x (2)().____________2=-+--ba b a5、(2011浙江省舟山,11,4分)当x 时,分式x-31有意义. 6(2011四川内江,15,5分)如果分式23273x x --的值为0,则x 的值应为 .7、(2011江苏盐城,13,3分)化简:x 2 - 9x - 3= .8、(广州市中考题)若分式4412322++-x x x 的值为0,则x 的值为___________.9、(杭州市中考题)(1)要使分式aa a 231142++-没有意义,则a 的值为__________.10、当=m __________时,分式()()23312+---m m m m 的值为零.11、(天津市中考题)已知411=-ba ,则ab b a bab a 7222+---的值等于_________ 12、化简分式96322+++m m mm ,并说明m 为______时,分式的值为零.13、已知分式2822--x x .(1)当x 取______时,分式有意义?(2)当x 取______时,分式值为零?(3)当x 取______时,分式值为正数?二、分式的乘除法知识点1 分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母. [例1]:计算:(3)222222553ba y x xyb a (2)a a a a 21·222+-+ (3)423223423b a dc cd ab ⋅ (4)2⎪⎭⎫⎝⎛-•-b a b b a a独立计算: (1) 223286a y y a • (2)aa a a 21222+•-+ (3)m m m m m --⋅-+-3249622 (2)x x x x x x x 39396922322-+⋅++-知识点2 分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘, 用式子表示为:BCAD C D B A D C B A ==÷·(D C B 、、均不为零). [例2]:计算:(1)232423452cd b a cd b a ÷(2)x y xy 2263÷ (3)()()12131322-+--+÷-+x x x x x x (4)41441222--÷+--a a a a a独立计算:(1)x y xy 23618÷ (2)22444222-+÷-++m m m m m m (3)222224693a a a a a a a +-÷-+-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上册《分式》知识点归纳与总结
主讲 王老师
一、分式的定义:
一般地,如果A ,B 表示两个整数,并且B 中含有字母,那么式子
B A 叫做分式,A 为分子,B 为分母。

二、与分式有关的条件
①分式有意义:分母不为0(0B ≠)
②分式无意义:分母为0(0B =)
③分式值为0:分子为0且分母不为0(⎩
⎨⎧≠=00B A ) ④分式值为正或大于0:分子分母同号(⎩⎨⎧>>00B A 或⎩⎨⎧<<0
0B A )
⑤分式值为负或小于0:分子分母异号(⎩⎨
⎧<>00B A 或⎩⎨⎧><00B A ) ⑥分式值为1:分子分母值相等(A=B 0≠)
⑦分式值为-1:分子分母值互为相反数(A+B=0,0B ≠)
三、分式的基本性质
分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。

字母表示:C B C ••=A B A ,C
B C ÷÷=A B A ,其中A 、B 、C 是整式,C ≠0。

拓展:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变, 即:B
B A B B --=--=--=A A A 注意:在应用分式的基本性质时,要注意
C ≠0这个限制条件和隐含条件B ≠0。

四、分式的约分
1.定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。

2.步骤:把分式分子分母因式分解,然后约去分子与分母的公因式。

3.注意:①分式的分子与分母均为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母
相同因式的最低次幂。

②分子分母若为多项式,先对分子分母进行因式分解,再约分。

4.最简分式的定义:一个分式的分子与分母没有公因式时,叫做最简分式。

◆约分时。

分子分母公因式的确定方法:
1)系数取分子、分母系数的最大公约数作为公因式的系数.
2)取各个公因式的最低次幂作为公因式的因式.
3)如果分子、分母是多项式,则应先把分子、分母分解因式,然后判断公因式.
五、分式的通分
1.定义:把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。

(依据:分式的基本性质!)
2.最简公分母:取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。

◆通分时,最简公分母的确定方法:
1.系数取各个分母系数的最小公倍数作为最简公分母的系数.
2.取各个公因式的最高次幂作为最简公分母的因式.
3.如果分母是多项式,则应先把每个分母分解因式,然后判断最简公分母.
六、分式的四则运算与分式的乘方
① 分式的乘除法法则: 分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。

式子表示为:
d
b c a d c b a ••=• 分式除以分式:把除式的分子、分母颠倒位置后,与被除式相乘。

式子表示为:c c ••=•=÷b d a d b a d c b a ② 分式的乘方:把分子、分母分别乘方。

式子表示为:n n n b a b a =⎪⎭
⎫ ⎝⎛ ③ 分式的加减法则:同分母分式加减法:分母不变,把分子相加减。

式子表示为:c
b a
c b ±=±c a 异分母分式加减法:先通分,化为同分母的分式,然后再加减。

式子表示为:bd
bc ad d c ±=±b a 整式与分式加减法:可以把整式当作一个整数,整式前面是负号,要加括号,看作是分母为1的分式,再通分。

④ 分式的加、减、乘、除、乘方的混合运算的运算顺序
先乘方、再乘除、后加减,同级运算中,谁在前先算谁,有括号的先算括号里面的,也要注意灵活,提高解题质量。

注意:在运算过程中,要明确每一步变形的目的和依据,注意解题的格式要规范,不要随便跳步,以便查对有无错
误或分析出错的原因。

加减后得出的结果一定要化成最简分式(或整式)。

七、整数指数幂
① 引入负整数、零指数幂后,指数的取值范围就推广到了全体实数,并且正正整数幂的法则对对负整数指数幂一
样适用。

即:
n m n m a a +=⋅a ()mn n m
a a = ()n n n
b b a a = n m n m a a -=÷a (0≠a ) n n b a b a =⎪⎭
⎫ ⎝⎛n n a 1=-n a 0≠a ) 10=a (0≠a ) (任何不等于零的数的零次幂都等于1) 其中m ,n 均为整数。

八、分式方程的解的步骤:
⑴去分母,把方程两边同乘以各分母的最简公分母。

(产生增根的过程)
⑵解整式方程,得到整式方程的解。

⑶检验,把所得的整式方程的解代入最简公分母中:
如果最简公分母为0,则原方程无解,这个未知数的值是原方程的增根;如果最简公分母不为0,则是原方程的解。

产生增根的条件是:①是得到的整式方程的解;②代入最简公分母后值为0。

九、列分式方程——基本步骤:
① 审:仔细审题,找出等量关系。

② 设:合理设未知数。

③ 列:根据等量关系列出方程(组)。

④ 解:解出方程(组)。

⑤ 验:检验
⑥ 答:答题。

相关文档
最新文档