转轴裂纹的故障机理与诊断
水轮机转轮叶片裂纹的产生原因及解决措施

水轮机转轮叶片裂纹的产生原因及解决措施摘要:随着经济的发展和资源的开发,近些年来,我国的水利事业发展迅速,给人们的生产生活带来了诸多便利,但是仍存在着一些问题,比如水轮机转轮叶片裂纹的产生原因及解决措施,本文就对此进行了研究,希望能对我国相关行业提供些许帮助。
关键词:水轮机;转轮叶片裂纹;产生原因;解决措施1水轮机转轮叶片裂纹产生原因1.1受力分析混流式水轮机与转桨式水轮机不同,其叶片是由上冠和下环固定,无法根据水流和工作情况的变化进行调节,需要在设计好的工作程序中运行,如不设计工作情况则容易破坏无撞击进口和反向出口的最佳条件,水流方向和流量改变,容易在叶片出水处和末尾水管内部产生移动旋涡,旋涡轮流出现产生的交变力,交变力对于叶片冲击产生的频率时会产生共振效应,长时间的强烈震动最终导致叶片裂纹。
1.2超负荷工作水电站工作强度过大,为了提升工作效率使得水轮机超出正常工作效率范围,转轮承受应力时间久了就会超出本身所能承受的荷载,这对叶片是一种损伤,也存在着安全隐患。
水轮机在设计时对其应用环境实地了解较少,不同地域水流情况并不相同,叶片在承受水的应力时会发生变化,叶片最大受力点在出水处和下环之间的连接部分,连接部分的受力比较薄弱,长期的压力冲击会导致叶片开裂。
在使用过程中水轮机难免会遇到操作不符合流程的问题,有时会导致受损,现代焊接技术质量难以承受长期水流冲击,在发生轻微变形时会产生气缝。
水轮机生产制作过程中的一些不精密操作也是导致叶片在工作中面对高强度工作而产生裂缝的原因之一,零部件衔接不够精确,在使用时受水流冲击作用会产生晃动,长久使用整体运行状态不稳固导致产生裂纹。
2预防水轮机叶片裂纹生成的措施2.1确保正确选型水轮机型选择要根据水电站的实际情况,将可能导致叶片开裂的原因进行分析比对,对吸出高度、额定出力、额定转速等参数综合计算,最终选择适合机型,正确选择将增加其使用寿命和稳定运营时间。
前文所提,在水力的作用下叶片振动频率有可能和涡列频率产生共振,在使用过程中造成叶片超出负荷的情况。
旋转机械故障基本机理与诊断技术

图 陀螺力矩的影响
这一力矩与成正比,相当于弹性力矩。在正进动 (0< </2)的情况下,它使转轴的变形减小, 因而提高了转轴的弹性刚度,即提高了转子的临界 角速度。在反进动( /2 < <)的情况下, 这力矩使转轴的变形增大,从而降低了转轴的刚度, 即降低了转子的临界角速度。故陀螺力矩对转于临 界转速的影响是正进动时,它提高了临界转速;反 进动时,它降低了临界转速。
量信息的基础上,基于机器的故障机理,从中提取 故障特征,进行周密的分析。例如,对于汽轮机、 压缩机等流体旋转机械的异常振动和噪声,其振动 信号从幅值域、频率域和时间域为诊断机器故障提 供了重要的信息,然而它只是机器故障信息的一部 分;而流体机械的负荷变化,以及介质的温度、压 力和流量等,对机器的运行状态有重要的影响,往 往是造成机器发生异常振动和运行失稳的重要因素。
(c)当= n时,A,是共振情况,实际上由于 存在阻尼,振幅A不是无穷大而是较大的有限值, 转轴的振动仍然非常剧烈,以致有可能断裂。 n 称为转轴的“临界角速度”;与其对应的每分钟的 转数则称为“临界转速”,以nc表示 ,即
因
故
研究不平衡响应时如果考虑外阻力的作用, 则复变量式变为
其特解为
Z=|A |ej(t+)
一、概述
旋转机械的种类繁多,有发电机、汽轮机、 离心式压缩机、水泵、通风机以及电动机等,这 类机械的主要功能都是由旋转动作完成的,统称 为机器。旋转机械故障是指机器的功能失常,即 其动态性能劣化,不符合技术要求。例如,机器 运行失稳,机器发生异常振动和噪声,机器的工 作转速、输出功率发生变化,以及介质的温度、 压力、流量异常等。机器发生故障的原因不同, 所产生的信息也不一样,根据机器特有的信息, 可以对机器故障进行诊断。但是,机器发生故障 的原因往往不是单一的因素,特别是对于机械系 统中的旋转机械故障,往往是多种故障因素的耦 合结果,所以对旋转机械进行故障诊断,必须进 行全面的综合分析研究。
混流式水轮机转轮裂纹原因分析及预防措施

混流式水轮机转轮裂纹原因分析及预防措施混流式水轮机转轮裂纹原因分析及预防措施水轮机转轮,特别是中、高比速混流式水轮机转轮中的裂纹现象,在世界各地普遍存在。
国外的例子有埃及的阿斯旺高坝、美国的大古力700 MW机,俄罗斯的布拉茨克等。
国内有岩滩、李家峡、小浪底、五强溪、二滩等大型水电站,在投运后水轮机转轮都不同程度的浮现了裂纹。
转轮裂纹严重影响电站的安全运行和经济效益,引起人们的极大关注。
1转轮裂纹的产生原因转轮为什么会产生裂纹,人们对此做过许多研究,不时地提出一些假设。
笔者把转轮裂纹分为规律性裂纹和非规律性裂纹两类。
规律性裂纹是指不同叶片上的裂纹具有大体一致的规律,所有叶片都开裂,裂纹的部位和走向也大致相同。
非规律性裂纹或者只在个别叶片上发生,或者不同叶片上裂纹的部位、走向和其他特征各不相同。
其产生的普通原因分述如下。
1.1规律性裂纹失效分析结果表明-绝大多数规律性裂纹是疲劳裂纹,断口呈现明显的贝壳纹。
叶片疲劳来源于作用其上的交变载荷,而交变载荷又由转轮的水力自激振动引起,这可能是卡门涡列、水力弹性振动或者水压力脉动所诱发。
1.1.1卡门涡列(1)黄坛口水电站1958年投运的4台HL310-LJ-230水轮机,运行不久转轮叶片出水边根部即发生总计67条裂纹。
后来查明,在某些水头下,当机组出力在5~8 MW时,叶片出水边卡门涡列频率与叶片自振频率耦合而引起共振,动应力急剧增加,使叶片疲劳开裂。
采取修整叶片出水边厚度和形状,提高卡门涡列频率,避开了共振,转轮安全运行多年,再没有发生问题。
(2)小浪底水电站水头范围68~141 m,额定出力306 MW。
水轮机转轮上冠和下环为13.5不锈钢铸件,叶片由13.5不锈钢热模压后数控加工,再用309 L奥氏体不锈钢焊丝焊成整体。
由于是异种钢焊接,转轮焊后不进行消除应力处理。
为适应电站水头变幅大和多泥沙的运行条件,水轮机供应商采取了低比转速,小的出口直径(D 2/D 1=0.88),较大的导叶相对高度(b 0/D 1=0.236),肥大的叶片头部,较厚的叶片出水边(δ=38 mm),喷涂碳化钨和设置筒形阀等技术措施。
浅析水轮机转轮裂纹产生原因及处理对策

浅析水轮机转轮裂纹产生原因及处理对策水轮机是水电站机组中重要的组成部位,但是其也是最容易受到损害的部位。
随着目前人类对能源的需求与日俱增,如何加强对水轮机的危害的防治,延长其使用寿命,保证水轮机的正常运行已经成为了必须亟待解决的问题。
在本文中,笔者主要对目前水轮机转轮裂纹这一现象进行详细的讨论。
标签:水轮机、转轮、裂纹、原因、对策前言:在本文中笔者通过对水轮机运用的概述,对目前我国水电站常见的水轮机转轮裂纹产生的原因进行了分析,并通过对原因的分析,提出了相应的裂纹处理与预防措施。
一、水轮机运用概述能源作为国家的重要战略支柱,在各国受到了高度重视。
近年来随着我国经济社会的不断发展壮大,我国对于电能的需求与日俱增,但是化石能源作为不可再生储能,给人类的居住环境带来的威胁越来越大。
为了更好的做到节能减排,缓解气候变化,满足经济和社会的可持续发展需求。
我国一直都把可再生能源作为未来能源战略的重要规划进行了长久以来的实施。
随着我国水电站的的不断新建,在其为人们提供了重要生活、生产保障的同时,自身也相继出现了诸多问题,例如水轮机转轮裂纹的产生,它不仅降低了机械运作的寿命,同时也对电能生产带来一定的影响。
作为水轮机的重要组成部分,水轮机转轮的轮毂与叶片之间的过渡区是整个转轮的力学薄弱区,在机组运行中非常容量发生裂纹。
近年该问题在诸多水电站的生产中相继出现,已经成为了一个不得不亟待解决的技术关键。
二、常见水轮机转轮裂纹产生的原因目前在水电站水轮机的使用类型中主要以混流式水轮机转轮、轴流式水轮机、贯流式水轮机等为主。
以下就以混流式水轮机转轮为例,从水力、设计、铸造、运行、共振等多种因素对其产生的裂纹进行分析:1、水力方面疲劳裂纹、断口出现明显的贝壳纹均属于水轮机转轮叶片上的规律性裂纹,从力学和材料力学两方面来讲,疲劳裂纹的出现主要是由于叶片承受的动应力超过了叶片材料的疲劳强度极限所至。
一旦出现叶片承载不足的情况,叶片就极易出现叶片裂纹。
轴断裂原因及特征

轴断裂原因及特征轴断裂是一种常见的故障现象,其原因和特征多种多样。
本文将从机械应力、材料缺陷和操作不当等方面探讨轴断裂的原因及特征。
一、原因:1. 机械应力过大:轴在工作过程中承受着来自负载、转速、温度等方面的机械应力,当这些应力超过轴的承受能力时,轴就容易发生断裂。
2. 材料缺陷:轴的制造材料存在内部缺陷,如夹杂物、气孔、夹杂物等,这些缺陷会降低轴的强度和韧性,增加了轴断裂的风险。
3. 疲劳损伤:轴在长时间工作中会受到往复应力的作用,反复加载和卸载会导致轴材料的疲劳损伤,最终导致轴的断裂。
4. 腐蚀和腐蚀疲劳:轴在潮湿、酸性、碱性等恶劣环境中工作时,容易发生腐蚀和腐蚀疲劳,造成轴的断裂。
5. 温度变化:轴在温度变化较大的环境中工作时,由于材料的热胀冷缩效应,会产生内部应力,导致轴的断裂。
二、特征:1. 断口形态:轴断裂时,断口一般呈现出典型的断裂形态,如韧性断裂、脆性断裂和疲劳断裂等。
韧性断裂的断口比较平整,呈现出光洁的金属表面;脆性断裂的断口一般比较粗糙,呈现出明显的晶粒断裂特征;疲劳断裂的断口呈现出典型的疲劳条纹。
2. 断口位置:轴断裂的位置通常与其受力情况有关。
常见的断裂位置有轴的键槽、锥度过渡处、轴肩等地方。
3. 断口的颜色:轴断裂后的断口颜色也能提供一些断裂原因的线索。
比如,断口呈现出灰色或黑色的氧化物覆盖层,表明轴在断裂前曾经暴露在空气中;断口呈现出金属光泽,表明断裂是由于机械应力过大引起的。
4. 断口的纹理:轴断裂时,断口往往会出现一些纹理。
比如,韧性断裂的断口呈现出典型的韧带状纹理;疲劳断裂的断口呈现出典型的沿着应力方向的疲劳条纹。
为了避免轴断裂的发生,可以采取以下措施:1. 合理设计:在轴的设计过程中,要根据实际工作条件和负载情况合理选择材料和尺寸,确保轴具有足够的强度和韧性。
2. 优化加工工艺:在轴的制造过程中,要采用合适的加工工艺,避免引入夹杂物、气孔等缺陷,确保轴的质量。
发电厂电动机转轴断裂事故的处理及分析

发电厂电动机转轴断裂事故的处理及分析摘要:发电厂电动机的安全正常运行是电力生产正常运行的重要环节,对某公司车间发生断裂的电动机轴进行失效分析,采用扫描电镜、金相检查拍摄微观组织和断裂部位照片,结合成分分析的结果,发现该电动机轴断裂属于疲劳断裂,裂纹的起源部位位于表层,并在交变载荷的作用下向材料内部扩展,最终形成断裂。
造成断裂的主要原因是由于加工缺陷,造成内部夹杂,形成了断裂源。
关键词:发电厂;大型电动机;检修;故障处理在发电厂各类电动机中,引风机、送风机、排烟风机、磨煤机和给煤机由于运行时间较长且做功量巨大,所以在运行中发生故障的几率相对于其他大型电动机设备来说要大很多。
而这些设备又是发电厂运行所需的最基本的设备,所以对这些设备的故障的预知以及处理显得尤为重要。
定期对这些大型电动机进行运行维护可以及时发现设备运行中的故障,及时做出处理和维护工作,大大减少设备运行中故障甚至事故的几率。
本文主要从大型电动机运行过程常见故障出发,陈述电动机检修的重点和方向,提出检修的方案和处理故障的方法[1-2]。
1 电动机常见故障分析1.1 电动机电气常见故障分析1.1.1 起动故障对于电动机的起动故障而言,其主要就是指当电动机通电之后,其出现不工作的现象,没有任何的反应,即电动机无法正常启动,针对这种起动故障而言,其发生的主要原因有以下两点:(1)首先,是因为和电动机相配套的一些起动设施存在严重的故障或者是损伤,导致起动程序无法正常进行,一般说来,针对当前的电气设备来说,其主要的相关起动设备主要有电容器和分相电阻等两类,其主要是根据电气设备的不同而选择的不同起动方式,因此,针对这一故障来说,其检查的首要部位就应该是这些起动设备的正常性;(2)另外一方面的原因则是线路方面的问题,主要就是电动机的相关线路出现了损坏现象,进而无法正常的进行电力的供应,针对这种原因一般需要采用专业的电力仪表进行检查。
1.1.2 电动机发热过多对于当前的电动机运行来说,其出现发热现象是比较正常的,因为所有的电动机在运行中都会发热,但是如果发热过度或者是直接造成了燃烧或者冒烟就是一种较为明显的电动机故障了,其出现的原因也是比较多的,比如电动机的供电电源电压不高就会造成电动机温度的升高;电动机自身的通风不畅导致的散热不及时也会造成冒烟现象的出现;电动机频繁地进行启动和的停止操作也会影响到其热量的产生问题;最后,如果电动机中的定子和转子出现了相互接触摩擦的现象必然也会导致其出现较多的热量。
水轮机转轮叶片裂纹成因及处理措施

水轮机转轮叶片裂纹成因及处理措施水轮机转轮裂纹缺陷是水电站普遍存在的问题,严重影响着机组整体的安全运行,因而对此类缺陷的检查和处理工作是水电厂的重要工作。
为了有效控制和减少转轮叶片裂纹,对裂纹产生的原因进行正确的诊断,并积极采取一些有针对性的预防措施,以避免该问题的发生,有利于确保水轮发电机组的安全、可靠、经济运行。
本文就水轮机转轮叶片裂纹成因及处理措施进行简单的阐述。
标签:水轮机转轮叶片;裂纹成因;处理措施水轮发电机组在运行中,由于工艺、水力因素等原因,转轮叶片很容易产生裂纹甚至断裂,导致的结果是机组的寿命减小,停机检修时间长,电站的经济损失也相应增大。
因此,确保转轮的性能满足要求,是机组设计的关键。
1工程概况新安江水电厂装设8台9.5万kW和1台9万kW的混流式机组,总装机容量为85万kW。
新安江水电厂是1座综合型电站,兼顾发电、防汛为一体。
1号机组发电机型号为TS854/156-40,水轮机型号为HLS66.46-LJ-410,额定流量135m3/s,转轮直径 4.1m。
水轮机转轮有13个叶片,转轮叶片的材料为ZG06Cr13Ni4Mo马氏体不锈钢,真空精密铸造。
机组最大水头85.4m,设计水头73m,最小水头59.96m,额定转速为59.96r/min。
1号机组于1960年并网发电,并于2002年3月至10月进行增容改造大修后投入运行。
2013年3月,在1号机进行B级大修期间,检修人员对1号机组的转轮叶片进行了超声波探伤检查。
探伤结果显示,1号转轮叶片背部有一条长为115mm,宽为6mm,深度为3.5mm的裂纹;2号转轮叶片出水边根部有一条长为85mm,宽为4.1mm,深度为1.9mm的裂纹;4号转轮叶片出水边根部有一条长为80mm,宽为4.3mm,深度为1.4mm的裂纹和一条长为92mm,宽为3.6mm,深度为2.8mm 的裂纹,上述裂纹都对转轮叶片安全运行造成较大的危害,严重影响机组的安全、稳定运行。
6MW汽轮机转子轴颈处裂纹分析及处理

6MW汽轮机转子轴颈处裂纹分析及处理针对某6MW背压式汽轮机转子轴颈上出现裂纹,进行超声波探伤,确定了裂纹的长度及深度,通过对汽轮机转子进行寿命评估,依据转子的设计、制造、机组的运行里程及历次检修检查结果,对转子危险部位进行了应力分析和裂纹车削前和车削后的疲劳寿命评估,确定裂纹的解决方案。
标签:汽轮机转子;轴颈;裂纹;扭转应力;许用应力由我公司设计制造的一台6MW背压式汽轮机(B6-2.2/0.245)于2008年在巴基斯坦某糖厂投入运行。
机组在2015年8月大修时,意外发现转子轴颈旁出现1条裂纹。
于是糖厂通过肉眼观察和进行超声波探伤检查,并将检查报告反馈我公司,要求提出具体解决方案。
1 转子轴颈裂纹的现场检查和分析本汽轮机转子后轴承轴颈宽度180mm,直径φ140mm,主轴材料为:34CrNi3Mo。
现场的检查情况是:距后轴承中心70mm的轴颈位置发现1条宏观裂纹,正好位于轴颈与后轴承座油封间的倒角位置上,裂纹为径向方向,裂纹长度为14-15mm,在扫描区域可见裂纹深度为5-8mm。
2 事故诊断分析转子是汽轮机组最重要的关键部件,其工作状态比较复杂,在高温、高转速状态下,既承担着较大的离心应力及传递功率所产生的扭转应力,又承担着较大的热应力,还可能产生弯曲、振动等。
转子在高温环境下运行,同时在汽轮机启、停和变负荷过程中承受交变应力,会产生低周疲劳。
蠕变和疲劳同时存在,两者是交互作用的,产生疲劳损伤,特别是对调峰机组和做驱动用的机组来说更为严重。
因此,汽轮机转子产生裂纹的情况非常多,后果也很严重,转子体出现裂纹是最大的安全隐患之一。
产生裂纹的原因如下:(1)调峰期间或者热应力对转子的影响。
热应力主要发生在高中压转子的前几级,它是由于转子各部分温度不均匀,各部分材料之间膨胀或者收缩互相限制而引起,材料经过多次交变应力的作用之后,有可能产生疲劳裂纹,温差越大,产生疲劳裂纹的期间就越短。
(2)热变形及蠕变影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
转轴裂纹的故障机理与诊断
石油化工行业的旋转机械一般转速都非常高,载荷也较大,长期运转后,转轴上易出现横向疲动裂纹,导致断轴的严重事故。
相对而言,转轴裂纹的故障概率比其他故障少得多,但因能产生轴裂纹的潜在原因很多,如各种因素造成的应力集中、复杂的受力状态、恶劣的工作条件和环境等,加之裂纹对振动响应不够敏感(深度达1/4直径的裂纹,轴刚度变化仅为10%左右,临界转速的变化也只有5%左右),有可能发展为断轴事故,危害极大。
因此,对轴裂纹诊断知识的学习很有必要。
一、故障机理
转轴裂纹对振动的响应与裂纹所处的轴向位置、裂纹深度及受力情况有关。
视裂纹所处部位应力状态的不同,裂纹会呈现出三种不同的形态。
(1)闭裂纹
转轴在压应力情况下旋转时,裂纹始终处于闭合状态。
例如,转子重量不大、不平衡离心力较小或不平衡力正好处于裂纹的对侧时就是这种情况。
闭裂纹对转轴振动影响不大,难以察觉。
(2)开裂纹
当裂纹区处于拉应力状态时,轴裂纹始终处于张开状态。
开裂纹会造成轴刚度不对称,使振动带有非线性性质,伴有2×、3×、…等高频成分,随着裂纹的扩展,l×、2×、等频率的幅值也随之增大。
(3)开闭裂纹
当裂纹区的应力是由自重或其他径向载荷产生时,轴每旋转一周,裂纹就会开闭一次,对振动的影响比较复杂。
理论分析表明,带有裂纹的转子的振动响应可分别按偏心及重力两种影响因素考虑,再作线性叠加。
由于偏心因素的影响,振动峰值会出现在与两个不对称刚度相应的临界转速之间;而重力因素的影响结果,是在转速约为无裂纹转轴的临界转速处时,会出现较大峰值。
裂纹的张开或闭合与裂纹的初始状态、偏心、重力的大小及涡动的速度有关,同时也与裂纹的深度有关。
若转子是同步涡动,裂纹会只保持一种状态,即张开或闭合,这与其初始态有关。
在非同步涡动时,裂纹在一定条件下也可能会一直保持张开或闭合状态,但通常情况下,转轴每旋转一周,裂纹都会有开有
闭。
在这种情况下,裂纹越深,其在一周内张开的时间会越长,会超过一半周期长度,同时裂纹张开的时间也会越晚。
这可以作为判断裂纹深度的一个定性标准。
二、故障特征
由上述分析知,转轴裂纹的出现及其对转子振动的影响比较复杂,其主要特征是:
图1 轴上有开裂纹时的振动响应
(1)转轴上一旦存在开裂纹,转轴的刚度就不再具有各向同性,振动带有非线性性质,出现旋转频率的2×、3×、…等高倍频分量。
裂纹扩展时,刚度进一步降低,1×、2×、…等频率的幅值也随之增大。
以上特征与不平衡故障有相似之处,但相位角会发生不规则波动,这一点与不平衡故障时相角稳定有差别。
(2)开、停机过程中,会出现分频共振,即转子在经过1/2、1/3、…临界转速时,由于相应的高倍频(2×、3×)正好与临界转速重合,振动响应会出现峰值,如图1所示。
(3)轴上出现裂纹时,初期扩展速度很慢,径向振动值的增长也很慢,但裂纹的扩展速度会随着裂纹深度的增大而加剧,相应地也会出现lx及2x振幅迅速增加的现象,同时1x及2x的相位角也会出现异常的波动。
三、诊断方法
转轴横向裂纹的主要诊断依据见表1和表2。
表1 转轴横向裂纹的振动特征
表2 转轴横向裂纹的振动敏感参数
四、故障原因及对策
转轴横向裂纹的故障原因及治理措施见表3。
表3 转轴横向裂纹的故障原因及治理措施
五、诊断实例
例1:某大型高速泵在运行过程中轴振动逐渐增大,同时出现2倍频及3倍频等高倍频谐波分量,且相位变化。
分析诊断:根据该泵的振动特征,查阅其结构图纸,初步怀疑异常振动的原因可能是由于转轴裂纹造成的。
为了进一步确认异常振动的原因,在操作人员配合下对该泵进行了降速和升速试验,观察转子通过半临界转速时的频谱特征和相位变化。
其主要特征如下。
(1)频谱图中振幅在2×、3×谐波处有共振峰值,如图2所示,为该测点当前信号谱图结构与6个月前的对照。
图2 当前信号谱结构与历史信号谱比较
(2)转速通过1/2临界转速时有共振峰值出现,如图3所示。
图3 升速过程振动趋势图
诊断意见:根据上述特征,特别是转子在降速和升速通过半临界转速时的振动特征可以确认,高速泵转子产生了裂纹,必须立即停机进行检查,更换转子。
生产验证:根据诊断意见,有计划地对高速泵进行了停机检修,检查发现转轴裂纹深度已达2/5。
更换合格的转子后再次开车,高速泵轴振动趋于正常,避免了一次断轴的重大事故。