第7章 刚体力学

合集下载

刚体的平衡

刚体的平衡
选择过E点 z 轴为定轴
第七章 刚体力学
y
F
Fy j
C

E
Fxi30W°
B W
x
A FN
M z EA FN sin30 W (EB cos 30 CB sin30 )
W (EB cos 30 CB sin30 ) 0
解以上三方程得 FN 8.75 kN
Fx 4.38 kN, Fy 2.08 kN F Fx2 Fy2 4.85 kN, tan 0.4748
Fiy 0
Miz 0
上页 下页 返回 结束
第七章 刚体力学
其中
Miz 0
是力对z轴力矩的代数和为零,z是垂直于Oxy面的任意轴.
刚体平衡方程的其它形式
(1) 诸力对任意轴的力矩和为零. 在力的作用平面内选O
和O´ 两个参考点,OO´ 连线不与Ox轴正交
Fix 0
Miz 0
Miz 0
(2) 在力的作用平面内选O、O´ 和O´´ 三个参考点,
O、O´ 和O´´ 三点不共线
Miz 0
Miz 0
Miz 0
上页 下页 返回 结束
§7.6.2 杆的受力特点
第七章 刚体力学
在下面三个条件下,可认为杆仅受两力而平衡. 1. 杆件两瑞与其它物体的联结是光滑铰链联结.对 光滑铰链联结,只有通过节点的压力.
上页 下页 返回 结束
第七章 刚体力学 [例题2]将长为l ,质量为 m1 的均匀梯子斜靠在墙角下, 已知梯子与墙面间以及梯子与地面间的静摩擦因数分
别为1 和2 ,为使质量为m2 的人爬到梯子顶端时,梯
子尚未发生滑动.试求梯子与地面间的最小夹角.
上页 下页 返回 结束
y

第七章 刚体动力学(讲义)

第七章 刚体动力学(讲义)

MO = ∑ MO ( Fi ) = ∑ (ri × Fi )
i =1 i =1
n
n
注意,主矩的的计算与参考点的选取有关。例如,将参考点由 O 改成 O′ ,于是
MO = ∑ ri × Fi = ∑
i =1 i =1
n
n
(ri′ + OO′) × Fi = ∑ (ri′ × Fi ) + OO′ × ∑ Fi
R = ∑ Fi
i =1
n
这是个自由矢量,它只给出矢量的大小和方向,不过问作用点的位置。 对力系的矩也可作类似的讨论。对于共点力系,合力的矩等于各个力对同一点的矩的矢量 和,即
MO ( F) = r × F = r × ∑ Fi = ∑ (r × Fi )
i =1 i =1
n
n
一般的力系中不一定存在合力,因此也就谈不上求合力的矩。但是每个力相对于同一参考 点的力矩是矢量,我们可以求这些矢量的和,并称为主矩,记为 MO ,即有
(II)刚体绕质心的转动:
dLc = ∑ ric × Fi (对质心的角动量定理) dt i
第一个式子求质心运动等同于质点动力学,可以解出刚体的平动运动部分(三个方程解三个运 动变量) 。第二个式子又可求出刚体的转动角速度 ω ( L 与 ω 有一定的关系) ,于是刚体的运动 就完全确定了。由角动量定理求刚体的转动角速度是重点讨论的内容。 7.2 作用在刚体上的力和力矩 通常矢量指的是所谓自由矢量(free vector) :只有大小和方向,它可以平行自由移动。 作为物理量的矢量则不然,例如,力矢量 F ,为了完全确定这个力,还要说明力的作用点, 若用 r 表示作用点的话,则要有两个矢量 F 和 r ,这个力才完全被确定下来。这种矢量被称为定 位矢量(bound vector) 。除了力矢量是定位矢量外,质点的速度和加速度等也是定位矢量的例 子。 还有一种矢量,称为滑动矢量(sliding vector) ,它可在包含该矢量的一直线上自由移动。 例如,作用在刚体上的力(见下面的讨论) 。

最新《力学》漆安慎(第二版)答案07章

最新《力学》漆安慎(第二版)答案07章

力学(第二版)漆安慎习题解答第七章刚体力学第七章 刚体力学 一、基本知识小结⒈刚体的质心定义:∑⎰⎰==dm dm r r mr m r c i i c //求质心方法:对称分析法,分割法,积分法。

⒉刚体对轴的转动惯量定义:∑⎰==dm r I r m I ii 22平行轴定理 I o = I c +md 2 正交轴定理 I z = I x +I y.常见刚体的转动惯量:(略) ⒊刚体的动量和质心运动定理∑==c c a m F v m p⒋刚体对轴的角动量和转动定理∑==βτωI I L⒌刚体的转动动能和重力势能c p k mgy E I E ==221ω⒍刚体的平面运动=随质心坐标系的平动+绕质心坐标系的转动动力学方程:∑∑==c c c c I a m F βτ(不必考虑惯性力矩)动能:221221cc c k I mv E ω+= ⒎刚体的平衡方程∑=0F, 对任意轴∑=0τ二、思考题解答7.1 火车在拐弯时所作的运动是不是平动?答:刚体作平动时固联其上的任一一条直线,在各时刻的位置(方位)始终彼此平行。

若将火车的车厢看作一个刚体,当火车作直线运行时,车厢上各部分具有平行运动的轨迹、相同的运动速度和加速度,选取车厢上的任一点都可代替车厢整体的运动,这就是火车的平动。

但当火车拐弯时,车厢上各部分的速度和加速度都不相同,即固联在刚体上任一条直线,在各时刻的位置不能保持彼此平行,所以火车拐弯时的运动不是平动。

7.2 对静止的刚体施以外力作用,如果合外力为零,刚体会不会运动?答:对静止的刚体施以外力作用,当合外力为了零,即0i c F ma ==∑时,刚体的质心将保持静止,但合外力为零并不表明所有的外力都作用于刚体的同一点。

所以,对某一确定点刚体所受合外力的力矩i i iM M r F ==⨯∑∑不一定为零。

由刚体的转动定律M J α=可知,刚体将发生转动。

比如,置于光滑水平面上的匀质杆,对其两端施以大小相同、方向相反,沿水平面且垂直于杆的两个作用力时,杆所受的外力的合力为零,其质心虽然保持静止,但由于所受合外力矩不为零,将作绕质心轴的转动。

刚体力学

刚体力学

三、教学重点与难点:
重点: 刚体运动的描述方法;刚体定轴转动的运动学与动力学;刚体的平 衡。 难点: 转动惯量的理解和计算;学生学习思维方式的转变;刚体转动的角 动量,应用刚体力学有关规律解决实际问题。 教材分析:(分为6个单元) 1、刚体运动学(§7—1); 2、刚体平动的动力学(§7—2); 3、刚体定轴转动动力学(§7—3、§7—4)是全章的重点; 4、刚体的平面平行动力学(§7—5); 5、刚体的平衡(静力学)(§7—6); 6、刚体的自转与旋进(7—7)
积分限为:
z=0
z=R
例题2:已知图中物体由均匀等厚的两个半径不同的圆板和刚性细杆组 成,三个部分的质量均为M,尺寸如图所示.试求质心的位置.
解: 因为物体均匀等厚,且具有对称性,,所以质心在其几何对称轴上,建立图 示的坐标系: 。
二、刚体的动量与质心运动定理
1、刚体的动量: 特殊的质点组 2、动量守恒定律 若刚体所受外力矢量和为零,即,则=恒量 3、刚体的质心运动定理 例题1:教材P201[例1] 解: 例题2:如图所示:长为L的匀质杆在力F和光滑地面支持力的作用下保持 平衡,当外力撤消后,杆子倒下.试求杆子A端的运动方程。
(4)应用转动定理解题的基本方法(隔离体法)一般步骤为: 1. 将运动系统用假想平面分成若干个作定轴转动的刚体和质点的隔 离体.分别应用不同定理解题 2. 分析各隔离体的受力情况,作出受力图 3. 建立适当的坐标系 4. 建立动力学方程 ( 转动刚体根据转动定理列方程 质点根据牛 二定律列方程) 5. 建立各个隔离体之间的动力学和运动学关系 6. 由联立方程求解 例题: 如图所示是一阿特武德机,绳子一端悬挂一重物m1=500g,另一 端悬挂一重物m2=460g,半径r=5.0cm 的滑轮绕水平光滑轴转动,自静 止开始释放重物、并测得m1在5.0s内下降75cm,试由这些数据确定定滑 轮的转动惯量。(不计绳的质量及伸长,且绳与滑轮之间无相对滑动)

普通物理学教程力学课后答案高等教育出版社刚体力学习题解答

普通物理学教程力学课后答案高等教育出版社刚体力学习题解答

第七章刚体力学习题解答7.1.2 汽车发动机的转速在12s 内由1200rev/min 增加到3000rev/min.⑴假设转动是匀加速转动,求角加速度。

⑵在此时间内,发动机转了多少转?解:⑴21260/2)12003000(/7.15s rad t===-∆∆πωβ⑵rad 27.152)60/2)(12003000(21039.26222202⨯===∆⨯--πβωωθ对应的转数=42010214.3239.262≈⨯=⨯∆πθ7.1.3 某发动机飞轮在时间间隔t 内的角位移为):,:(43s t rad ct bt at θθ-+=。

求t 时刻的角速度和角加速度。

解:23212643ct bt ct bt a dtd dtd -==-+==ωθβω7.1.4 半径为0.1m 的圆盘在铅直平面内转动,在圆盘平面内建立o-xy 坐标系,原点在轴上,x 和y 轴沿水平和铅直向上的方向。

边缘上一点A 当t=0时恰好在x 轴上,该点的角坐标满足θ=1.2t+t 2 (θ:rad,t:s)。

⑴t=0时,⑵自t=0开始转45º时,⑶转过90º时,A 点的速度和加速度在x 和y 轴上的投影。

解:0.222.1==+==dtd dtd t ωθβω⑴t=0时,s m R v v y x /12.01.02.10,2.1=⨯====ωω2222/2.01.00.2/144.01.0/12.0/sm R a a s m R v a a y y n x =⨯===-=-=-=-=βτ⑵θ=π/4时,由θ=1.2t+t 2,求得t=0.47s,∴ω=1.2+2t=2.14rad/ssm R v s m R v y x /15.02/21.014.245sin /15.02/21.014.245cos =⨯⨯=︒=-=⨯⨯-=︒-=ωω222222222222/182.0)14.20.2(1.0)(45sin 45sin 45sin /465.0)14.20.2(1.0)(45cos 45cos 45cos s m R R R a s m R R R a y x -=-⨯=-︒=︒-︒=-=+⨯-=+︒-=︒-︒-=ωβωβωβωβ⑶θ=π/2时,由θ=1.2t+t 2,求得t=0.7895s,ω=1.2+2t=2.78rad/s2222/77.01.078.2/2.01.00.20/278.01.078.2s m R a s m R a v s m R v y x y x -=⨯-=-=-=⨯-=-==-=⨯-=-=ωβω7.1.5 钢制炉门由两个各长1.5m 的平行臂AB 和CD 支承,以角速率ω=10rad/s 逆时针转动,求臂与铅直成45º时门中心G 的速度和加速度。

第七章 刚体力学习题及解答

第七章 刚体力学习题及解答

第七章刚体力学习题及解答7。

1.1 设地球绕日作圆周运动.求地球自转和公转的角速度为多少rad/s?估算地球赤道上一点因地球自转具有的线速度和向心加速度。

估算地心因公转而具有的线速度和向心加速度(自己搜集所需数据)。

解:7.1.2 汽车发动机的转速在12s内由1200rev/min增加到3000rev/min。

(1)假设转动是匀加速转动,求角加速度.(2)在此时间内,发动机转了多少转?解:( 1)( 2)所以转数 =7.1.3 某发动机飞轮在时间间隔t内的角位移为球 t时刻的角速度和角加速度.解:7.1.4 半径为0。

1m的圆盘在铅直平面内转动,在圆盘平面内建立坐标系,原点在轴上。

x和y轴沿水平和铅直向上的方向.边缘上一点A当t=0时恰好在x轴上,该点的角坐标满足求(1)t=0时,(2)自t=0开始转时,(3)转过时,A点的速度和加速度在x和y轴上的投影。

解:( 1)( 2) 时,由( 3)当时,由7。

1。

5 钢制炉门由两个各长1.5m的平行臂AB和CD支承,以角速度逆时针转动,求臂与铅直时门中心G的速度和加速度.解:因炉门在铅直面内作平动,门中心 G的速度、加速度与B或D点相同.所以:7。

1.6 收割机拔禾轮上面通常装4到6个压板。

拔禾轮一边旋转,一边随收割机前进。

压板转到下方才发挥作用,一方面把农作物压向切割器,另一方面把切割下来的作物铺放在收割台上,因此要求压板运动到下方时相对于作物的速度与收割机前进方向相反.已知收割机前进速率为 1。

2m/s,拔禾轮直径1.5m,转速22rev/min,求压板运动到最低点挤压作物的速度.解:取地面为基本参考系,收割机为运动参考系。

取收割机前进的方向为坐标系正方向7。

1.7 飞机沿水平方向飞行,螺旋桨尖端所在半径为150cm,发动机转速2000rev/min。

(1)桨尖相对于飞机的线速率等于多少?(2)若飞机以250km/h的速率飞行,计算桨尖相对于地面速度的大小,并定性说明桨尖的轨迹。

第七章 刚体力学

第七章 刚体力学

i
rc
mi ri
i

即:重心和质心重合。
M
注意:
① 该结论成立的条件是:刚体不是特别
大,各处的重力加速度相同。 ②重心仅在重力场中存在,若物体失重, 则无重心;但质心仍存在,故质心比重心更常 用到。
§7.2 刚体的平衡
刚体所受合外力为零,对任意参考点的力矩为零,则刚 体平衡。其充分必要条件可以表示为: Fi 0
解:
Q T1 T2
m1 g T1 m1a T m g m a 2 2 1 2 T1 R T2 R J a R , J MR 2 / 2
( m1 m 2 ) g a m1 m 2 M / 2
R
M
R
T1 '
Mg T ' 2
2
连续体的转动惯量: J
dm dl :质量线密度 dm dS :质量面密度 dm dV :质量体密度
3.决定刚体转动惯量的因素 ⑴与刚体的体密度有关(即与m有关); ⑵与刚体的几何形状有关(即与m的分布有关); ⑶与刚体的转轴位置有关。
r 2 dm
dm :质量元
即:与刚体的质量、质量的分布、以及转轴位置 有关。
P
R O m
4、垂直轴定理
如果薄板位于o-xy平面内, 则 J z J x J y
J z mi ri mi xi mi yi J y J x
2 2 2
z
yi
xi x
ri
y
mi
5. 常见对称刚体绕对称轴的转动惯量:
单个质点: I mr ,如图 7.2.2-1 (a)所示。
2

第7章-刚体力学

第7章-刚体力学

d
3g
cos
d
0
0 2l

3g sin
l
运用质心运动定理,对质心C:
nˆ F1
F
F2
l
O C
ˆt
mg
x
nˆ : F1 mg sin man ˆt : F2 mg cos mat
F
an
r2
l 2 2
3g sin 2l
l 3g cos
at
r
2
4
F12 F22
arctan F1 F2
(7.5.2)
即刚体相对于质心的轴的转动同样服从定轴转 动定律. 式(7.5.1)和(7.5.2)称刚体平面运动的基本动 力学方程.
§7.5.2 作用于刚体上的力
1.作用于刚体上力的两种效果 ·滑移矢量
(1) 施于刚体的力的特点 施于刚体的某个点的力,决不可以随便移到另一点去.
A
F
作用力通过质心,对质心轴上的 力矩为零,使刚体产生平动.
FT
11 10
mg
比较上面结果,可见提升弧形闸门
所用的拉力较小.
W
图(b)
[例题3]如图表示一种用实验方法测量转动惯量的装置。
待测刚体装在转动架上,线的一端绕在转动架的轮轴上,
线与线轴垂直,轮轴的轴体半径为r,线的另一端通过定
滑轮悬挂质量为m的重物,已知转动架惯量为I0 ,并测得 m自静止开始下落 h 高度的时间为 t ,求待测物体的转动
L
r1
r1
L2
L1
r2
O r2
m2
k
2mr 2
v1 v2 r
2如.转图轴, 为非对称k 轴对O点同样有
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

29 FNx 0 FNy mg 90 67 mg ,质点O 对闸门钢 即起动瞬时绳对闸板的拉力为
FT
90
67 mg 90
架的支承力竖直向上,大小等于29mg/90. 表示提升平板形闸门所用的拉力,对闸门应 (2) 用FT
用牛顿第二定律,得:
FT
mg ma FT
1.转动惯量
质点系对点的角动量
L ri mi vi
i
设刚体绕Oz 轴转动,刚体角动量在 z 轴的投影
Lz Liz
i
( mi ri2 )
i
viz ri z
刚体对 z 轴角动量
Lz I z z
刚体对 z 轴转动惯量
I z mi r22
ML2
kg m2 转动惯量是转动惯性的量度. 单位:
F
O
l
x
解:以过O点垂直于纸面的O轴为 转轴,向外为正方向。
C
mg
1 2 I ml 3

3g cos M 由定轴转动定理 I 2l
M mgxC 1 mgl cos 2
d d d d dt d dt d 3g cos 3g sin d d = 2l l 0 0
转轴.因为刚体静止,所以诸体元重力对C 轴合力矩为零.
y
A B C D D B C W
z
A
x C
W
Wi
Wi ( xi xc ) 0
xc
Wi x i W
yc
Wi y i W
zc
Wi zi W
若取
Wi mi g
则重心坐标与质心坐标同,但概念不同. 质心是质量
中心,其运动服从质心运动定理. 重心是重力合力作
运用质心运动定理,对质心C:
ˆ n F1
ˆ t
F F 2
O
l
x
C
ˆ : F1 mg sin man n ˆ t : F2 mg cos mat
2
mg
l 2 3g sin a n r 2 2l l 3g cos at r 2 4 F1 2 2 F F1 F2 arctan F 2
FT
FT FN W mac
图(a)
W
x
向x及y轴投影得
FNx mac x
FT mg FNy mac y
根据转动定理
起动时
acx
2 7 FT R mg R mR 2 z 3 9 2 a a R 0 z cy z R 3
刚体定轴转动 I = 常量
刚体定轴转动的转动定理
Miz I z z
说明: (1) M I与F ma地位相当
(2) 式中各量对同一转轴
(3)I 常量, 则 M , 若M 0,
0, 恒量.
验证刚体定轴转动定理的演示实验
§7.3.4 刚体的重心
重心——刚体处于不同方位时,重力作用线都要通过的那 一点. 如图,被悬挂刚体处于静止,C为重心,因C不动,可视为
1 1 1 1 1 2 2 2 m2 gh m2v I m2 v ( m1 R 2 ) 2 2 2 2 2 2
约束关系 联立得
R h
v2
v R
m 2 gh m1 2 m 2
[例题2]均质杆的质量为m,长为l,一端为光滑的支点.最
初处于水平位置,释放后杆向下摆动,如图所示. (1)求杆在图示的竖直位置时,其下端点的线速度v; (2)求杆在图示的竖直位置时,杆对支点的作用力. O

故:
mi i cosi mi xi
I A Ic md 2
mxc 0
——平行轴定理
(2)垂直轴定理(正交轴定理)
z
Iz I x I y
O
x
yi m i
i xi
y
(3)可叠加原理 若一个复杂形状的物体是由许多简单形体组成, 则这个复杂物体的对某轴的转动惯量等于各简单形 体对同一转轴的转动惯量之叠加.
I C i mi
2
i i
I A i mi
2
2
x
由图
2 2 2 i i d 2i d cosi
I A i mi
2 2 m ( d i i 2i d cos i )
mi i2 mi d 2 mi i cos i 2d
§7.4刚体定轴转动的动能定理
§7.4.1力矩的功
§7.4.2 刚体定轴转动的动能定理
§7.4.3 刚体的重力势能
§7.4.1力矩的功
刚体中P点在力F 的作用下位移 dr 则力元功
dA F dr F dr F rd
对有限角位移
z
Fz
A
Δ
0
1.转轴为对称轴 如图,对O点
L1 r1 m1v1 L2 r2 m2v2
L1 r1m1v1 m2v2 L2 r2
r1
z L
L2 L1
r2
r1 r2 r 故总角动量 L Lk m2v2 cos L r1m1v1 cos r2
L1 r1m1v1 m2v2 L2 r2
L
L2
m1
z

L1 2 m2
r2
总角动量与转轴成角.
r1 1 O

刚体绕对称轴转动时,刚体上任一点的角动量 与角速度方向相同.一般情况,刚体定轴转动对轴上 一点的角动量并不一定沿角速度的方向,而是与之 成一定夹角.
§7.3.2 刚体对一定转轴的转动惯量
§7.3 刚体定轴转动的角动量· 转动惯量
§7.3.1 刚体定轴转动对轴上一点的角动量 §7.3.2 刚体对一定转轴的转动惯量
§7.3.3 刚体定轴转动的角动量定理和转动定理 §7.3.4 刚体的重心 §7.3.5 典型例子
§7.3 刚体定轴转动的角动量· 转动惯量
§7.3.1 刚体定轴转动对轴上一点的角动量
m( mi yi ) g m
Ep mgyc
刚体的重力势能与质量集中在重心上的一个质点
的重力势能相同.
[例题1]装置如图所示,均质圆柱体质量为m1,半径为R,
重锤质量为m2 ,最初静止,后将重锤释放下落并带动 柱体旋转,求重锤下落 h 高度时的速率v,不计阻力, 不计绳的质量及伸长.
[解] 方Байду номын сангаас1. 利用质点和刚体转
因 m1= m2= m
m1 m2 r2 r1 O
2mr 2
k v1 v2 r

2.转轴为非对称轴
如图, k 对O点同样有
L1 r1 m1v1 L2 r2 m2v2 L L1 L2
为重力加速度,不计摩擦,不计水浮力.
图(a)
(1)求开始提升时的瞬时,钢丝绳对弧形闸门的拉力 和支点对闸门钢架的支承力. (2)若以同样加速度提升同样重量的平板闸门[图(b)]
需拉力是多少?
FT
W
图(b)
[解](1)以弧形闸门及钢架 y FN 为隔离体,受力如图(a)所示. O 建立直角坐标系Oxy, 根据质心运动定理
二转动刚体发生完全非弹性碰撞角动量守恒
转动惯量的决定因素:
总质量; 质量连续 转轴的位置;
质量分布.
分布的刚体
线 dm dl I r 2 dm 面dm dS 体dm dV
其中、、分别为质量的线密度、面密度和体 密度.
[例1]求均质圆盘(m,R)过圆心且与板面垂直的转轴的
[解](1)由机械能守恒得
FN
1 mgh c I 2 2 1 1 2 hc l I ml 2 3
P231, 例题7-5
§7.3.3 刚体定轴转动的角动量定理和转动定理
刚体对定轴的角动量
i
Lz ΔLiz ( mi ri2 ) I z z
i
角动量定理微分形式
dLz d M iz dt dt I z z
角动量定理积分形式
M z d t I z z I z z 0
11 mg 10 比较上面结果,可见提升弧形闸门 FT
W
所用的拉力较小.
图(b)
[例题3]如图表示一种用实验方法测量转动惯量的装置。
待测刚体装在转动架上,线的一端绕在转动架的轮轴上, 线与线轴垂直,轮轴的轴体半径为r,线的另一端通过定 滑轮悬挂质量为m的重物,已知转动架惯量为I0 ,并测得 m自静止开始下落 h 高度的时间为 t ,求待测物体的转动 惯量I,不计两轴承处的摩擦,不计滑轮和线的质量,线 的长度不变. I0 r m h I
第七章部分习题
P264(习题): 7.3.6,7.3.8,7.4.2
第七章
§7.1 §7.2
刚体力学 (9学时)
刚体运动的描述 刚体的动量和质心运动定理
刚体定轴转动的角动量· 转动惯量 刚体定轴转动的动能定理
§7.3 §7.4
§7.5
§7.6 §7.7
刚体平面运动的动力学
刚体的平衡 自转与转动

I zd
d Iz d I z d 0 dt

A外 A外i
1 1 2 2 I z I z 0 2 2
作用于刚体的外力对固定轴的力矩所做的功等 于刚体绕定轴转动动能的改变量.
§7.4.3 刚体的重力势能
刚体的重力势能
Ep mi gyi ( mi yi ) g
相关文档
最新文档