数据的表示 知识讲解【名校学案word版+详细解答】
北师大版数学七上《数据的表示》word学案

北师大版七年级上册数学导学案编写日期: 20XX年 5月日主备人:李老师使用日期:20XX年 5 月日使丁丙甲乙41.7%33.3%丙甲乙甲乙(3)在圆中画出各个扇形,并标上百分比.(4)归纳制作扇形统计图的步骤: (1) 、(2) 、(3) 、(4) 、(5) . 练习:完成课本P166做一做 活动探究三:理解扇形统计图的特征 问题一:下图是甲、乙两户居民家庭全年支出费用的扇形统计图,根据统计图,小明认为对全年食品支出费用乙户比甲户多,你同意他的看法吗?为什么? 乙其他24%教育19%衣着23%食品34%甲其他21%教育23%衣着25%食品31%问题二:思考课本P166想一想为什么6项的百分比之和大于1?巩固提升 自主应用1.一个扇形统计图中,某部分所对的圆心角为36°,则该部分占总体的百分比为________.2.甲、乙、丙、丁四个扇形的面积比为1:2:4:5,如图1,则扇 形丙的圆心角丙为______度. 图13.如图2是一个扇形统计图, 请根据图中提供的数计算 甲扇形区的圆心角的度数为________.4.某班有学生50人,下面收集的是这个班同学身高的数据,画出扇形统计图.5.若将圆均匀分成六块扇形,如图(甲)阴影部分表示其中的一块扇形, 求出扇形圆心角的度数.若均匀分成八块,你能将每块画出吗?若能画请在图(乙) 中画出此图,若不能请说明理由.知识拓展 走进中考1.某商场为了了解本商场的服务质量,随机调查了身高cm 140~149 149~155 155~160 160~167 人数825125独立完成导学案,对存在疑问的地方用红笔画出,准备与其他同学交流。
小组内展示自主探究的成果,小组成员互相评价。
通过交流讨论,让每个学生解决自己的疑难,明确考查的知识点,总结出规律、方法及应注意的问题。
)交流、解决探究活动过程中的疑惑。
本组不能解决的疑惑,组长作好记录。
初二数学上册第八章知识教案:数据的代表-精选教学文档

初二数学上册第八章知识教案:数据的代表第八章数据的代表总课时:4课时备课时间:第十五周上课时间:第十六周第4课时:8、3利用计算器求平均数教学目标:知识与技能:根据给定信息,会利用计算器求一组数据的平均数,并会进行数据的收集、加工与整理。
过程与方法:初步经历数据的收集、加工与整理的过程,发展学生初步的统计意识和数据处理能力。
情感态度与价值观:通过使用计算器求平均数的探索活动,培养学生的探索精神和创新意识;通过相互间合作交流,让所有学生都有所获,共同发展。
教学重点:用计算器求平均数教学难点:按键顺序教学准备:同种规格的计算器教学过程第一环节:情境引入 (5分钟,学生遇到困难,亟待解决) 内容:展示引例:2019年第一季度我国各地区农村家庭平均每人现金收入情况表:(单位:元)北京 1692.2 上海 3075.6 天津 1254.5 河北 584.4山西 420.5 内蒙古 596.2 辽宁 875.4 吉林 705.5黑龙江 746.8 江苏 1354.2 浙江 1891.1 安徽 520.6福建 972.2 江西 575.1 山东 831.9 河南 426.3湖北 582.2 湖南 685.7 广东 1065.5 广西 554.6海南 699.3 重庆 523.2 四川 538.4 贵州 316.4云南 411.6 西藏 254.4 陕西 441.0 甘肃 328.4青海 337.8 宁夏 458.1 新疆请计算这组数据的平均数,在计算过程中,你体会到什么困难吗?显然,当一组数据比较大且比较多时,用笔计算平均数较麻烦,因此,需要一个帮手—计算器,这节课就来学习用计算器求平均数。
第二环节:活动探究(15分钟,小组合作交流)内容:学生分组(拿同类型计算器的同学分在一起)活动探究,看哪个小组做得好:(1)估计一下自己课桌的宽度,并将各组员的估计结果统计出来(精确0.1厘米) 。
(2)用计算器求出估计结果的平均值,你是怎么做的?与同伴交流。
北师大数学七年级上册第六章数据的表示

数据的表示——知识讲解【学习目标】1.理解扇形统计图的特点,会制作扇形统计图,并能从中获取信息;2.了解频数等概念,会画频数分布直方图,理解频数分布直方图的意义和作用;3.理解三种统计图各自的特点,并能根据不同问题选择适当的统计图描述数据.【要点梳理】要点一、组距、频数与频数分布表的概念1.组距:每个小组的两个端点之间的距离(组内数据的取值范围).2.频数:落在各小组内数据的个数.3.频数分布表:把各个类别及其对应的频数用表格的形式表示出来,所得表格就是频数分布表.要点诠释:(1)求频数分布表的一般步骤:①计算最大值与最小值的差;②决定组距和组数;③确定分点;④列频数分布表;(2)频数之和等于样本容量.(3)频数分布表能清楚、确切地反映一组数据的大小分布情况,将一批数据分组,一般数据越多,分的组也越多,当数据在100个以内时,按数据的多少,常分成5~12组,在分组时,要灵活确定组距,使所分组数合适,一般组数为最大值-最小值组距的整数部分+1.要点二、频数分布直方图1.频数分布直方图:是以小长方形的面积来反映数据落在各个小组内的频数的大小,直方图由横轴、纵轴、条形图三部分组成.(1)横轴:直方图的横轴表示分组的情况(数据分组);(2)纵轴:直方图的纵轴表示频数;(3)条形图:直方图的主体部分是条形图,每一条是立于横轴之上的一个长方形、底边长是这个组的组距,高为频数.2.作频数直方图的步骤:(1)计算最大值与最小值的差;(2)决定组距与组数;(3)列频数分布表;(4)画频数分布直方图.要点诠释:(1)频数分布直方图简称直方图,它是条形统计图的一种.(2)频数分布直方图用小长方形的面积来表示各组的频数分布,对于等距分组的数据,可以用小长方形的高直接表示频数的分布.3.直方图和条形图的联系与区别:(1)联系:它们都是用矩形来表示数据分布情况的;当矩形的宽度相等时,都是用矩形的高来表示数据分布情况的;(2)区别:由于分组数据具有连续性,直方图中各矩形之间通常是连续排列,中间没有空隙,而条形图中各矩形是分开排列,中间有一定的间隔;直方图是用面积表示各组频数的多少,而条形图是用矩形的高表示频数.要点三、统计图的选择统计图:利用“条形图”、“扇形图”、“折线图”描述数据,这样做的最大优点是将表格中的数据所呈现出来的信息直观化.要点诠释:(1)条形统计图:用线段长度表示数据,根据数据的多少画成长短不同的长方形直条,然后按顺序把这些直条排列起来,条形统计图很容易看出数据的大小,便于比较,但不能清楚地反映各部分占总体的百分比.(2)扇形统计图:用整个圆表示总体,用圆内各个扇形的大小表示各部分数量,从扇形上可清楚地看出各部分量和总数量之间的关系,但不能直接表示出各个项目的具体数据.(3)折线统计图:用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来,折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况,但不能清楚地反映数据的分布情况.【典型例题】类型一、组距、频数与频数分布表的概念1. (2015•天津模拟)已知一个样本中,50个数据分别落在5个组内,第一、二、三、四、五组数据的个数分别为2、8、15、20、5,则第四组的频率为()A.0.1 B.0.2 C.0.3 D.0.4【答案】D.【解析】解:由题意得:第四组的频率是20÷50=0.4.【总结升华】掌握频率、频数、总数三者之间的关系:频率=频数÷总数.举一反三:【变式】有一个样本容量为20的样本,其数据如下:29,42,58,37,53,52,49,24,37,45,42,55,40,38,50,26,54,26,44,32.根据以上数据填写下表:分组频数累计频数频率21~3031~4041~5051~60合计1【答案】解:如下表:分组频数累计频数频率21~30 4 0.2031~40 正 5 0.2541~50 正一 6 0.3051~60 正 5 0.25合计1 20 1.00类型二、频数分布表或频数直方图2.某地区对其所属中学八年级的英语教学情况进行期末质量调查,从中抽出的20个班级的英语期末平均成绩如下(单位:分):80 81 83 79 64 76 80 66 70 7271 68 69 78 67 80 68 72 70 65试列出频数分布表并绘出频数分布直方图.【思路点拨】按照作直方图的四个步骤进行解答.解答时,应注意每个步骤中需要注意的事项.【答案与解析】解:(1)计算最大值与最小值的差:83-64=19(分).(2)决定组距与组数:若取组距为4分,则有194≈5,所以组数为5.(3)列频数分布表:(4)画出频数分布直方图.如图所示.【总结升华】按步骤进行操作.因选取的组距不同,所列的频数分布表及直方图也不一样,在统计时,数据不能出现重复或遗漏的现象.举一反三:【变式】如图是某校九年级部分男生做俯卧撑的成绩(次数)进行整理后,分成五组,画出的频率分布直方图,已知从左到右前4个小组的频率分别是0.05,0.15,0.25,0.30,第五小组的频数为25,若合格成绩为20,那么此次统计的样本容量和本次测试的合格率分别是().A.100,55% B.100,80% C.75,55% D.75,80%【答案】B.类型三、统计图的选择3.某学校为了进一步丰富学生的体育活动,欲增购一些体育器材,为此对该校一部分学生进行了一次“你最喜欢的体育活动”的问卷调查(每人只选一项).根据收集到的数据,绘制成如下统计图(不完整)请根据图中提供的信息,完成下列问题:(1)在这次问卷调查中,一共抽查了名学生;(2)请将上面两幅统计图补充完整;(3)在图1中,“踢毽”部分所对应的圆心角为度;(4)如果全校有1860名学生,请问全校学生中,最喜欢“球类”活动的学生约有多少人?【思路点拨】找好扇形统计图和条形统计图之间的对应关系.【答案】(1)200;(2)如图;(3)54;(4)744【解析】解:(1)80÷40%=200(人)(2)如图:(3)360°⨯15%=54°(4)1860 40%=744(人)【总结升华】条形统计图能反映出各部分数量的大小,而扇形统计图能反映出各部分占总体的比例大小,两者结合,则此类题容易求解.举一反三:【变式1】某校为了了解该校初二年级学生阅读课外书籍的情况,随机抽取了该年级的部分学生,对他们某月阅读课外书籍的情况进行了调查,并根据调查的结果绘制了如下的统计图表.请你根据以上信息解答下列问题:(1)这次共调查了学生多少人?E组人数在这次调查中所占的百分比是多少?(2)求出表1中a的值,并补全图1;(3)若该年级共有学生300人,请你估计该年级在这月里阅读课外书籍的时间不少于12小时的学生约有多少人.【答案】解:(1)这次共调查了学生50人,E组人数在这次调查中所占的百分比是8%.(2)表1中a的值是15,补全如图.(3)54人.【变式2】(2015•台州)某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图.根据图中提供的信息,解答下列问题:(1)补全频数分布直方图;(2)求扇形统计图中m的值和“E”组对应的圆心角度数;(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数.【答案】解:(1)数据总数为:21÷21%=100,第四组频数为:100﹣10﹣21﹣40﹣4=25,频数分布直方图补充如下:(2)m=40÷100×100=40;“E”组对应的圆心角度数为:360°×=14.4°;(3)3000×(25%+)=870(人).即估计该校3000名学生中每周的课外阅读时间不小于6小时的人数是870人.类型四、综合应用4.低碳发展是今年深圳市政府工作报告提出的发展理念,近期,某区与某技术支持单位合作,组织策划了该区“低碳先锋行动”,开展低碳测量和排行活动,根据调查数据制作了频数分布直方图(每组均含最小值,不含有最大值)和扇形统计图,下图中从左到右各长方形的高度之比为2:8:9:7:3:1.(1)已知碳排放值5≤x<7(千克/平方米·月)的单位有16个,则此次行动共调查了________个单位;(2)在图②中,碳排放值5≤x<7(千克/平方米·月)部分的圆心角为_________度;(3)小明把图②中碳排放值1≤x<2的都看成1.5,碳排放值2≤x<3的都看成2.5,依此类推,若每个被检查单位的建筑面积均为10000平方米,则按小明的办法,可估算碳排放值x≥4(千克/平方米·月)的被检单位一个月的碳排放总值约为________吨.【思路点拨】(1)先算出碳排放值在5≤x<7范围内所对应的比例,再求一共调查了多少个单位;(2)由碳排放值在5≤x<7范围内所占的比例,可计算出圆心角度数;(3)先计算碳排放值4≤x<5的单位、碳排放值5≤x<6的单位,碳排放值6≤x<7的单位个数,再算出碳排放值x≥4(千克/平方米·月)的被检单位一个月的碳排放总值.【答案与解析】解:(1)16÷430=120(个),故答案为120;(2)4÷30×360°=48°,故答案为48;(3)碳排放值x≥4(千克/平方米·月)的被检单位是第4,5,6组,分别有28个、12个、4个单位,10000×(28×4.5+12×5.5+4×6.5)÷1000=10×(126+66+26)=2180(吨).所以,碳排放值x≥4(千克/平方米·月)的被检单位一个月的碳排放总值约为2180吨.【总结升华】解答本题的关键是将直方图提供的信息转化为频数分布表.这种“转化”过程对解题大有帮助,值得学习和借鉴.举一反三:【变式】2011年5月9日至14日,德州市订共有35000余名学生参加中考体育测试,为了了解九年级男生立定跳远的成绩,从某校随机抽取了50名男生的测试成绩,根据测试评分标准,将他们的得分按优秀、良好、及格、不及格(分别用A 、B 、C 、D 表示)四个等级进行统计,并绘制成下面的扇形图和统计表:请你根据以上图表提供的信息,解答下列问题:(1)m =________,n =________,x =________,y =________; (2)在扇形图中,C 等级所对应的圆心角是________度;(3)如果该校九年级共有500名男生参加了立定跳远测试,那么请你估计这些男生成绩等级达到优秀和良好的共有多少人? 【答案】解:(1)20,8,0.4,0.16; (2)57.6;(3)由上表可知达到优秀和良好的共有19+20=39(人),500×3939050(人). 【巩固练习】一、选择题 1.为了绘出一批数据的频率分布直方图,首先计算出这批数据的变动范围是指数据的( )A .最大值B .最小值C .最大值与最小值的差D .个数 2.在频数分布直方图中,各小矩形的面积等于( ).A .相应各组的频数B .组数C .相应各组的频率D .组距 3.已知一组数据有80个,其中最大值为140,最小值为40,取组距为10,则可分成( ).A .10组B .9组C .8组D .7组 4.(2015•曲靖)某企业为了解员工给灾区“爱心捐款”的情况,随机抽取部分员工的捐款金额整理绘制成如图所示的直方图,根据图中信息,下列结论错误的是( )A .样本中位数是200元B .样本容量是20C.该企业员工捐款金额的极差是450元D.该企业员工最大捐款金额是500元5.在样本频数分布直方图中,有11个小长方形.若中间的小长方形的面积等于其他10个小长方形面积之和的14,且样本容量为160个,则中间的一组的频数为( ).A.0.2 B.32 C.0.25 D.406. 如图所示为某校782名学生小考成绩的次数分配直方图,若下列有一选项为下图成绩的累积次数分配直方图,则此图为( ).7.有40个数据,其中最大值为35,最小值为15,若取组距为4,则应该分的组数是( ). A.4 B.5 C.6 D.78.学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加绘画兴趣小组的频率是( ).A.0.1 B.0.15 C.0.25 D.0.3二、填空题9.(2015•温州模拟)有50个数据,共分成6组,第1~4组的频数分别为10,8,7,11.第5组的频率是0.16,则第6组的频数是.10.一个样本有20个数据:35 31 33 35.37 39 35 38 40 39 36 34 35 3736 32 34 35 36 34.在列频数分布表时,如果组距为2,那么应分成________组,36立在第________组中.11.某班50名学生参加2013年初中毕业生毕业考试,综合评价等级为A,B,C等的学生情况如扇形图所示,该学校共有500人参加毕业考试,估计该学校得A等的学生有______名.12.某单位职工的年龄(取正整数)的频数分布直方图如图所示,根据图中提供的信息,进行填空.(1)该单位职工共有________人;(2)不小于38岁但小于44岁的职工人数占职工总人数的百分率是________.13.某中学举行一次演讲比赛,分段统计参赛同学的成绩,结果如下表(分数均为整数,满分为100分):请根据表中提供的信息,解答下列各题:(1)参加这次演讲比赛的同学共有________人;(2)已知成绩在91~100分的同学为优胜者,那么,优胜率为________.14.某校为了了解某个年级的学习情况,在这个年级抽取了50名学生,对某学科进行测试,将所得成绩(成绩均为整数)整理后,列出表格:分组50~59分60~69分70~79分80~89分90~99分频率0.04 0.04 0.16 0.34 0.42(1)本次测试90分以上的人数有________人;(包括90分)(2)本次测试这50名学生成绩的及格率是________;(60分以上为及格,包括60分)(3)这个年级此学科的学习情况如何?请在下列三个选项中,选一个填在题后的横线上________.A.好 B.一般 C.不好三、解答题15.为了了解中学生的体能状况,某校抽取了50名学生进行1分钟跳绳测试,将所得数据整理后,分成5组绘成了频数分布直方图,如图(图中数据含最低值不含最高值).其中前4个小组的频率依次为0.04,0.12,0.4,0.28.(1)第4组的频数是多少?(2)第5组的频率是多少?(3)哪一组的频数最大?(4)补全统计图,并绘出频数分布折线图.16.为检查某工厂所产8万台电扇的质量,抽查了其中40台,这40台电扇的无故障连续使用时限如下:(单位:h)248 256 232 243 188 278 286 292308 312 274 296 288 302 295 208314 290 281 298 228 287 217 329283 327 272 264 307 257 268 278266 289 312 198 204 254 244 278(1)以组距20h列出样本的频数分布表,并画出频数分布直方图;(2)估计8万台电扇中有多少台无故障连续使用时限会不少于288h?(3)样本的平均无故障连续使用时限是多少?(4)如果电扇的无故障正常(非连续)使用时限是无故障连续使用时限的8倍,那么这些电扇的正常使用寿命为多少小时?(精确到1h)17.(2015•宿迁)某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是,并补全频数分布直方图;(2)C组学生的频率为,在扇形统计图中D组的圆心角是度;(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?【答案与解析】一、选择题1. 【答案】C;【解析】频率直方图是按照数据从小到大的顺序排列,包括所有的数据,即数据的变化范围是指数据的最大值和最小值的差.2. 【答案】A;【解析】频数直方图中纵坐标表示的是频数,则小长方形的高为频数,小长方形的面积=⨯频数小长方形面积=组距=频数组距.3. 【答案】A;【解析】据组数=(最大值-最小值)÷组距计算,注意小数部分要进位.4.【答案】A.【解析】A、共2+8+5+4+1=20人,中位数为10和11的平均数,故中位数为175元,错误;B、共20人,故样本容量为20,正确;C、极差为500﹣50=450元,正确;D、该企业员工最大捐款金额是500元,正确.5. 【答案】B;【解析】根据在频数直方图中,某一组相应的小长方形的面积与直方图中所有小矩形面积的比值即这小组的频率,求得中间一个长方形对应的频率后,再由频数、频率、总数的关系求解.6. 【答案】A;【解析】将一个变量的不同等级的相对频数用矩形块标绘的图表(每一矩形的面积对应于频数).因为本题求哪个是成绩的累积次数分配直方图,故累计次数作为纵坐标. 7. 【答案】B;【解析】351554-=.8. 【答案】D;【解析】根据频率=频数数据总数.二、填空题9.【答案】6.【解析】∵有50个数据,共分成6组,第5组的频率是0.16,∴第5组的频数为50×0.16=8;又∵第1~4组的频数分别为10,8,7,11,∴第6组的频数为50﹣(10+8+7+11+8)=6.10.【答案】5, 3;11.【答案】100;【解析】500×(1-30%-50%)=100.12.【答案】 (1)50 (2)58%;【解析】正确读图是做题的关键.13.【答案】 (1)20 (2)20%;【解析】优胜率=42020优胜人数==%总人数.14.【答案】 (1)21 ;(2)96%;(3)A .【解析】(1)0.42×50=21.(2)1-0.04-0.96=96%.(3)理由是优秀率和及格率都很高.三、解答题15.【解析】解:(1)第4组的频数是0.28×50=14.(2)第5组频率为1-0.04-0.12-0.4-0.28=0.16.(3)170~180这一组频数最大.(4)补全统计图略.频数分布折线图如图.16.【解析】解:(1)频数分布表如下:频数分布直方图如图(2)因为这40台中不少于288h 的有9+5+1=15(台),所以8万台电扇中不少于288h 的有158340⨯=(万台). (3)平均无故障连续使用时限为248256278271.340+++≈(h). (4)电扇的正常寿命为271.3×8≈2170(h).17.【解析】解:(1)这次抽样调查的样本容量是4÷8%=50,B 组的频数=50﹣4﹣16﹣10﹣8=12, 补全频数分布直方图,如图:(2)C 组学生的频率是0.32;D 组的圆心角=;(3)样本中体重超过60kg 的学生是10+8=18人,该校初三年级体重超过60kg 的学生=人,故答案为:(1)50;(2)0.32;72.。
人教版数学八下20.1《数据的代表》word学案2

人教版数学八下20.1《数据的代表》w o r d学案2-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN20.1.1平均数(2)年级:八年级 科目:数学 课型:新授 执笔:徐中国 审核:姜艳 薛柏双备课时间:2010.5.12 上课时间:2010.5.18学习目标1、使学生理解数据的权和加权平均数的概念2、使学生掌握加权平均数的计算方法 学习重难点1、重点:会求加权平均数2、难点:对“权”的理解学习过程:阅读教材P124 — 127 , 完成课前预习内容 【课前预习】 1、知识准备(1)算术平均数的概念: (2)加权平均数的概念: 2、探究:完成在教材P128问题为了解5路公共汽车的运营情况,公交部门统计了某天5路公关汽车每个运营班次的载客量,得到下表:(1)补全表格(注:数据分组后,一个小组的组中值是指这个小组的两个端点的数的平均数。
例如小组1≤x <21的组中值为)112211=+(2)这天5天公关汽车平均每班的载客量是多少?【课堂活动】 活动1、预习反馈 活动2、例题分析例3 某灯泡厂为测量一批灯泡的使用寿命,从中抽查了100只灯泡,它们的使用寿命如下表所示:这批灯泡的平均使用寿命是多少?练习:种菜能手李大叔种植了一批新品种黄瓜。
为了考察这种黄瓜的生长情况,李大叔抽查了部分黄瓜株上长出的黄瓜根数,得到如图所示的条形图。
请估计这个新品种黄瓜平均每株结多少根黄瓜。
510152010131415黄瓜根数活动3:课堂小结1、组中值:【课后巩固】1、下表是校女子排球队队员的年龄分布:求校女子排球队队员的平均年龄2、为了绿化环境,柳荫街引进一批法国梧桐,三年后这些树的树干的周长情况如图所示。
计算这些法国梧桐树干的平均周长。
《数据的表示》word教案 (公开课获奖)2022华师大版2

燕子砭镇初级中学八年级数学学科教(学)案序号:姓名班级审核人签名:成永明有理数的乘法和除法教学目标:1、了解有理数除法的意义,理解有理数的除法法则,会进行有理数的除法运算,会求有理数的倒数。
2、通过实例,探究出有理数除法法则。
会把有理数除法转化为有理数乘法,培养学生的化归思想。
重点:有理数除法法则的运用及倒数的概念难点:怎样根据不同的情况来选取适当的方法求商,0不能作除数以及0没有倒数的理解。
教学过程:一、创设情景,导入新课 1、有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘.几个数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。
有一个因数是0,积就为0. 2、有理数乘法运算律:a ×b = b ×a (a ×b )×c = a ×(b ×c ). a ×(b+c )=a × b + a ×c 3、计算(分组练习,然后交流)(见ppt ) 二、合作交流,解读探究 1、(1)6个同样大小的苹果平均分给3个小孩,每个小孩分到几个苹果?(2)怎样计算下列各式?(-6)÷3 6÷(-3) (-6)÷(-3) 学生:独立思考后,再将结果与同桌交流。
教师:引导学生回顾小学知识,根据除法是乘法的逆运算完成上例,要求6÷3即要求3×?=6,由3×2=6可知6÷3=2。
同理(-6)÷3=-2,6÷(-3)=-2,(-6)÷(-3)=2。
根据以上运算,你能发现什么规律?对于两个有理数a,b ,其中b ≠0,如果有一个有理数c 使得c ×b=a ,那么我们规定a ÷b=c ,称c 叫做a 除以b 的商。
2、从有理数的除法是通过乘法来规定,引导学生对比乘法法则,自己总结有理数除法法则,经讨论后,板书有理数除法法则。
《数据的表示》word教案 (公开课获奖)2022北师版 (1)

第六章数据的收集与整理 3 数据的表示第1课时教学重点与难点教学重点:明确扇形统计图的制作步骤,能够根据相关数据较为准确地制作扇形统计图.同时,能从扇形统计图中获取相关信息,作出合理的判断.教学难点:计算并准确地画出各个扇形的圆心角,建立百分比大小和扇形圆心角大小之间初步的直观敏感度.学情分析认知基础:通过前面知识的学习,学生已经对扇形统计图的概念、特点有了一定的了解,知道在扇形统计图中:圆代表总体;扇形代表总体中的不同部分;扇形的大小反映部分占总体的百分比的大小.知道周角及其度数,能够顺利计算360度的一部分是多少.能够了解在同一个圆中,扇形的大小取决于扇形张角(圆心角)的大小,这是学好本节的认知基础.活动经验基础:为解决本节课的学习难点,在前面的学习中作了相对充分的活动经验准备.其一,教材已经给出了扇形、圆心角的概念,并初步进行了扇形圆心角的计算与扇形面积的求解;其二,前两节课中所涉及的扇形图都是绘制、标注完整的扇形统计图,初步建立了百分比大小和扇形圆心角大小之间的直观联系.另外,学生有利用计算器计算较复杂数据和对近似数据进行四舍五入的经验.这些为克服本节的难点作了比较充分的准备.教学目标1.明确扇形统计图的制作步骤,能够根据相关数据较为准确地制作扇形统计图.2.进一步理解扇形统计图的特点,建立百分比大小和扇形圆心角大小之间初步的直观敏感度.3.能够实现不同统计图数据间的合理转换,再次体会几种统计图的不同特点,为合理选择统计图表示数据打下一定的基础.教学方法本节的重点是根据相关数据制作扇形统计图,难点是计算并准确地画出各个扇形的圆心角,比较偏重于技能性目标.教学中,教师要善于引导学生回顾和强化练习数据计算、作出已知度数的角等基本技能,鼓励学生具体操作,与同伴进行对照.采用开放式课堂教学策略,教师走到学生中去,现场指导纠正学生出现的问题.教学过程一、复习提问,引入新课设计说明本环节设计两个问题,问题1引导学生回顾扇形统计图的概念和基本特征;问题2让学生关注决定扇形大小的因素,为本节制作扇形统计图打下基础.问题1:扇形统计图中的圆代表什么?每一个小扇形代表什么?师生活动:让学生短暂回顾后回答问题,教师在语言的准确性上作必要补充.问题2:在同一个圆中,扇形面积的大小和扇形张角(圆心角)的大小有何关系?师生活动:让学生用自己的语言回答这个问题,教师根据学生的回答适时地提出圆心角的概念.教学说明本环节是建立在学生认知基础和活动经验基础之上的问题过渡,鼓励学生尽可能明确地回答问题,争取让学生提出圆心角的概念及圆心角的大小和扇形大小之间的关系,学生认识到这一点,就为本节课的顺利进行作了很好的铺垫.二、新课讲解1.设计问题情境,归纳结论设计说明本环节利用学生身边的问题情景,通过调查问卷的途径获得表格形式的调查结果,在对调查结果的讨论中,使学生体会百分比与扇形圆心角的关系,并能根据百分比计算出每个扇形圆心角的度数,这是制作扇形统计图的关键之处.问题情境:小强是校学生会体育部部长,他想了解现在同学们更喜欢什么球类运动,以便学生会组织受同学们欢迎的比赛.于是他设计了调查问卷,在全校每个班随机选取了10名同学调查问卷你最喜欢的球类运动是( )(单选)A.篮球B.足球C.排球D.乒乓球E.羽毛球F.其他(2)喜欢篮球运动的人数占调查总人数的百分比是多少?喜欢足球运动的人数占调查总人数的百分比是多少?排球、乒乓球、羽毛球、其他球类运动的百分比呢?上述所有百分比之和是多少?(3)若用扇形统计图表示上述结果,各扇形圆心角的度数如何计算?与同伴交流.师生活动:教师组织学生讨论交流问题(1),只要观点合理,就给予鼓励;对于问题(2),可分组进行计算,并引导学生发现“所有百分比之和为1”的特点与成因;通过对问题(3)的探究,得出扇形圆心角的求解方法.归纳结论:在扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360°的比.教学说明在对扇形统计图有关数据的理解中,学生会不经意地犯一种错误,就是常常把占总体的32%的扇形想成是32°的扇形,而忽略了32%要乘以360°这件事.本环节的主要目的就是要突破这一难点,比如在问题(3)中引导学生初步体会占圆32%的扇形有多大,增强学生对扇形统计图圆心角大小的感性认识.2.经历扇形统计图的制作过程设计说明本环节利用前面提出的问题情境,明晰制作扇形统计图的主要步骤.问题1:根据上述小强的调查数据,按如下方法绘制扇形统计图.师生活动:(((3)在圆中画出各个扇形,并标上百分比.某校学生最喜欢的球类运动统计图图1(答案::如图1所示)问题2:观察图2,回答下列问题:图2(1)如果用整个圆表示总体,那么哪个扇形表示总体的25%?(2)如果用整个圆表示你们班的人数,那么扇形B大约代表多少人?(3)如果用整个圆表示9公顷稻田,那么扇形C大约代表多少公顷稻田?师生活动:引导学生根据扇形统计图的制作过程,初步领会其特征,并尝试解决三个问题:(1)扇形A;(2)根据本班实有人数计算;(3)9×(1-25%-33%)=3.78(公顷).师生总结:制作扇形统计图的基本步骤包括:画圆;求各部分比例;计算各部分圆心角的度数;根据度数画扇形;填写项目名称,填写百分比(也可用图例表明).还可以利用多种方法区分不同扇形,如彩色、涂黑、斜线、网状等方法.扇形统计图,可以直观地反映各部分在总体中所占的比例.教学说明在教学中,一定要让学生通过讨论自己总结出制作扇形统计图的基本步骤,教师尽量不要包办代替.在制作统计图时,教师要深入学生之中,及时掌握和解决学生在计算和画图中遇到的障碍,如量角器使用不当等问题.教师还要引导学生注意写上统计图的名称,必要时注明数据的来源,培养数据统计活动中的规范性思想和关注数据可靠性的思想.另外,引导学生善于从扇形统计图的绘制过程中发现其特征,并学会初步应用.3.正确理解扇形统计图的特征设计说明本环节通过两例易错的问题,让学生进一步明确扇形统计图的两个特征,一是扇形统计图反映的是各部分占总体的百分比,而反映不出扇形所表示的各项目的实际数量;二是扇形统计图中各部分所占百分比之和应等于1,不能大于或小于1.问题1:下图是甲、乙两家庭全年支出费用的扇形统计图.根据统计图,小刚认为就全年食品支出费用来说,乙家庭比甲家庭多,你同意他的看法吗?为什么?师生活动:通过讨论交流,得出小刚的看法是错误的结论.从两个扇形统计图中尽管能看出乙家庭全年食品支出费用占该家庭总支出的34%,甲家庭全年食品支出费用占该家庭总支出的31%,但由于两个家庭的全年总支出数目均不明确,故无法进行比较.问题2:小亮对全班40名学生进行了“你对哪些课程非常感兴趣”的调查,获得如下数据:语文20人,数学25人,英语18人,物理10人,计算机34人,其他12人.他想用扇形统计图表示这些数据,却发现6项的百分比之和大于1,为什么会这样呢?师生活动:通过探究活动,首先明确扇形统计图中各部分所占百分比之和等于1,否则就无法利用扇形统计图表示这些数据.究其原因,可能是在调查问卷时,设计了多选问题,使有些数据重复出现,进而导致了各项百分比之和大于1的情况出现.教学说明由于所设计的两个问题学生在解答时极易出现错误,因此,教学中注意留给学生充足的时间进行思考与交流,当学生对扇形统计图的意义与特征理解的深刻了,模糊认识渐为清晰时,问题就会迎刃而解.问题1中,同一扇形统计图中各部分是能比较出大小的,而不同扇形统计图间的量难以进行比较.问题2中,若想用扇形统计图表示数据,则在收集数据设计调查问卷时,注意选项的唯一性,这样就能保证各部分人数之和为全班总人数40(人).教学时可让学生尝试重新设计对各科课程感兴趣的人数,借以加深对知识的理解程度.三、对比练习,加强认识设计说明本环节打算以扇形统计图的理解和制作为主线设计一个具体的问题情境,在问题解决中加深对扇形统计图的认识.小刘对本班同学的业余兴趣爱好进行了一次调查,她根据采集到的数据,绘制了下面的图1和图2.请你根据图中提供的信息,解答下列问题:图1图2(1)在图1中,将“书画”部分的图形补充完整;(2)在图2中,求出“球类”部分所对应的圆心角的度数;(3)分别求出爱好“音乐”“书画”的人数占本班学生数的百分数.师生活动:教师提问,题目和统计图中有没有直接给出“书画”部分的有关数据?“书画”部分的数据如何才能得到?并通过学生的合作研讨获得解决问题的方案.答案:(1)“书画”部分的条形图的高与10对应,图略;(2)360°×35%=126°;(3)14÷35%=40,12÷40=30%,(40-14-12-4)÷40=25%,爱好“音乐”“书画”的人数分别占本班学生数的30%、25%.教学说明利用例题把条形统计图和扇形统计图作对比学习,明晰两种统计图各自的优点和缺点,特别是两种统计图能够相互弥补不足的优势,并得出可以从“球类”部分的数据得到全班总人数的结论,从而为整个题目打开突破口.四、归纳小结,反思提高1.谈谈制作扇形统计图的注意事项.要点如下:(1)各部分占总数量的百分比之和为1;(2)圆心角度数=该部分的百分比乘以360°,圆心角度数之和等于360°;(3)取适当的半径画一个圆,并按照上面算出的圆心角度数,在圆里画出各个扇形,用量角器画角度时要力求准确;(4)在每个扇形中标明所表示的各部分名称和所占的百分比,还要标明这个扇形统计图的名称.2.谈谈你在本节课中的收获:扇形统计图能清楚地表示出各部分在总体中所占的百分比,制作扇形统计比条形图和折线图更难一些,主要难点是把百分比转化为圆心角度数并正确作出已知度数的角.评价与反思本节课设计在突破难点上下了一番工夫,体现了一个循序渐进的过程.本节课的难点主要在把百分比转化为圆心角度数并正确作图的过程,为有效突破这个难点,设计了从感性到理性、由简单到复杂的学习过程.首先在复习提问中不失时机地提出圆心角的概念及圆心角的大小和扇形大小之间关系的直观理解;然后在新课讲解中又分为三个层次,先利用学生熟悉的问题情境获得圆心角度数的算法并引导学生感受占圆32%的扇形有多大,再进一步让学生经历制作扇形统计图的全过程,最后通过两例易错题加深学生对扇形统计图特征的理解.为了加深对本节课内容的认识和辨别能力,又设计了一个扇形图和条形图的综合题,目的是让学生在问题情境中提取有用信息和相关知识,顺利解决问题.经过这些努力,学生能够对本节课的内容有一个清晰全面的认识,顺利地突破了难点.第五章反比例函数一、学生知识状况分析通过本章的学习,学生已经经历抽象反比例函数概念的过程,理解了反比例函数的概念,会作出反比例函数的图象,并探索和掌握其性质,能从函数图象中获取信息来解决实际问题。
北师大版数学七年级上册6.3《数据的表示》教案3

北师大版数学七年级上册6.3《数据的表示》教案3一. 教材分析《数据的表示》是北师大版数学七年级上册第六章第三节的内容。
本节内容是在学生已经掌握了收集数据、整理数据的基础上,进一步学习如何用图表来表示数据,从而培养学生的数据处理能力。
本节课的主要内容有:条形统计图、折线统计图、扇形统计图的特点和作用。
二. 学情分析七年级的学生已经具备了一定的观察、思考和操作能力,他们对数据有一定的认识,但是还缺乏系统的整理和分析数据的方法。
通过前面的学习,学生已经掌握了收集数据、整理数据的方法,对本节课的内容有一定的认知基础。
但是,对于如何选择合适的统计图来表示数据,以及不同统计图的特点和作用,学生可能还不太清楚。
三. 教学目标1.知识与技能:使学生掌握条形统计图、折线统计图、扇形统计图的特点和作用,能根据需要选择合适的统计图来表示数据。
2.过程与方法:通过观察、操作、思考,使学生学会如何用图表来表示数据,培养学生的数据处理能力。
3.情感态度与价值观:培养学生对数学的兴趣,让学生体验到数学与生活实际的联系,培养学生的团队协作能力和语言表达能力。
四. 教学重难点1.重点:条形统计图、折线统计图、扇形统计图的特点和作用。
2.难点:如何根据需要选择合适的统计图来表示数据。
五. 教学方法采用问题驱动法、合作学习法、案例分析法等,引导学生通过观察、操作、思考,掌握统计图的特点和作用,提高学生的数据处理能力。
六. 教学准备1.教师准备:准备好课件、统计图的案例、练习题等教学资源。
2.学生准备:预习本节课的内容,了解统计图的基本概念。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾上节课的内容,复习收集数据、整理数据的方法。
然后提出本节课的问题:如何用图表来表示数据?激发学生的学习兴趣。
2.呈现(10分钟)教师通过课件展示不同类型的统计图,如条形统计图、折线统计图、扇形统计图,让学生观察并说出它们的特点。
教师引导学生发现,不同的统计图有不同的特点和作用,例如条形统计图能很容易看出数量的多少,折线统计图不仅能看出数量的多少,还能反映数量的增减变化情况,扇形统计图能反映部分与整体的关系。
八年级数学第八章数据的代表第1、2节北师大版知识精讲

初二数学第八章 数据的代表 第1、2节北师大版【本讲教育信息】一. 教学内容:第八章:数据的代表 第一节:平均数第二节:中位数与众数二. 教学要求:1. 掌握算术平均数、加权平均数的概念,会求一组数据的算术平均数和加权平均数,并体会权的差异对结果的影响,通过利用平均数解决实际问题,发展学生的数学应用能力。
2. 掌握中位数与众数的概念,会求一组数的中位数、众数,能结合具体情况体会平均数、众数、中位数三者的差别,能初步选择恰当的数据代表对数据作出正确的判断三. 重点及难点:1. 掌握算术平均数和加权平均数的概念,会求加权平均数,掌握算术平均数和加权平均数的联系与区别。
2. 掌握中位数与众数的概念,并会求中位数与众数。
利用平均数、众数、中位数解决一些实际问题,并在具体情景中选择恰当的数据代表对数据作出评判或决策。
四. 课堂教学知识点1 平均数的概念算术平均数:一般的,对于n 个数12,,,n x x x ,我们把)......(121n x x x n+++叫做这n 个数的算术平均数,简称平均数,记作:x 。
加权平均数:如果n 个数中,1x 出现1f 次,2x 出现2f 次,…,k x 出现k f 次(1f +2f +…+k f =n ),那么这n 个数的平均数可以表示为1122k kx f x f x f x n+++=,这样的平均数叫做加权平均数,其中12,,,k f f f 叫做权。
30分):成绩/分数 26 28 25 27 30 人数13321则他们的平均成绩是:x ==26.9(分)知识点2 中位数的概念中位数:一般的,n 个数据按大小顺序排列,处于最中间的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。
注意:(1)中位数是一组数据中唯一的,可能是这组数据中的数据,也可能不是这组数据中的数据。
(2)求中位数时,先将数据按大小顺序排列,若这组数据是奇数个,则最中间的数据是中位数,若这组数据是偶数个,则最中间的两个数据的平均数是中位数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据的表示——知识讲解【学习目标】1.理解扇形统计图的特点,会制作扇形统计图,并能从中获取信息;2.了解频数等概念,会画频数分布直方图,理解频数分布直方图的意义和作用;3.理解三种统计图各自的特点,并能根据不同问题选择适当的统计图描述数据.【要点梳理】要点一、组距、频数与频数分布表的概念1.组距:每个小组的两个端点之间的距离(组内数据的取值范围).2.频数:落在各小组内数据的个数.3.频数分布表:把各个类别及其对应的频数用表格的形式表示出来,所得表格就是频数分布表.要点诠释:(1)求频数分布表的一般步骤:①计算最大值与最小值的差;②决定组距和组数;③确定分点;④列频数分布表;(2)频数之和等于样本容量.(3)频数分布表能清楚、确切地反映一组数据的大小分布情况,将一批数据分组,一般数据越多,分的组也越多,当数据在100个以内时,按数据的多少,常分成5~12组,在分组时,要灵活确定组距,使所分组数合适,一般组数为最大值-最小值组距的整数部分+1.要点二、频数分布直方图1.频数分布直方图:是以小长方形的面积来反映数据落在各个小组内的频数的大小,直方图由横轴、纵轴、条形图三部分组成.(1)横轴:直方图的横轴表示分组的情况(数据分组);(2)纵轴:直方图的纵轴表示频数;(3)条形图:直方图的主体部分是条形图,每一条是立于横轴之上的一个长方形、底边长是这个组的组距,高为频数.2.作频数直方图的步骤:(1)计算最大值与最小值的差;(2)决定组距与组数;(3)列频数分布表;(4)画频数分布直方图.要点诠释:(1)频数分布直方图简称直方图,它是条形统计图的一种.(2)频数分布直方图用小长方形的面积来表示各组的频数分布,对于等距分组的数据,可以用小长方形的高直接表示频数的分布.3.直方图和条形图的联系与区别:(1)联系:它们都是用矩形来表示数据分布情况的;当矩形的宽度相等时,都是用矩形的高来表示数据分布情况的;(2)区别:由于分组数据具有连续性,直方图中各矩形之间通常是连续排列,中间没有空隙,而条形图中各矩形是分开排列,中间有一定的间隔;直方图是用面积表示各组频数的多少,而条形图是用矩形的高表示频数.要点三、统计图的选择统计图:利用“条形图”、“扇形图”、“折线图”描述数据,这样做的最大优点是将表格中的数据所呈现出来的信息直观化.要点诠释:(1)条形统计图:用线段长度表示数据,根据数据的多少画成长短不同的长方形直条,然后按顺序把这些直条排列起来,条形统计图很容易看出数据的大小,便于比较,但不能清楚地反映各部分占总体的百分比.(2)扇形统计图:用整个圆表示总体,用圆内各个扇形的大小表示各部分数量,从扇形上可清楚地看出各部分量和总数量之间的关系,但不能直接表示出各个项目的具体数据.(3)折线统计图:用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来,折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况,但不能清楚地反映数据的分布情况.【典型例题】类型一、组距、频数与频数分布表的概念1. 已知一个样本中,50个数据分别落在5个组内,第一、二、三、四、五组数据的个数分别为2、8、15、20、5,则第四组的频率为()A.0.1 B.0.2 C.0.3 D.0.4【答案】D.【解析】解:由题意得:第四组的频率是20÷50=0.4.【总结升华】掌握频率、频数、总数三者之间的关系:频率=频数÷总数.举一反三:【变式】有一个样本容量为20的样本,其数据如下:29,42,58,37,53,52,49,24,37,45,42,55,40,38,50,26,54,26,44,32.根据以上数据填写下表:分组频数累计频数频率21~3031~4041~5051~60合计1【答案】分组频数累计频数频率21~30 4 0.2031~40 正 5 0.2541~50 正一 6 0.3051~60 正 5 0.25合计1 20 1.00类型二、频数分布表或频数直方图2.某地区对其所属中学八年级的英语教学情况进行期末质量调查,从中抽出的20个班级的英语期末平均成绩如下(单位:分):80 81 83 79 64 76 80 66 70 7271 68 69 78 67 80 68 72 70 65试列出频数分布表并绘出频数分布直方图.【思路点拨】按照作直方图的四个步骤进行解答.解答时,应注意每个步骤中需要注意的事项.【答案与解析】解:(1)计算最大值与最小值的差:83-64=19(分).(2)决定组距与组数:若取组距为4分,则有194≈5,所以组数为5.(3)列频数分布表:(4)画出频数分布直方图.如图所示.【总结升华】按步骤进行操作.因选取的组距不同,所列的频数分布表及直方图也不一样,在统计时,数据不能出现重复或遗漏的现象.举一反三:【变式】如图是某校九年级部分男生做俯卧撑的成绩(次数)进行整理后,分成五组,画出的频率分布直方图,已知从左到右前4个小组的频率分别是0.05,0.15,0.25,0.30,第五小组的频数为25,若合格成绩为20,那么此次统计的样本容量和本次测试的合格率分别是().A.100,55% B.100,80% C.75,55% D.75,80%【答案】B.类型三、统计图的选择3.某学校为了进一步丰富学生的体育活动,欲增购一些体育器材,为此对该校一部分学生进行了一次“你最喜欢的体育活动”的问卷调查(每人只选一项).根据收集到的数据,绘制成如下统计图(不完整)请根据图中提供的信息,完成下列问题:(1)在这次问卷调查中,一共抽查了名学生;(2)请将上面两幅统计图补充完整;(3)在图1中,“踢毽”部分所对应的圆心角为度;(4)如果全校有1860名学生,请问全校学生中,最喜欢“球类”活动的学生约有多少人?【思路点拨】找好扇形统计图和条形统计图之间的对应关系.【答案】(1)200;(2)如图;(3)54;(4)744【解析】解:(1)80÷40%=200(人)(2)如图:(3)360°⨯15%=54°(4)1860 40%=744(人)【总结升华】条形统计图能反映出各部分数量的大小,而扇形统计图能反映出各部分占总体的比例大小,两者结合,则此类题容易求解.举一反三:【变式1】某校为了了解该校初二年级学生阅读课外书籍的情况,随机抽取了该年级的部分学生,对他们某月阅读课外书籍的情况进行了调查,并根据调查的结果绘制了如下的统计图表.请你根据以上信息解答下列问题:(1)这次共调查了学生多少人?E组人数在这次调查中所占的百分比是多少?(2)求出表1中a的值,并补全图1;(3)若该年级共有学生300人,请你估计该年级在这月里阅读课外书籍的时间不少于12小时的学生约有多少人.【答案】解:(1)这次共调查了学生50人,E组人数在这次调查中所占的百分比是8%.(2)表1中a的值是15,补全如图.(3)54人.【变式2】某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图.根据图中提供的信息,解答下列问题:(1)补全频数分布直方图;(2)求扇形统计图中m的值和“E”组对应的圆心角度数;(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数.【答案】解:(1)数据总数为:21÷21%=100,第四组频数为:100﹣10﹣21﹣40﹣4=25,频数分布直方图补充如下:(2)m=40÷100×100=40;“E”组对应的圆心角度数为:360°×=14.4°;(3)3000×(25%+)=870(人).即估计该校3000名学生中每周的课外阅读时间不小于6小时的人数是870人.类型四、综合应用4.低碳发展是今年深圳市政府工作报告提出的发展理念,近期,某区与某技术支持单位合作,组织策划了该区“低碳先锋行动”,开展低碳测量和排行活动,根据调查数据制作了频数分布直方图(每组均含最小值,不含有最大值)和扇形统计图,下图中从左到右各长方形的高度之比为2:8:9:7:3:1.(1)已知碳排放值5≤x<7(千克/平方米·月)的单位有16个,则此次行动共调查了________个单位;(2)在图②中,碳排放值5≤x<7(千克/平方米·月)部分的圆心角为_________度;(3)小明把图②中碳排放值1≤x<2的都看成1.5,碳排放值2≤x<3的都看成2.5,依此类推,若每个被检查单位的建筑面积均为10000平方米,则按小明的办法,可估算碳排放值x≥4(千克/平方米·月)的被检单位一个月的碳排放总值约为________吨.【思路点拨】(1)先算出碳排放值在5≤x<7范围内所对应的比例,再求一共调查了多少个单位;(2)由碳排放值在5≤x<7范围内所占的比例,可计算出圆心角度数;(3)先计算碳排放值4≤x<5的单位、碳排放值5≤x<6的单位,碳排放值6≤x<7的单位个数,再算出碳排放值x≥4(千克/平方米·月)的被检单位一个月的碳排放总值.【答案与解析】解:(1)16÷430=120(个),故答案为120;(2)4÷30×360°=48°,故答案为48;(3)碳排放值x≥4(千克/平方米·月)的被检单位是第4,5,6组,分别有28个、12个、4个单位,10000×(28×4.5+12×5.5+4×6.5)÷1000=10×(126+66+26)=2180(吨).所以,碳排放值x≥4(千克/平方米·月)的被检单位一个月的碳排放总值约为2180吨.【总结升华】解答本题的关键是将直方图提供的信息转化为频数分布表.这种“转化”过程对解题大有帮助,值得学习和借鉴.举一反三:【变式】2019年5月9日至14日,德州市订共有35000余名学生参加中考体育测试,为了了解九年级男生立定跳远的成绩,从某校随机抽取了50名男生的测试成绩,根据测试评分标准,将他们的得分按优秀、良好、及格、不及格(分别用A、B、C、D表示)四个等级进行统计,并绘制成下面的扇形图和统计表:请你根据以上图表提供的信息,解答下列问题:(1)m=________,n=________,x=________,y=________;(2)在扇形图中,C等级所对应的圆心角是________度;(3)如果该校九年级共有500名男生参加了立定跳远测试,那么请你估计这些男生成绩等级达到优秀和良好的共有多少人?【答案】解:(1)20,8,0.4,0.16; (2)57.6;(3)由上表可知达到优秀和良好的共有19+20=39(人),500×3939050(人).。