最新高二数学上期末模拟试题及答案

合集下载

【典型题】高二数学上期末模拟试卷附答案

【典型题】高二数学上期末模拟试卷附答案

【典型题】高二数学上期末模拟试卷附答案一、选择题1.将1000名学生的编号如下:0001,0002,0003,…,1000,若从中抽取50个学生,用系统抽样的方法从第一部分0001,0002,…,0020中抽取的号码为0015时,抽取的第40个号码为( ) A .0795B .0780C .0810D .08152.把五个标号为1到5的小球全部放入标号为1到4的四个盒子中,并且不许有空盒,那么任意一个小球都不能放入标有相同标号的盒子中的概率是( ) A .320B .720C .316D .253.如果数据121x +、221x +、L 、21n x +的平均值为5,方差为16,则数据:153x -、253x -、L 、53n x -的平均值和方差分别为( )A .1-,36B .1-,41C .1,72D .10-,1444.学校为了解新课程标准提升阅读要求对学生阅读兴趣的影响情况,随机抽取了100名学生进行调查.根据调查结果绘制学生周末阅读时间的频率分布直方图如图所示:将阅读时间不低于30分钟的观众称为“阅读霸”,则下列命题正确的是( ) A .抽样表明,该校有一半学生为阅读霸 B .该校只有50名学生不喜欢阅读 C .该校只有50名学生喜欢阅读 D .抽样表明,该校有50名学生为阅读霸5.在半径为2圆形纸板中间,有一个边长为2的正方形孔,现向纸板中随机投飞针,则飞针能从正方形孔中穿过的概率为( ) A .4π B .3πC .2πD .1π6.在长为10cm 的线段AB 上任取一点C ,作一矩形,邻边长分別等于线段AC 、CB 的长,则该矩形面积小于216cm 的概率为( ) A .23B .34C .25D .137.某校从高一(1)班和(2)班的某次数学考试(试卷满分为100分)的成绩中各随机抽取了6份数学成绩组成一个样本,如茎叶图所示.若分别从(1)班、(2)班的样本中各取一份,则(2)班成绩更好的概率为( )A.1636B.1736C.12D.19368.类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设D为BE中点,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是()A.17B.14C.13D.4139.从0,1,2,3这四个数中任取两个不同的数组成一个两位数,则这个两位数是偶数的概率为()A.27B.57C.29D.5910.从1,2,3,…,9中任取两数,其中:①恰有一个偶数和恰有一个奇数;②至少有一个奇数和两个都是奇数;③至少有一个奇数和两个都是偶数;④至少有一个奇数和至少有一个偶数.在上述事件中,是对立事件的是 ( ).A.①B.②④C.③D.①③11.如图,边长为2的正方形有一内切圆.向正方形内随机投入1000粒芝麻,假定这些芝麻全部落入该正方形中,发现有795粒芝麻落入圆内,则用随机模拟的方法得到圆周率 的近似值为()A.3.1B.3.2C.3.3D.3.412.小赵和小王约定在早上7:00至7:15之间到某公交站搭乘公交车去上学,已知在这段时间内,共有2班公交车到达该站,到站的时间分别为7:05,7:15,如果他们约定见车就搭乘,则小赵和小王恰好能搭乘同一班公交车去上学的概率为()A .13B .49C .59D .23二、填空题13.已知实数]9[1x ∈,,执行如图所示的流程图,则输出的x 不小于55的概率为________.14.在[1,1]-上随机地取一个数k ,则事件“直线y kx =与圆22(5)9x y -+=相离”发生的概率为_______。

【必考题】高二数学上期末模拟试卷带答案

【必考题】高二数学上期末模拟试卷带答案

【必考题】高二数学上期末模拟试卷带答案一、选择题1.如图,ABC ∆和DEF ∆都是圆内接正三角形,且//BC EF ,将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在ABC ∆内”,B 表示事件“豆子落在DEF ∆内”,则(|)P B A =( )A .33B .3 C .13D .232.某校为了解高二年级学生某次数学考试成绩的分布情况,从该年级的1120名学生中随机抽取了100 名学生的数学成绩,发现都在[80,150]内现将这100名学生的成绩按照 [80,90),[90,100),[100,110),[110,120),[120,130),[130,140),[140,150]分组后,得到的频率 分布直方图如图所示则下列说法正确的是( )A .频率分布直方图中a 的值为 0.040B .样本数据低于130分的频率为 0.3C .总体的中位数(保留1位小数)估计为123.3分D .总体分布在[90,100)的频数一定与总体分布在[100,110)的频数不相等3.把五个标号为1到5的小球全部放入标号为1到4的四个盒子中,并且不许有空盒,那么任意一个小球都不能放入标有相同标号的盒子中的概率是( ) A .320B .720C .316D .254.如图是把二进制的数11111化成十进制数的一个程序框图,则判断框内应填入的条件是( )A .4i >?B .5i >?C .4i ≤?D .5i ≤?5.2018年12月12日,某地食品公司对某副食品店某半月内每天的顾客人数进行统计得到样本数据的茎叶图如图所示,则该样本的中位数是( )A .45B .47C .48D .636.若执行如图所示的程序框图,则输出S 的值为( )A .10072015B .10082017C .10092019D .101020217.如果数据12,,,n x x x L 的平均数为x ,方差为28,则152x +,252x +,…,52n x +的平均数和方差分别为( ) A .x ,28B .52x +,28C .52x +,2258⨯D .x ,2258⨯8.执行如图的程序框图,如果输出a 的值大于100,那么判断框内的条件为( )A .5k <?B .5k ≥?C .6k <?D .6k ≥?9.执行如图的程序框图,如果输出的是a=341,那么判断框( )A .4k <B .5k <C .6k <D .7k <10.设数据123,,,,n x x x x L 是郑州市普通职工*(3,)n n n N ≥∈个人的年收入,若这n 个数据的中位数为x ,平均数为y ,方差为z ,如果再加上世界首富的年收入1n x +,则这1n +个数据中,下列说法正确的是( )A .年收入平均数大大增大,中位数一定变大,方差可能不变B .年收入平均数大大增大,中位数可能不变,方差变大C .年收入平均数大大增大,中位数可能不变,方差也不变D .年收入平均数可能不变,中位数可能不变,方差可能不变11.根据表中提供的全部数据,用最小二乘法得出y 关于x 的线性回归方程是9944y x =+$,则表中m 的值为( ) x 8 10 1112 14 y2125m2835A .26B .27C .28D .2912.已知某班级部分同学一次测验的成绩统计如图,则其中位数和众数分别为( )A .92,94B .92,86C .99,86D .95,91二、填空题13.我国传统的房屋建筑中,常会出现一些形状不同的窗棂,窗棂上雕刻有各种花纹,构成种类繁多的图案.如图所示的窗棂图案,是将半径为R 的圆六等分,分别以各等分点为圆心,以R 为半径画圆弧,在圆的内部构成的平面图形.现在向该圆形区域内的随机地投掷一枚飞镖,飞镖落在黑色部分(忽略图中的白线)的概率是__________.14.执行如图所示的程序框图若输人x 的值为3,则输出y 的值为______.15.若(9)85a =,(5)301b =,(2)1001c =,则这三个数字中最大的是___ 16.为调查某校学生每天用于课外阅读的时间,现从该校名学生中随机抽取名学生进行问卷调查,所得数据均在区间上,其频率分布直方图如图所示,则估计该校学生中每天用于阅读的时间在(单位:分钟)内的学生人数为____.17.下图是华师一附中数学讲故事大赛7位评委给某位学生的表演打出的分数的茎叶图.记分员在去掉一个最高分和一个最低分后,算得平均分为91分,复核员在复核时,发现有一个数字(茎叶图中的x )无法看清,若记分员计算无误,则数字x 应该是____________.18.如图所示的程序框图,输出的S 的值为( )A .12 B .2 C .1- D .12- 19.一组样本数据按从小到大的顺序排列为:1-,0,4,x ,y ,14,已知这组数据的平均数与中位数均为5,则其方差为__________.20.在区间[,]-ππ内随机取出两个数分别记为a 、b ,则函数222()2f x x ax b π=+-+有零点的概率为__________.三、解答题21.已知一个口袋有3个白球,1个黑球,这些球除颜色外全部相同,现将口袋中的球随机逐个取出,并依次放入编号为1,2,3,4的抽屉内. (1)求编号为2的抽屉内放黑球的概率;(2)口袋中的球放入抽屉后,随机取出两个抽屉中的球,求取出的两个球是一黑一白的概率.22.2018年中秋节到来之际,某超市为了解中秋节期间月饼的销售量,对其所在销售范围内的1000名消费者在中秋节期间的月饼购买量(单位:g)进行了问卷调查,得到如下频率分布直方图:()1求频率分布直方图中a的值;()2以频率作为概率,试求消费者月饼购买量在600g1400g~的概率;()3已知该超市所在销售范围内有20万人,并且该超市每年的销售份额约占该市场总量的5%,请根据这1000名消费者的人均月饼购买量估计该超市应准备多少吨月饼恰好能满足市场需求(频率分布直方图中同一组的数据用该组区间的中点值作代表)?23.甲,乙两人玩摸球游戏,每两局为一轮,每局游戏的规则如下:甲,乙两人均从装有4只红球、1只黑球的袋中轮流不放回摸取1只球,摸到黑球的人获胜,并结束该局.(1)若在一局中甲先摸,求甲在该局获胜的概率;(2)若在一轮游戏中约定:第一局甲先摸,第二局乙先摸,每一局先摸并获胜的人得1分,后摸井获胜的人得2分,未获胜的人得0分,求此轮游戏中甲得分X的概率分布及数学期望.24.某公司为研究某产品的广告投入与销售收入之间的关系,对近五个月的广告投入x (万元)与销售收入y(万元)进行了统计,得到相应数据如下表:广告投入x(万元)91081112销售收入y(万元)2123212025(1)求销售收入y关于广告投入x的线性回归方程y bx a=+$$$.(2)若想要销售收入达到36万元,则广告投入应至少为多少.参考公式:()()()121ni iiniix x y ybx x∧==--=-∑∑,ˆˆ•a yb x=-25.如下图是某校高三(1)班的一次数学知识竞赛成绩的茎叶图(图中仅列出[50,60),[90,100)的数据)和频率分布直方图.(1)求分数在[50,60)的频率及全班人数; (2)求频率分布直方图中的,x y ;(3)若要从分数在[80,100)之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在[90,100)之间的概率.26.甲乙两人同时生产内径为25.41mm 的一种零件,为了对两人的生产质量进行评比,从他们生产的零件中各抽出 5 件(单位:mm ) , 甲:25.44,25.43, 25.41,25.39,25.38 乙:25.41,25.42, 25.41,25.39,25.42. 从生产的零件内径的尺寸看、谁生产的零件质量较高.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】如图所示,作三条辅助线,根据已知条件,这些小三角形全等,ABC ∆包含9 个小三角形,同时又在DEF ∆内的小三角形共有6 个,所以(|)P B A =6293= ,故选D. 2.C解析:C 【解析】 【分析】由频率分布直方图得的性质求出0.030a =;样本数据低于130分的频率为:0.7;[)80,120的频率为0.4,[)120,130的频率为0.3.由此求出总体的中位数(保留1位小数)估计为:0.50.41203123.30.3-+⨯≈分;样本分布在[)90,100的频数一定与样本分布在[)100,110的频数相等,总体分布在[)90,100的频数不一定与总体分布在[)100,110的频数相等. 【详解】由频率分布直方图得:()0.0050.0100.0100.0150.0250.005101a ++++++⨯=,解得0.030a =,故A 错误;样本数据低于130分的频率为:()10.0250.005100.7-+⨯=,故B 错误;[)80,120的频率为:()0.0050.0100.0100.015100.4+++⨯=, [)120,130的频率为:0.030100.3⨯=.∴总体的中位数(保留1位小数)估计为:0.50.412010123.30.3-+⨯≈分,故C 正确; 样本分布在[)90,100的频数一定与样本分布在[)100,110的频数相等, 总体分布在[)90,100的频数不一定与总体分布在[)100,110的频数相等,故D 错误.故选C . 【点睛】本题考查命题真假的判断,考查频率分布直方图的性质等基础知识,考查运算求解能力,考查数形结合思想,是基础题.因为条形分布直方图的面积表示的是概率值,中位数是位于最中间的数,故直接找概率为0.5的即可;平均数是每个长方条的中点乘以间距再乘以长方条的高,将每一个数值相加得到.3.B解析:B 【解析】 【分析】由题意可以分两类,第一类第5球独占一盒,第二类,第5球不独占一盒,根据分类计数原理得到答案. 【详解】解:第一类,第5球独占一盒,则有4种选择;如第5球独占第一盒,则剩下的三盒,先把第1球放旁边,就是2,3,4球放入2,3,4盒的错位排列,有2种选择,再把第1球分别放入2,3,4盒,有3种可能选择,于是此时有236⨯=种选择; 如第1球独占一盒,有3种选择,剩下的2,3,4球放入两盒有2种选择,此时有236⨯=种选择,得到第5球独占一盒的选择有4(66)48⨯+=种,第二类,第5球不独占一盒,先放14-号球,4个球的全不对应排列数是9;第二步放5号球:有4种选择;9436⨯=,根据分类计数原理得,不同的方法有364884+=种.而将五球放到4盒共有2454240C A ⨯=种不同的办法,故任意一个小球都不能放入标有相同标号的盒子中的概率84724020P == 故选:B . 【点睛】本题主要考查了分类计数原理,关键是如何分步,属于中档题.4.C解析:C 【解析】 【分析】根据程序框图依次计算得到答案. 【详解】根据程序框图:1,1S i ==;3,2S i ==;7,3S i ==;15,4S i ==;31,5S i ==,结束. 故选:C . 【点睛】本题考查了程序框图,意在考查学生的计算能力和理解能力.5.A解析:A 【解析】 【分析】由茎叶图确定所给的所有数据,然后确定中位数即可. 【详解】各数据为:12 20 31 32 34 45 45 45 47 47 48 50 50 61 63, 最中间的数为:45,所以,中位数为45. 本题选择A 选项. 【点睛】本题主要考查茎叶图的阅读,中位数的定义与计算等知识,意在考查学生的转化能力和计算求解能力.6.C解析:C【解析】 【分析】首先确定流程图的功能为计数111113355720172019S =++++⨯⨯⨯⨯L 的值,然后利用裂项求和的方法即可求得最终结果. 【详解】由题意结合流程图可知流程图输出结果为111113355720172019S =++++⨯⨯⨯⨯L , 11(2)111(2)2(2)22n n n n n n n n +-⎛⎫=⨯=- ⎪+++⎝⎭Q,111113355720172019S ∴=++++⨯⨯⨯⨯L 11111111123355720172019⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦L 1110091220192019⎛⎫=-=⎪⎝⎭. 本题选择C 选项. 【点睛】识别、运行程序框图和完善程序框图的思路: (1)要明确程序框图的顺序结构、条件结构和循环结构. (2)要识别、运行程序框图,理解框图所解决的实际问题. (3)按照题目的要求完成解答并验证.7.C解析:C 【解析】根据平均数的概念,其平均数为52x +,方差为2258⨯,故选C.8.C解析:C 【解析】 【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量a 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案. 【详解】由题意,模拟程序的运算,可得k 1=,a 1=满足判断框内的条件,执行循环体,a 6=,k 3= 满足判断框内的条件,执行循环体,a 33=,k 5= 满足判断框内的条件,执行循环体,a 170=,k 7=此时,不满足判断框内的条件,退出循环,输出a的值为170.则分析各个选项可得程序中判断框内的“条件”应为k6<?故选:C.【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.9.C解析:C【解析】由程序框图可知a=4a+1=1,k=k+1=2;a=4a+1=5,k=k+1=3;a=4a+1=21,k=k+1=4;a=4a+1=85,k=k+1=5;a=4a+1=341;k=k+1=6.要使得输出的结果是a=341,判断框中应是“k<6?”.10.B解析:B【解析】∵数据x1,x2,x3,…,x n是郑州普通职工n(n⩾3,n∈N∗)个人的年收入,而x n+1为世界首富的年收入则x n+1会远大于x1,x2,x3,…,x n,故这n+1个数据中,年收入平均数大大增大,但中位数可能不变,也可能稍微变大,但由于数据的集中程序也受到x n+1比较大的影响,而更加离散,则方差变大.故选B11.A解析:A【解析】【分析】首先求得x的平均值,然后利用线性回归方程过样本中心点求解m的值即可.【详解】由题意可得:810111214115x++++==,由线性回归方程的性质可知:99112744y=⨯+=,故21252835275m++++=,26m∴=.故选:A.【点睛】本题考查回归分析,考查线性回归直线过样本中心点,在一组具有相关关系的变量的数据间,这样的直线可以画出许多条,而其中的一条能最好地反映x 与y 之间的关系,这条直线过样本中心点.12.B解析:B【解析】由茎叶图可知,中位数为92,众数为86. 故选B.二、填空题13.【解析】∵阴影部分面积为∴飞镖落在黑色部分的概率为故答案为点睛:(1)当试验的结果构成的区域为长度面积体积等时应考虑使用几何概型求解;(2)利用几何概型求概率时关键是试验的全部结果构成的区域和事件发解析:2【解析】∵阴影部分面积为221141262222R R R ππ⎛⎫-⨯-⨯⨯= ⎪ ⎪⎝⎭∴飞镖落在黑色部分的概率为22222R R ππ=-故答案为22π- 点睛:(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解;(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域;(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.14.63【解析】【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量y 的值模拟程序的运行过程分析循环中各变量值的变化情况可得答案【详解】解:模拟程序的运行可得x=3y=7不满足条件|解析:63【解析】【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量y 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】解:模拟程序的运行,可得x=3y=7不满足条件|x-y|>31,执行循环体,x=7,y=15不满足条件|x-y|>31,执行循环体,x=15,y=31不满足条件|x-y|>31,执行循环体,x=31,y=63此时,满足条件|x-y|>31,退出循环,输出y 的值为63.故答案为63.【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.15.【解析】【分析】将三个数都转化为10进制的数然后比较大小即可【详解】故最大【点睛】本题考查了不同进制间的转化考查了学生的计算能力属于基础题解析:a【解析】【分析】将三个数都转化为10进制的数,然后比较大小即可。

最新高二数学上学期期末考试试卷含答案

最新高二数学上学期期末考试试卷含答案

高二上期末考试模拟试题数学(测试时间:120分钟 满分150分)一. 选择题(12×5分=60分,每小题给出的四个选项中,只有一项是符合题目要求的,将正确结论的代号填入后面的表中)第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题;每小题5分,共60分.在每小题给出的四个选项中,有一项是符合题目要求的.)1、设R b a ∈,,现给出下列5个条件:①2=+b a ;②2>+b a ;③222>+b a ;④1>ab ;⑤0log <b a ,其中能推出“a ,b 中至少有一个大于1”的条件为( )(A)②③④(B)②③④⑤(C)①②③⑤(D)②⑤2、若直线0=++c by ax 经过第一、二、三象限,则( )(A)0,0>>bc ab (B)0,0<>bc ab (C)0,0><bc ab (D)0,0<<bc ab3、若不等式组⎩⎨⎧<->-ax a x 2412的解集非空,则实数a 的取值范围是( )(A) (-1,3) (B)(-3,1) (C)(-∞,-1) (D)(-∞,-3)∪(1,+∞)4、“a >1”是直线0=-x a y 与直线a x y =-有且仅有两个交点的( ) (A)充分不必要条件 (B)必要不充分条件 (C)充分必要条件 (D)既不充分也不必要条件5、AB 是过抛物线y x =2的焦点弦,且4=AB ,则AB 的中点到直线01=+y 的距离是( )(A)25(B)2 (C)411(D)3 6、用一个与圆柱母线成︒60角的平面截圆柱,截口是一个椭圆,则此椭圆的离心率是( ) (A)22(B)21(C)23(D)337、已知25≥x , 则4254)(2-+-=x x x x f 有( )(A)最大值45(B)最小值45(C)最大值1 (D)最小值1 8、已知直线)2(2:-=-x k y l 与圆02222=--+y x y x 相切,则直线l 的一个方向向量v为 ( )(A)(2,-2) (B)(1,1) (C)(-3,2) (D)(1,21)9、已知函数42)6()(-+-=a x a x f 在⎥⎦⎤⎢⎣⎡1,54上0)(>x f 恒成立,则a 的取值范围是( ) (A)),722(+∞(B)),310(+∞(C)]6,722((D)]6,310( 10、如图,函数)(x f y =的图象是中心在原点,焦点在x 轴上的椭圆的两段弧,则不等式x x f x f +-<)()(的解集为 ( )(A ){}22,02|≤<<<-x x x 或(B ){}22,22|≤<-<≤-x x x 或 (C)⎭⎬⎫≤<⎩⎨⎧-<≤-222,222|x x x 或 (D ){}0,22|≠<<-x x x 且11、已知动点),(y x P 满足y x y x 43)2()1(1022+=-+-,则此动点P 的轨迹是( )(A)椭圆 (B)双曲线 (C)抛物线 (D)两相交直线12、已知椭圆的一个焦点和对应的准线分别是抛物线22x y =的焦点与准线,则椭圆短轴的右端点的轨迹方程是( )(A))0(212>-=x y x (B))0)(1(22>-=x y x(C))0)(81(412>-=x y x (D))0)(41(212>-=x y x第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题;每小题4分,共16分.把答案填在题中的横线上.)13、若直线)0,0022>>=+-b a by ax (始终平分圆014222=+-++y x y x 的圆周,则ba 11+的最小值为14、),(y x P 是椭圆12322=+y x 上的动点,则y x 2-的的取值范围是15、已知一椭圆的两焦点为)0,5(),0,5(21F F -,有一斜率为98-的直线被椭圆所截得的弦的中点为(2,1),则此椭圆方程为 16、给出下列四个命题①两条直线平行的充要条件是它们的斜率相等;②过点),(00y x 与圆222r y x =+相切的直线方程为200r y y x x =+;③平面内到两定点的距离之和等于常数的点的轨迹是椭圆;④抛物线上任意一点M 到焦点的距离等于该点M 到准线的距离。

新高二数学上期末第一次模拟试题及答案

新高二数学上期末第一次模拟试题及答案

新高二数学上期末第一次模拟试题及答案一、选择题1.在区间[]0,1上随机取两个数x ,y ,记P 为事件“23x y +≤”的概率,则(P = ) A .23B .12C .49 D .292.把“二进制”数101101(2)化为“八进制”数是( ) A .40(8)B .45(8)C .50(8)D .55(8)3.气象意义上的春季进入夏季的标志为连续5天的日平均温度不低于022C .现有甲、乙、丙三地连续5天的日平均气温的记录数据(记录数据都是正整数): ①甲地:5个数据是中位数为24,众数为22; ②乙地:5个数据是中位数为27,总体均值为24;③丙地:5个数据中有一个数据是32,总体均值为26,总体方差为10.8 则肯定进入夏季的地区有( ) A .①②③B .①③C .②③D .①4.将1000名学生的编号如下:0001,0002,0003,…,1000,若从中抽取50个学生,用系统抽样的方法从第一部分0001,0002,…,0020中抽取的号码为0015时,抽取的第40个号码为( ) A .0795B .0780C .0810D .08155.已知回归方程$21y x =+,而试验得到一组数据是(2,5.1),(3,6.9),(4,9.1),则残差平方和是( ) A .0.01B .0.02C .0.03D .0.046.把五个标号为1到5的小球全部放入标号为1到4的四个盒子中,并且不许有空盒,那么任意一个小球都不能放入标有相同标号的盒子中的概率是( ) A .320B .720C .316D .257.我国古代数学著作《九章算术》中,其意是:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升.问:米几何?右图是源于其思想的一个程序框图,若输出的2S =(单位:升),则输入k 的值为A .6B .7C .8D .98.某高校大一新生中,来自东部地区的学生有2400人、中部地区学生有1600人、西部地区学生有1000人.从中选取100人作样本调研饮食习惯,为保证调研结果相对准确,下列判断正确的有( )①用分层抽样的方法分别抽取东部地区学生48人、中部地区学生32人、西部地区学生20人;②用简单随机抽样的方法从新生中选出100人; ③西部地区学生小刘被选中的概率为150; ④中部地区学生小张被选中的概率为15000A .①④B .①③C .②④D .②③9.从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为 A .4n mB .2n mC .4mnD .2mn10.在长为10cm 的线段AB 上任取一点C ,作一矩形,邻边长分別等于线段AC 、CB 的长,则该矩形面积小于216cm 的概率为( ) A .23B .34C .25D .1311.执行如图所示的程序框图,如果输入的1a =-,则输出的S =A .2B .3C .4D .512.已知具有线性相关的两个变量,x y 之间的一组数据如下表所示:x0 1 2 3 4 y 2.24.34.54.86.7若,x y 满足回归方程 1.5ˆˆyx a =+,则以下为真命题的是( ) A .x 每增加1个单位长度,则y 一定增加1.5个单位长度 B .x 每增加1个单位长度,y 就减少1.5个单位长度 C .所有样本点的中心为(1,4.5) D .当8x =时,y 的预测值为13.5二、填空题13.已知某程序框图如图所示,则该程序运行后输出S 的值为__________.14.已知2件次品和3件正品放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束,则恰好检测四次停止的概率为_____(用数字作答).15.如图,在半径为1的圆上随机地取两点,B E ,连成一条弦BE ,则弦长超过圆内接正BCD ∆边长的概率是__________.16.某篮球运动员在赛场上罚球命中率为23,那么这名运动员在赛场上的2次罚球中,至少有一次命中的概率为______.17.执行如图所示的程序框图,若输入n 的值为8,则输出的s 的值为_____.18.某公司的班车在8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是__________ 19.执行下面的程序框图,如果输入的0.02t =,则输出的n =_______________.20.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程ˆ35yx =-,若变量x 增加一个单位时,则y 平均增加5个单位; ③线性回归方程^^^y b x a =+所在直线必过(),x y ; ④曲线上的点与该点的坐标之间具有相关关系;⑤在一个22⨯列联表中,由计算得213.079K =,则其两个变量之间有关系的可能性是0090.其中错误的是________.三、解答题21.近期,某公交公司分别推出支付宝和徽信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用x表示活动推出的天数,y表示每天使用扫码支付的人次(单位:十人次),统计数据如表l所示:表1根据以上数据,绘制了如右图所示的散点图.(1)根据散点图判断,在推广期内,(c,d均为大于零的常数)哪一个适宜作为扫码支付的人次y关于活动推出天数x的回归方程类型?(给出判断即可,不必说明理由);(2)根据(1)的判断结果及表1中的数据,求y关于x的回归方程,并预测活动推出第8天使用扫码支付的人次;参考数据:其中参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别为:.22.某校为了解校园安全教育系列活动的成效,对全校学生进行了一次安全意识测试,根据测试成绩评定“合格”、“不合格”两个等级,同时对相应等级进行量化:“合格”记5分,“不合格”记0分.现随机抽取部分学生的答卷,统计结果及对应的频率分布直方图如图所示: 等级 不合格合格得分 [)20,40[)40,60[)60,80[]80,100频数6a24b(Ⅰ)求a ,b ,c 的值;(Ⅱ)用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中随机抽取10人进行座谈.现再从这10人这任选4人,记所选4人的量化总分为ξ,求ξ的分布列及数学期望()E ξ;(Ⅲ)某评估机构以指标M (()()E M D ξξ=,其中()D ξ表示ξ的方差)来评估该校安全教育活动的成效.若0.7M ≥,则认定教育活动是有效的;否则认定教育活动无效,应调整安全教育方案.在(Ⅱ)的条件下,判断该校是否应调整安全教育方案?23.某学校艺术专业300名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),…,[80,90],并整理得到如下频率分布直方图:(1)从总体的300名学生中随机抽取一人,估计其分数小于70的概率;(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数; (3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.24.甲、乙两位同学参加数学应用知识竞赛培训,现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,记录如下:(Ⅰ)分别估计甲、乙两名同学在培训期间所有测试成绩的平均分;(Ⅱ)从上图中甲、乙两名同学高于85分的成绩中各选一个成绩作为参考,求甲、乙两人成绩都在90分以上的概率;(Ⅲ)现要从甲、乙中选派一人参加正式比赛,根据所抽取的两组数据分析,你认为选派哪位同学参加较为合适?说明理由.25.读书可以使人保持思想活力,让人得到智慧启发,让人滋养浩然正气书籍是文化的重要载体,读书是承继文化的重要方式某地区为了解学生课余时间的读书情况,随机抽取了n名学生进行调查,根据调查得到的学生日均课余读书时间绘制成如图所示的频率分布直方图,将日均课余读书时间不低于40分钟的学生称为“读书之星”,日均课余读书时间低于40分钟的学生称为“非读书之星”:已知抽取的样本中日均课余读书时间低于10分钟的有10人(1)求,n p的值;(2)根据已知条件完成下面的22⨯列联表,并判断是否有95%以上的把握认为“读书之星”与性别有关?非读书之星读书之星总计男女1055总计(3)将上述调查所得到的频率视为概率,现从该地区大量学生中,随机抽取3名学生,每次抽取1名,已知每个人是否被抽到互不影响,记被抽取的“读书之星”人数为随机变量X,E X求X的分布列和期望()附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()20P K k ≥ 0.10 0.05 0.025 0.010 0.005 0.001 0k2.7063.8415.0246.6357.87910.82826.为庆祝新中国成立70周年,某市工会组织部分事业单位职工举行“迎国庆,广播操比赛”活动.现有200名职工参与了此项活动,将这200人按照年龄(单位:岁)分组:第一组[15,25),第二组[25,35),第三组[35,45),第四组[45,55),第五组[55,65],得到的频率分布直方图如图所示.记事件A 为“从这200人中随机抽取一人,其年龄不低于35岁”,已知P (A )=0.75.(1)求,a b 的值;(2)在第二组、第四组中用分层抽样的方法抽取6人,再从这6人中随机抽取2人作为活动的负责人,求这2人恰好都在第四组中的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】由题意结合几何概型计算公式求解满足题意的概率值即可. 【详解】如图所示,01,01x y ≤≤≤≤表示的平面区域为ABCD , 平面区域内满足23x y +≤的部分为阴影部分的区域APQ ,其中2,03P ⎛⎫ ⎪⎝⎭,20,3Q ⎛⎫ ⎪⎝⎭,结合几何概型计算公式可得满足题意的概率值为1222233119 p⨯⨯==⨯.本题选择D选项.【点睛】数形结合为几何概型问题的解决提供了简捷直观的解法.用图解题的关键:用图形准确表示出试验的全部结果所构成的区域,由题意将已知条件转化为事件A满足的不等式,在图形中画出事件A发生的区域,据此求解几何概型即可.2.D解析:D【解析】【分析】先将这个二进制转化成十进制,然后除8取余数,即可得出答案.【详解】∵101101(2)=1×25+0+1×23+1×22+0+1×20=45(10).再利用“除8取余法”可得:45(10)=55(8).故答案选D.【点睛】本道题考查了不同进制数的转化,较容易,先将二进制数转化成十进制,然后转为八进制,即可. 3.B解析:B【解析】试题分析:由统计知识①甲地:5个数据的中位数为24,众数为22可知①符合题意;而②乙地:5个数据的中位数为27,总体均值为24中有可能某一天的气温低于22C o,故不符合题意,③丙地:5个数据中有一个数据是32,总体均值为26,总体方差为10.8.若由有某一天的气温低于22C o则总体方差就大于10.8,故满足题意,选C考点:统计初步4.A解析:A【解析】分析:先确定间距,再根据等差数列通项公式求结果.详解:因为系统抽样的方法抽签,所以间距为100020 50=所以抽取的第40个数为1520(401)795+⨯-=选A.点睛:本题考查系统抽样概念,考查基本求解能力.5.C解析:C【解析】【分析】【详解】因为残差,所以残差的平方和为(5.1-5)2+(6.9-7)2+(9.1-9)2=0.03.故选C.考点:残差的有关计算.6.B解析:B【解析】【分析】由题意可以分两类,第一类第5球独占一盒,第二类,第5球不独占一盒,根据分类计数原理得到答案.【详解】解:第一类,第5球独占一盒,则有4种选择;如第5球独占第一盒,则剩下的三盒,先把第1球放旁边,就是2,3,4球放入2,3,4盒的错位排列,有2种选择,再把第1球分别放入2,3,4盒,有3种可能选择,于是此时有236⨯=种选择;如第1球独占一盒,有3种选择,剩下的2,3,4球放入两盒有2种选择,此时有236⨯=种选择,得到第5球独占一盒的选择有4(66)48⨯+=种,第二类,第5球不独占一盒,先放14-号球,4个球的全不对应排列数是9;第二步放5号球:有4种选择;9436⨯=,根据分类计数原理得,不同的方法有364884+=种.而将五球放到4盒共有2454240C A⨯=种不同的办法,故任意一个小球都不能放入标有相同标号的盒子中的概率84724020 P==故选:B.【点睛】本题主要考查了分类计数原理,关键是如何分步,属于中档题.7.C解析:C 【解析】分析:执行程序框图,得到输出值4k S =,令24k=,可得8k =. 详解:阅读程序框图,初始化数值1,n S k ==,循环结果执行如下:第一次:14n =<成立,2,22k k n S k ==-=; 第二次:24n =<成立,3,263k k k n S ==-=; 第三次:34n =<成立,4,3124k k k n S ==-=; 第四次:44n =<不成立,输出24kS ==,解得8k =. 故选C.点睛:解决循环结构程序框图问题的核心在于:第一,要确定是利用当型还是直到型循环结构;第二,要准确表示累计变量;第三,要注意从哪一步开始循环,弄清进入或终止的循环条件、循环次数.8.B解析:B 【解析】分析:由题意逐一考查所给的说法是否正确即可. 详解:逐一考查所给的说法:①由分层抽样的概念可知,取东部地区学生2400100240016001000⨯=++48人、中部地区学生1600100240016001000⨯=++32人、西部地区学生1000100240016001000⨯=++20人,题中的说法正确;②新生的人数较多,不适合用简单随机抽样的方法抽取人数,题中的说法错误; ③西部地区学生小刘被选中的概率为100124001600100050=++,题中的说法正确;④中部地区学生小张被选中的概率为100124001600100050=++,题中的说法错误;综上可得,正确的说法是①③. 本题选择B 选项.点睛:本题主要考查分层抽样的概念,简单随机抽样的特征,古典概型概率公式等知识,意在考查学生的转化能力和计算求解能力.9.C解析:C 【解析】此题为几何概型.数对(,)i i x y 落在边长为1的正方形内,其中两数的平方和小于1的数落在四分之一圆内,概型为41m P n π==,所以4mnπ=.故选C . 10.C解析:C 【解析】 【分析】根据几何概型的概率公式,设AC =x ,则BC =10﹣x ,由矩形的面积S =x (10﹣x )<16可求x 的范围,利用几何概率的求解公式求解. 【详解】设线段AC 的长为xcm ,则线段CB 长为(10)cm x -, 那么矩形面积为(10)16x x -<,2x <或8x >,又010x <<, 所以该矩形面积小于216cm 的概率为42105=. 故选:C 【点睛】本题考查几何概型,考查了一元二次不等式的解法,明确测度比为长度比是关键,是中档题.11.B解析:B 【解析】 【详解】阅读流程图,初始化数值1,1,0a k S =-==. 循环结果执行如下:第一次:011,1,2S a k =-=-==; 第二次:121,1,3S a k =-+==-=; 第三次:132,1,4S a k =-=-==; 第四次:242,1,5S a k =-+==-=; 第五次:253,1,6S a k =-=-==; 第六次:363,1,7S a k =-+==-=, 结束循环,输出3S =.故选B.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.求解时,先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,如:是求和还是求项.12.D解析:D 【解析】 【分析】利用回归直线过样本点中心可求回归方程,根据该方程可得正确的选项. 【详解】由$$1.5y x a=+,得x 每增一个单位长度,y 不一定增加1.5,而是大约增加1.5个单位长度,故选项,A B 错误; 由已知表格中的数据,可知0123425x ++++==,2.2 4.3 4.5 4.8 6.74.55y ++++==,Q 回归直线必过样本的中心点()2,4.5,故C 错误;又4.5 1.52 1.5ˆˆa a =⨯+⇒=,∴回归方程为$1.5 1.5y x =+, 当8x =时,y 的预测值为1.58 1.513.5⨯+=,故D 正确, 故选:D. 【点睛】本题考查线性回归方程的性质及应用,注意回归直线过(),x y ,本题属于基础题.二、填空题13.【解析】【分析】执行程序框图依次写出每次循环得到的Si 的值当i =2019时不满足条件退出循环输出S 的值为【详解】执行程序框图有S =2i =1满足条件执行循环Si =2满足条件执行循环Si =3满足条件执行解析:12-【解析】 【分析】执行程序框图,依次写出每次循环得到的S ,i 的值,当i =2019时,不满足条件2018i ≤退出循环,输出S 的值为12-. 【详解】 执行程序框图,有 S =2,i =1满足条件2018i ≤ ,执行循环,S 3=-,i =2满足条件2018i ≤ ,执行循环,S 12=-,i =3 满足条件2018i ≤ ,执行循环,S 13=,i =4 满足条件2018i ≤ ,执行循环, S =2,i =5 …观察规律可知,S 的取值以4为周期,由于2018=504*4+2,故有: S 12=-, i =2019, 不满足条件2018i ≤退出循环,输出S 的值为12-, 故答案为12-. 【点睛】本题主要考查了程序框图和算法,其中判断S 的取值规律是解题的关键,属于基本知识的考查.14.【解析】由题意可知2次检测结束的概率为3次检测结束的概率为则恰好检测四次停止的概率为解析:35【解析】由题意可知,2次检测结束的概率为22225110A p A ==,3次检测结束的概率为31123232335310A C C A p A +==, 则恰好检测四次停止的概率为231331110105p p p =--=--=. 15.【解析】【分析】取圆内接等边三角形的顶点为弦的一个端点当另一端点在劣弧上时求出劣弧的长度运用几何概型的计算公式即可得结果【详解】记事件{弦长超过圆内接等边三角形的边长}如图取圆内接等边三角形的顶点为解析:13【解析】 【分析】取圆内接等边三角形BCD 的顶点B 为弦的一个端点,当另一端点在劣弧CD 上时,BE BC >,求出劣弧CD 的长度,运用几何概型的计算公式,即可得结果.【详解】记事件A ={弦长超过圆内接等边三角形的边长},如图,取圆内接等边三角形BCD 的顶点B 为弦的一个端点, 当另一端点在劣弧CD 上时,BE BC >, 设圆的半径为r ,劣弧CD 的长度是23rπ, 圆的周长为2r π,所以()21323rP A r ππ==,故答案为13. 【点睛】本题主要考查“长度型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与长度有关的几何概型问题关鍵是计算问题的总长度以及事件的长度;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误 ;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误.16.【解析】【分析】利用对立事件概率计算公式直接求解【详解】某篮球运动员在赛场上罚球命中率为这名运动员在赛场上的2次罚球中至少有一次命中的概率为故答案为【点睛】本题考查概率的求法考查对立事件概率计算公式解析:89【解析】 【分析】利用对立事件概率计算公式直接求解. 【详解】某篮球运动员在赛场上罚球命中率为23, ∴这名运动员在赛场上的2次罚球中,至少有一次命中的概率为022181()39p C =-=. 故答案为89. 【点睛】本题考查概率的求法,考查对立事件概率计算公式等基础知识,考查运算求解能力,是基础题.17.8【解析】【分析】根据程序框图知该程序的功能是计算并输出变量的值模拟程序的运行过程即可求解【详解】当时满足循环条件当时满足循环条件当时满足循环条件;当时不满足循环条件跳出循环输出故填【点睛】本题主要解析:8 【解析】 【分析】根据程序框图知,该程序的功能是计算并输出变量s 的值,模拟程序的运行过程即可求解. 【详解】当2i =时,满足循环条件,2,4,2s i k ===, 当4i =时,满足循环条件,4,6,3s i k === , 当6i =时,满足循环条件,8,8,4s i k ===; 当8i =时,不满足循环条件,跳出循环,输出8s =. 故填8. 【点睛】本题主要考查了程序框图,循环结构,属于中档题.18.【解析】【分析】求出小明等车时间不超过10分钟的时间长度代入几何概型概率计算公式可得答案【详解】设小明到达时间为当在7:50至8:00或8:20至8:30时小明等车时间不超过10分钟故故答案为【点睛解析:12【解析】 【分析】求出小明等车时间不超过10分钟的时间长度,代入几何概型概率计算公式,可得答案. 【详解】设小明到达时间为y ,当y 在7:50至8:00,或8:20至8:30时, 小明等车时间不超过10分钟, 故201402P ==. 故答案为12. 【点睛】本题考查的知识点是几何概型,难度不大,属于基础题.19.【解析】分析:由已知中的程序框图可知该程序的功能是利用循环结构计算并输出变量的值模拟程序运行过程分析循环变量值的变化规律即可求解答案详解:执行如图所示的程序框图:第一次循环:满足条件;第二次循环:满解析:【解析】分析:由已知中的程序框图可知,该程序的功能是利用循环结构计算并输出变量n 的值,模拟程序运行过程,分析循环变量值的变化规律,即可求解答案.详解:执行如图所示的程序框图: 第一次循环:11,,124S m n ===,满足条件; 第二次循环:11,,248S m n ===,满足条件; 第三次循环:11,,3816S m n ===,满足条件; 第四次循环:11,,41632S m n ===,满足条件; 第五次循环:11,,53264S m n ===,满足条件; 第六次循环:11,,664128S m n ===,不满足条件,推出循环,此时输出6n =; 点睛:本题主要考查了循环结构的程序框图的运行与结果出的输出问题,解题是应模拟程序框图的运行过程,以便得出正确的计算结果,同时注意判断框的条件是解答的关键,着重考查了推理与运算能力.20.②④⑤【解析】分析:根据方程性质回归方程性质及其含义卡方含义确定命题真假详解:由方差的性质知①正确;由线性回归方程的特点知③正确;回归方程若变量增加一个单位时则平均减少5个单位;曲线上的点与该点的坐解析:②④⑤ 【解析】分析:根据方程性质、回归方程性质及其含义、卡方含义确定命题真假. 详解:由方差的性质知①正确;由线性回归方程的特点知③正确;回归方程ˆ35yx =-中若变量x 增加一个单位时,则y 平均减少5个单位; 曲线上的点与该点的坐标之间不一定具有相关关系;在一个22⨯列联表中,由计算得213.079K =,只能确定两个变量之间有相关关系的可能性,所以②④⑤均错误.点睛:本题考查方程性质、回归方程性质及其含义、卡方含义,考查对基本概念理解与简单应用能力.三、解答题21.(1)(2)【解析】 【分析】(1) 根据散点图判断,适宜;(2),两边同时取常用对数得:,根据公式得到均值和系数即可得到公式,再代入x=8可得到估计值. 【详解】(1)根据散点图判断,适宜作为扫码支付的人数关于活动推出天数的回归方程类型; (2),两边同时取常用对数得:;设,,把样本中心点代入,得: ,,,关于的回归方程式:;把代入上式,; 活动推出第天使用扫码支付的人次为;【点睛】本题考查回归分析,考查线性回归直线过样本中心点,在一组具有相关关系的变量的数据间,这样的直线可以画出许多条,而其中的一条能最好地反映x 与Y 之间的关系,这条直线过样本中心点.线性回归方程适用于具有相关关系的两个变量,对于具有确定关系的两个变量是不适用的, 线性回归方程得到的预测值是预测变量的估计值,不是准确值. 22.(1)18,12a b ==,0.015c =;(2)(3)见解析. 【解析】试题分析:(1)利用频率分布直方图的性质即可得出;(2)从评定等级为“合格”和“不合格”的学生中随机抽取10人进行座谈,其中“不合格”的学生2410460⨯= ,则“合格”的学生数=6.由题意可得ξ=0,5,10,15,20.利用“超几何分布列”的计算公式即可得出概率,进而得出分布列与数学期望;(3)利用D ξ计算公式即可得出,可得()()E M D ξξ=,即可得出结论.试题解析:(1)由频率分布直方图可知,得分在[)20,40的频率为0.005200.1⨯=, 故抽取的学生答卷数为:6600.1=, 又由频率分布直方图可知,得分在[]80,100的频率为0.2, 所以600.212b =⨯=,又2460b a b +++=,得30a b +=, 所以18a =.180.0156020c ==⨯.(2)“不合格”与“合格”的人数比例为24:36=2:3,因此抽取的10人中“不合格”有4人,“合格”有6人. 所以ξ有20,15,10,5,0共5种可能的取值.ξ的分布列为:()()()431226646444410101018320,15,1014217C C C C C P P P C C C ξξξ=========,()()134644441010415,035210C C C P P C C ξξ======.ξ的分布列为:所以()20151050121421735210E ξ=⨯+⨯+⨯+⨯+⨯=. (3)由(2)可得()()()()()()2222218341201215121012512012161421735210D ξ=-⨯+-⨯+-⨯+-⨯+-⨯=, 所以()()120.750.716E M D ξξ===>, 故我们认为该校的安全教育活动是有效的,不需要调整安全教育方案. 23.(1)0.4 (2)15人 (3)3∶2 【解析】 【分析】(1)根据频率分布直方图求出样本中分数小于70的频率,用频率估计概率值; (2)计算样本中分数小于50的频率和频数,估计总体中分数在区间[40,50)内的人数; (3)由题意计算样本中分数不小于70的学生人数以及男生、女生人数,求男生和女生人数的比例. 【详解】解:(1)根据频率分布直方图可知,样本中分数不小于70的频率为(0.02+0.04)×10=0.6,所以样本中分数小于70的频率为1-0.6=0.4.所以从总体的300名学生中随机抽取一人,其分数小于70的概率估计值为0.4. (2)根据题意,样本中分数不小于50的频率为 (0.01+0.02+0.04+0.02)×10=0.9, 故样本中分数小于50的频率为0.1,故分数在区间[40,50)内的人数为100×0.1-5=5. 所以总体中分数在区间[40,50)内的人数估计为530015100⨯=.(3)由题意可知,样本中分数不小于70的学生人数为 (0.02+0.04)×10×100=60,所以样本中分数不小于70的男生人数为160302⨯=. 所以样本中的男生人数为30×2=60, 女生人数为100-60=40,男生和女生人数的比例为60∶40=3∶2.所以根据分层抽样原理,总体中男生和女生人数的比例估计为3∶2. 【点睛】本题考查了频率分布直方图的应用问题,也考查了分层抽样原理应用问题,属于中档题. 24.(Ⅰ)85x x ==甲乙(Ⅱ)12(Ⅲ)见解析 【解析】 【分析】(Ⅰ)由茎叶图中的数据计算x 甲、x 乙,进而可得平均分的估计值; (Ⅱ)求出基本事件数,计算所求的概率值;(Ⅲ)答案不唯一.从平均数与方差考虑,派甲参赛比较合适;从成绩优秀情况分析,派乙参赛比较合适. 【详解】(Ⅰ)由茎叶图中的数据,计算()17879818284889395858x =⨯+++++++=甲, ()17176808590919295858x =⨯+++++++=乙,由样本估计总体得,甲、乙两名同学在培训期间所有测试成绩的平均分分别均约为85分.(Ⅱ)从甲、乙两名同学高于85分的成绩中各选一个成绩,基本事件是113412C C ⋅=,甲、乙两名同学成绩都在90分以上的基本事件为11236C C ⋅=,故所求的概率为61122P ==. (Ⅲ)答案不唯一.派甲参赛比较合适,理由如下: 由(Ⅰ)知,85x x ==甲乙,()()()()()2222221788579858185828584858s ⎡=-+-+-+-+-+⎣甲()()()22288859385958535.5⎤-+-+-=⎦,264s =乙,因为x x =甲乙,22s s <甲乙,所有甲的成绩较稳定,派甲参赛比较合适;。

2023-2024学年高二数学上学期期末模拟考试01(全解全析)(含答案)

2023-2024学年高二数学上学期期末模拟考试01(全解全析)(含答案)

2023-2024学年上学期期末模拟考试01高二数学(答案在最后)(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:空间向量与立体几何、直线与圆的方程、圆锥曲线、数列。

5.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.直线10x -=的倾斜角是()A .π6B .π3C .2π3D .5π6【答案】D【分析】根据已知条件,结合直线的倾斜角与斜率的关系,即可求解.【详解】设直线的倾斜角为θ,0πθ≤<,直线10x -=可化为y =所以直线的斜率tan k θ==5π6θ∴=,故选:D .2.已知)1,2n x =,(2n =--分别是平面,αβ的法向量,若//αβ,则x =()A.7-B.1-C.1D.7【答案】B【解析】【分析】利用平面平行可得法向量平行,列出等式即可求解【详解】因为)1,2n x =,(2n =--分别是平面,αβ的法向量,且//αβ,所以12//n n,即33==-,解得=1x -故选:B3.设等比数列{}n a 的前n 项和为n S ,若22a =,且2a ,3a ,42a -成等差数列,则4S =()A .7B .12C .15D .31【答案】C【分析】设出公比,根据2a ,3a ,42a -成等差数列列出方程,求出公比,利用等比数列求和公式得到答案.【详解】设公比为()0q q ≠,因为2a ,3a ,42a -成等差数列,所以32422a a a =+-,则222222q q ⨯=+-,解得:2q =或0(舍去).因为22a =,所以11a =,故44121512S -==-.故选:C4.设R a ∈,则“1a =”是“直线()130a x ay +++=与直线250ax y +-=平行”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【分析】根据直线平行的条件和充分必要条件的概念可判断结果.【详解】因为直线(1)30a x ay +++=与直线250ax y +-=平行的充要条件是212a a +=且5(1)6a a -+≠,解得1a =或12a =-.所以由充分必要条件的概念判断可知:“1a =”是“直线()130a x ay +++=与直线250ax y +-=平行”的充分不必要条件,故选:A5.如图,在四面体OABC 中,,,OA a OB b OC c ===.点M 在OA 上,且2,OM MA N =为BC中点,则MN等于()A.121232a b c -+B.211322a b c-++C.111222a b c +- D.221332a b c +- 【答案】B 【解析】【分析】连接ON ,利用空间向量基本定理可得答案.【详解】连接()12211,23322ON MN ON OM OB OC OA a b c =-=+-=-++.故选:B.6.已知圆1C :221x y +=与圆2C :22860+-++=x y x y m 相内切,则1C 与2C 的公切线方程为()A.3450x y --=B.3450x y -+=C.4350x y --=D.4350x y -+=【答案】D 【解析】【分析】由两圆的位置关系得出m ,进而联立两圆方程得出公切线方程.【详解】圆1C :221x y +=的圆心11(0,0),1O r =,圆2C :22860+-++=x y x y m 可化为22(4)(3)25x y m -++=-,()25m <,则其圆心为2(4,3)O -,半径为2r =,因为圆1C 与圆2C 相内切,所以2121r O O -=,即216r ==,故11m =-.由2222186110x y x y x y ⎧+=⎨+-+-=⎩,可得4350x y -+=,即1C 与2C 的公切线方程为4350x y -+=.故选:D7.已知数列{}n a 满足1112n n n n n a a a a ++--=,且21a =-,若816k a a =,则正整数k 为()A .13B .12C .11D .10【答案】B 【分析】确定111112n n n a a -+-=,112a =-,利用累加法确定22n n a -=-,代入计算得到答案.【详解】1112n n n n n a a a a ++--=,故111112n n n a a -+-=,21a =-,故112a =-,212112111111111111112222n n n n n n n n a a a a a a a a -----⎛⎫⎛⎫⎛⎫=-+-++-+=+++-=- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ .故22n n a -=-,816k a a =,即261021622k --=-⨯=-,故210k -=,解得12k =.故选:B8.已知F 为椭圆C :()222210x y a b a b+=>>的右焦点,P 为C 上的动点,过F 且垂直于x 轴的直线与C 交于M ,N 两点,若MN 等于PF 的最小值的3倍,则C 的离心率为()A.13B.12C.3D.2【答案】B 【解析】【分析】根据椭圆的性质以及通径,可得minPF a c =-,22b MN a=,再根据已知列式,结合椭圆a b c 、、的关系,求出离心率即可.【详解】F 为椭圆C :()222210x y a b a b+=>>的右焦点,P 为C 上的动点,由椭圆的性质,可得minPFa c =-.过F 且垂直于x 轴的直线与C 交于M ,N 两点,22b MN a∴=.MN 等于PF 的最小值的3倍,()223a b ac =∴-.椭圆中222a c b -=,()222233a c a ac ∴-=-,即22230c ac a -+=,则22222230c ac a a a a -+=.ce a=,22310e e ∴-+=,解得12e =或1e =(舍).故选:B.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知曲线1C :224348x y +=,2C :2213yx -=,则()A.1C 的长轴长为4B.2C 的渐近线方程为y =C.1C 与2C 的焦点坐标相同D.1C 与2C 的离心率互为倒数【答案】BD 【解析】【分析】根据椭圆与双曲线的标准方程,结合它们的几何性质逐项判断即可.【详解】曲线1C :224348x y +=整理得2211216x y+=,则曲线1C 是焦点在y 轴上的椭圆,其中221116,12a b ==,所以2221114c a b =-=,离心率为1112142c e a ===故曲线1C 的长轴长128a =,故A 不正确;曲线2C :2213y x -=是焦点在x 轴上的双曲线,其中22221,3a b ==,所以2222224c a b =+=,离心率为222221c e a ===,故与曲线1C 的焦点位置不同,故C 不正确;2C :2213y x -=的渐近线方程为y =,故B 正确;又121212e e ⋅=⨯=,所以1C 与2C 的离心率互为倒数,故D 正确.故选:BD.10.已知等差数列{}n a 的前n 项和为n S ,若23240,0S S ><,则下列结论错误的是()A .数列{}n a 是递增数列B .130a >C .当n S 取得最大值时,13n =D .1312a a >【答案】ABC【分析】由已知23240,0S S ><,利用等差数列求和公式与等差数列的性质可得:120a >,12130a a +<,进而判断选项即可.【详解】因为{}n a 是等差数列,且23240,0S S ><,所以()12312232302a a a +=>,()()()1241241213242412022a a a a a a ++==+<,即12130a a +<,所以120a >,130a <,且1312a a >,所以B 错误,D 正确;因为13120d a a =-<,所以等差数列{}n a 是递减数列,所以A 错误;所以当12n =时,n S 取得最大值,所以C 错误.故选:ABC11.如图,在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为11A B ,AB 的中点,则下列结论正确的是()A.点B 到直线11A CB.直线CF 到平面1AEC 的距离为3C.直线11A C 与平面1AEC 所成角的余弦值为6D.直线11A C 与直线1B F 所成角的余弦值为10【答案】ABD 【解析】【分析】以D 为坐标原点,建立空间直角坐标系,利用向量法即可结合选项逐一求解.【详解】在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为11A B ,AB 的中点,以D 为坐标原点,建立空间直角坐标系,如图,(2B ,2,0),1(2A ,0,2),1(0C ,2,2),1(0A B = ,2,2)-,11(2A C =-,2,0),则点B 到直线11A C 的距离为:21||d A B==A正确;(2A,0,0),(2F,1,0),(2E,1,2),(0C,2,0),(2CF=,1-,0),(0AE=,1,2),1(2AC=-,2,2),(0AF=,1,0),设平面1AEC的法向量(n x= ,y,)z,则1202220n AE y zn AC x y z⎧⋅=+=⎪⎨⋅=-++=⎪⎩,取1x=,得(1n=,2,1)-,由于,E F分别为11,A B AB的中点,所以1//EF CC且1EF CC=,因此四边形1FCC E为平行四边形,故1//EC FC,又⊄FC平面1AEC,1EC⊂平面1AEC,所以//CF平面1AEC,∴直线CF到平面1AEC的距离为||||3AF ndn⋅===,故B正确;设直线11A C与平面1AEC所成角为θ,则1111||sin||||A C nA C nθ⋅==⋅C错误;1(2B,2,2),1(0B F=,1-,2)-,设直线11A C与直线1B F所成角为θ,则111111||cos||||AC B FAC B Fθ⋅==⋅,故D正确.故选:ABD.12.如图的形状出现在南宋数学家杨辉所著的《详解九章算法·商功》中,后人称为“三角垛”.“三角垛”最上层有1个球,第二层有3个球,第三层有6个球,…设第n层有n a个球,从上往下n层球的总数为n S,则下列结论正确的是()A.420S= B.1n n na a+-=C.()112n n n n S S -+-=,2n ≥ D.1232023111120231012a a a a +++⋅⋅⋅+=【答案】ACD 【解析】【分析】根据每层球数变化规律可直接求解得到AB 正误;利用累加法可求得C 正确;采用裂项相消法可求得D 正确.【详解】对于A ,123441361020S a a a a =+++=+++=,A 正确;对于B ,由每层球数变化规律可知:()11n n a a n n *+-=+∈N ,B 错误;对于C ,当2n ≥时,()()()()()11221111212n n n n n n n a a a a a a a a n n ---+=-+-+⋅⋅⋅+-+=+-+⋅⋅⋅++=;当1n =时,11a =满足()12n n n a +=,()()12n n n a n *+∴=∈N ;()()1122n n n n n S S a n -+∴-==≥,C 正确;对于D ,()1211211n a n n n n ⎛⎫==- ⎪++⎝⎭,123202311111111112121223202320242024a a a a ⎛⎫⎛⎫∴+++⋅⋅⋅+=⨯-++⋅⋅⋅+-=⨯- ⎪⎝⎭⎝⎭20231012=,D 正确.故选:ACD.第Ⅱ卷三、填空题:本题共4小题,每小题5分,共20分.13.已知四棱锥P ABCD -的底面ABCD 是平行四边形,若PD xPA yPB zPC =++ ,则xyz =______.【答案】1-【解析】【分析】根据空间向量的运算及空间向量基本定理得答案.【详解】因为四棱锥P ABCD -的底面ABCD 是平行四边形,所以PD PA AD PA BC PA PC PB =+=+=+- ,又PD xPA yPB zPC =++,由空间向量基本定理可得,1,1,1x y z ==-=,故1xyz =-.故答案为:1-.14.已知数列{}n a 的前n 项和为n S ,若21n n S a =+,则n a =________.【答案】12n --【解析】【分析】先令1n =得到11a =-,再令2n ≥得到1121n n S a --=+,从而得到()122nn a n a -=≥为常数,得到数列{}n a 是首项为1-,公比为2的等比数列,从而直接求得通项公式.【详解】令1n =,得11121a S a ==+,所以11a =-;令2n ≥,则1121n n S a --=+,两式相减得,1122n n n n S S a a ---=-,即122n n n a a a -=-,所以()122n n a a n -=≥,因为110a =-≠,所以0n a ≠,所以()122nn a n a -=≥为常数,所以数列{}n a 是首项为1-,公比为2的等比数列,所以11122n n n a --=-⨯=-.故答案为:12n --15.如图是一座抛物线型拱桥,拱桥是抛物线的一部分且以抛物线的轴为对称轴,当水面在l 时,拱顶离水面2米,水面宽4米.当水位下降,水面宽为6米时,拱顶到水面的距离为______米.【答案】4.5##92【解析】【分析】建立平面直角坐标系,设抛物线方程为2x my =,求出抛物线的方程,再代点的坐标即得解.【详解】如图,建立平面直角坐标系,设抛物线方程为2x my =,将()2,2A -代入2x my =,得2m =-,所以22x y =-.设()03,B y ,代入092y =-,得0 4.5y =-.所以拱桥到水面的距离为4.5m .故答案为:4.5.16.如图,我们把由半椭圆()2210169y x x +=≤和半椭圆()22102516x y x +=>合成的曲线称作“果圆”.1F ,2F ,3F 是相应半椭圆的焦点,则123F F F 的周长为______,直线y t =与“果圆”交于A ,B 两点,且AB 中点为M ,点M 的轨迹方程为______.【答案】①.8+②.()221016y x x +=>【解析】【分析】根据各半椭圆方程可得1F ,2F ,3F 的坐标,再根据两点间距离公式求得距离及周长;分别表示点A ,B 的坐标,利用中点公式表示M ,消参即可得到点M ,得轨迹方程.【详解】由1F ,2F ,3F 是相应半椭圆的焦点,可得(1F,(20,F ,()33,0F ,所以12F F =,134F F =,234F F =,故所求周长为448++=+;设(),M x y ,联立直线y t =与()2210169y xx +=≤,得x =-,即点A t ⎛⎫⎪⎝⎭,联立直线y t =与()22102516x yx +=>,得x =即点B t ⎫⎪⎭,且,A B 不重合,即4t ≠,又M 为AB 中点,所以1644242x t ty t ⎧⎪==⎪⎨⎪+==⎪⎩,即x =0x >,整理可得22116yx +=,0x >,故答案为:8+,()221016y x x +=>.四、解答题:本题共6小题,共70分.第17题10分,其他每题12分,解答应写出文字说明、证明过程或演算步骤.17.(10分)已知ABC D 的顶点坐标为(1,1)A -,(2,0)B ,(3,4)C .(1)求AB 边上的高CD 的长.(2)求ABC D 的面积.【答案】(1)10(2)13 2【分析】(1)求出直线AB的方程,利用点到直线的距离即可求解;(2)求出AB的长,用面积公式即可求解.【详解】(1)由题意,直线AB的方程为:021012y x--=---,即320x y+-=.故点C到直线AB的距离即为AB边上的高CD的长,所以||CD=(2)因为||AB==所以ABCD的面积为:111313||||22102ABCS AB CD==创=.18.(12分)已知数列{}n a是等差数列,{}n b是各项均为正数的等比数列,数列{}n b的前n项和为n S,且111a b==,221a b=+,43a S=.(1)求数列{}n a,{}n b的通项公式;(2)令()*,21,2nnna n kc kb n k=-⎧=∈⎨=⎩N,求数列{}n c的前12项和12T.【答案】(1)21na n=-,12nnb-=(2)2796【解析】【分析】(1)由数列{}n a是等差数列,{}n b是各项均为正数的等比数列,设出公差和公比,根据题意列出方程组求解即可;(2)根据题意写出数列{}n c通项公式,用分组求和法,结合等差等比求和公式求解即可.【小问1详解】设数列{}n a 的公差为d ,数列{}n b 的公比为()0q q >,由题意可得,()11211131a d b q a d b q q +=+⎧⎪⎨+=++⎪⎩,即23d q q q d =⎧⎨+=⎩,所以220q q -=,因为0q >,所以2d q ==,所以()12121n a n n =+-=-,11122n n n b --=⨯=.【小问2详解】由(1)可得*121,21,2,2n n n n k c k n k--=-⎧=∈⎨=⎩N ,所以{}n c 的所有奇数项组成以1为首项,4为公差的等差数列;所有偶数项组成以2为首项,4为公比的等比数列.所以,()()1213112412T c c c c c c =+++++++ ()()13112412a a a b b b =+++++++ ()()62146616146627302796214⨯-⨯-=⨯+⨯+=+=-.19.(12分)已知直线20x y --=经过抛物线C :()220y px p =>的焦点F ,且与C 交于A ,B两点.(1)求C 的方程;(2)求圆心在x 轴上,且过A ,B 两点的圆的方程.【答案】(1)28y x =;(2)()221096x y -+=.【解析】【分析】(1)求出抛物线的焦点坐标,代入直线方程即可求解作答.(2)根据给定条件,求出线段AB 的中垂线方程,再求出圆心坐标及半径作答.【小问1详解】依题意,抛物线C 的焦点(,0)2p F 在直线20x y --=上,则202p-=,解得4p =,所以C 的方程为28y x =.【小问2详解】由(1)知,抛物线C 的准线方程为2x =-,设()11,A x y ,()22,B x y ,AB 的中点为00(,)M x y ,由2208x y y x --=⎧⎨=⎩消去y 得21240x x -+=,则1212x x +=,有12062x x x +==,0024y x =-=,即()6,4M ,因此线段AB 的中垂线方程为()46y x -=--,即10y x =-+,令0y =,得10x =,设所求圆的圆心为E ,则()10,0E ,又AB 过C 的焦点F ,则有12||||2216AB AF BF x x =+=+++=,设所求圆的半径为r ,则222222844962AB r ME ⎛⎫=+=++= ⎪⎝⎭,故所求圆的方程为()221096x y -+=.20.(12分)已知数列{}n a 的前n 项和22n n S a =-.(1)证明{}n a 是等比数列,并求{}n a 的通项公式;(2)在n a 和1n a +之间插入n 个数,使这2n +个数组成一个公差为n d 的等差数列,求数列1n d ⎧⎫⎨⎬⎩⎭的前n 项和n T .【答案】(1)证明见解析,2n n a =(2)332nn +-【解析】【分析】(1)利用1(2)n n n a S S n -=-≥及已知即可得到证明,从而求得通项公式;(2)先求出通项112n n n d +=,再利用错位相减法求和即可.【小问1详解】因为22n n S a =-,当2n ≥时,1122n n S a --=-,所以,当2n ≥时,12n n a a -=,又1122a a =-,解得12a =,所以{}n a 是以2为首项,2为公比的等比数列,故2nn a =【小问2详解】因为2nn a =,所以1211nn n n a a d n n +-==++,112n nn d +=,21211111123(1)222n n n T n d d d =+++=⨯+⨯+++⨯ ,231111123(1)2222n n T n +=⨯+⨯+++⨯ ,所以231111111(1)22222n n n T n +=++++-+⨯ 211111(1)13112211222212n n n n n n -++-++=+-=---13322n n ++=-,所以332n nn T +=-21.(12分)如图,在四棱锥P ABCD -中,PC ⊥底面ABCD ,四边形ABCD 是直角梯形,AD DC ⊥,//AB DC ,222PC AB AD CD ====,点E 在棱PB上.(1)证明:平面EAC ⊥平面PBC ;(2)当2BE EP =时,求二面角P AC E --的余弦值.【答案】(1)证明见解析(2)3【解析】【分析】(1)由线面垂直得到线线垂直,求出各边长,由勾股定理逆定理得到AC BC ⊥,从而证明出线面垂直,面面垂直;(2)解法一:以C 为原点,CB ,CA ,CP 所在直线分别为x 轴,y 轴,z 轴,建系,写出点的坐标及平面的法向量,求出二面角的余弦值;解法二:取AB 的中点G ,连接CG ,以点C 为原点,CG ,CD ,CP 所在直线分别为x 轴,y 轴,z 轴,建系,写出点的坐标及平面的法向量,求出二面角的余弦值;【小问1详解】因为PC ⊥底面ABCD ,AC ⊂平面ABCD ,所以PC AC ⊥.因为2AB =,1AD CD ==,所以AC BC ==所以222AC BC AB +=,所以ACBC ⊥.又因为PC BC C ⋂=,PC ⊂平面PBC ,BC ⊂平面PBC ,所以AC ⊥平面PBC .又AC ⊂平面EAC ,所以平面EAC ⊥平面PBC .【小问2详解】解法一:以点C 为原点,CB ,CA ,CP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则()0,0,0C ,)B,()A ,()002P ,,.设点E 的坐标为(),,x y z ,因为2BE EP =,所以()(),2,,2x y z x y z =---,即3x =,0y =,43z =,所以4,0,33E ⎛⎫ ⎪ ⎪⎝⎭.所以()CA =,4,0,33CE ⎛⎫= ⎪ ⎪⎝⎭.设平面ACE 的一个法向量为(),,n x y z = ,则00n CA n CE ⎧⋅=⎪⎨⋅=⎪⎩.所以04033x z =+=⎪⎩,取x =0y =,1z =-.所以平面ACE的一个法向量为()1n =-.又因为BC ⊥平面PAC ,所以平面PAC的一个法向量为)CB =.设平面PAC 与平面ACE 的夹角为θ,则cos cos ,3n CB θ==.所以,平面PAC 与平面ACE 夹角的余弦值为223.解法二:取AB 的中点G ,连接CG ,以点C 为原点,CG ,CD ,CP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则()0,0,0C ,()1,1,0B -,()1,1,0A ,()002P ,,.设点E 的坐标为(),,x y z ,因为2BE EP =,所以()()1,1,2,,2x y z x y z -+=---,即13x =,13y =-,43z =,所以114,,333E ⎛⎫- ⎪⎝⎭.所以()1,1,0CA =,114,,333CE ⎛⎫=- ⎪⎝⎭.设平面ACE 的一个法向量为(),,n x y z = ,则00n CA n CE ⎧⋅=⎪⎨⋅=⎪⎩.所以01140333x y x y z +=⎧⎪⎨-+=⎪⎩,取3x =,则=3y -,32z =-.所以,平面ACE 的一个法向量为33,3,2n ⎛⎫=-- ⎪⎝⎭ .又因为BC ⊥平面PAC ,所以平面PAC 的一个法向量为()1,1,0CB =-.设平面PAC 与平面ACE 的夹角为θ,则cos cos ,3n CB θ===.所以,平面PAC 与平面ACE 夹角的余弦值为322.(12分)已知椭圆C :()222210x y a b a b+=>>的左、右焦点分别为1F ,2F (1210F F<),上顶点为A ,12AF AF ⊥,且1F 到直线l :50x -+=的距离为3.(1)求C 的方程;(2)与l 平行的一组直线与C 相交时,证明:这些直线被C 截得的线段的中点在同一条直线上;(3)P 为C 上的动点,M ,N 为l 上的动点,且MN =,求PMN ∆面积的取值范围.【答案】(1)2212x y +=(2)证明见解析(3)[]3,7.【解析】【分析】(1)由题意,根据椭圆的顶点坐标以及点到直线距离公式,可得答案;(2)由两直线的平行关系,设出直线方程,联立方程,利用韦达定理,表示出中点坐标,可得答案;(3)根据直线的平移,取与椭圆相切是的临界点,利用三角形的面积公式,可得答案.【小问1详解】设()1 , 0F c -,()2 , 0F c,由题意得22235b c a b c c =⎧==+⎪⎪<⎩,解得1b c a ==⎧⎪⎨=⎪⎩,所以C 的方程为2212x y +=.【小问2详解】证明:设这组平行线的方程为0x m +=,与2212x y +=联立消去x ,得22420y m -+-=,则()()221620m ∆=-->,得22m -<<.设直线0x m +=被C 截得的线段的中点为(),B x y ,则1224y y y m +==,其中1y ,2y是方程22420y m -+-=的两个实数根.所以2mxm =-=-,消去m,得0x +=,所以这些直线被C截得的线段的中点均在直线0x =上.【小问3详解】由(2)知,l 与C 相离,当直线0x m +=与C相切时,()()221620m ∆=--=,解得2m =-或2m =.当2m =-时,直线与l的距离为1733d ==,此时1723PMN S =⨯=△,当2m =时,直线与l的距离为2d ==,此时132PMN S =⨯=△,。

高二上期期末检测数学模拟试题(解析版)

高二上期期末检测数学模拟试题(解析版)

高二上期期末检测模拟试题数学 试题第Ⅰ卷一、单选题(本大题共8小题,共40分。

在每小题列出的选项中,选出符合题目的一项) 1、若直线3y=−的倾斜角为α,则α= ( )A. 0oB. 60oC. 90oD. o 180【答案】B2、已知(2,1,3)AB =− ,(1,4,2)AC =−−,(5,6,)AD λ=− ,若A ,B ,C ,D 四点共面,则实数λ=( ) A.5 B.6 C.7 D.8【答案】D解析:由题意,得存在实数x ,y ,使得AD x AB y AC =+ 成立,即(5,6,)(2,1,3)(1,4,2)x y λ−=−+−−,所以52,64,32,x y x y x y λ=−−=−+ =− 解得2,1,8,x y λ= =− = 故选D. 3、记等差数列{}n a 的前n 项和为n S ,若535S S =,且348a a +=,则5a 的值为( ) A.3 B.5 C.7 D.10【答案】C解析:由535S S =,且21(21)n n S n a −=−,得()312355a a a a =++,所以120a a +=,设等差数列{}n a 的公差为d ,则()()341248a a a a d +−+==,所以121d a ==−,,所以5147a a d =+=. 4、斜率为l 过抛物线2:2(0)C y px p =>的焦点F ,若l 与圆22:(2)4M x y −+=相切,则p =( ) A .12 B .8 C .10 D .6【答案】A5、在等比数列{}n a 中,若()57134a a a a +=+,则62a a =( )A .14B .12C .2D .4【答案】D解析:()57134a a a a +=+,则44q = ,∴4624a q a ==故选:D 6、方程||1x −=( )A.一个圆B. 两个圆C.一个半圆D.两个半圆答案:D7、设数列{}n a 为等差数列,其前n 项和为n S ,已知14725899,93a a a a a a ++=++=,若对任意*N n ∈都有n k S S ≤成立,则k 的值为( ) A.22 B.21 C.20 D.19【答案】C9、下列四个选项中,正确的是( ) A.数列的图象是一群孤立的点【答案】ACD解析:因为数列是一类特殊的函数,其自变量n +∈N ,故数列的图象是一群孤立的点,A 正确;数列1,0,1,0,…与数列0,1,0,1,…的对应项不一样,故不是同一数列,B 错误; ,…前四项的规律,可知一个通项公式可以是()1nna n n +=∈+N ,C 正确; ()1n n n n +∈+N10、下列说法正确的是( )A.任意一条直线都有倾斜角,但不一定有斜率B.点(0,2)关于直线1y x =+的对称点为(1,1)C.经过点(1,1)且在x 轴和y 轴上截距都相等的直线方程为20x y +−=D.直线20x y −−=与两坐标轴围成的三角形的面积是2 【答案】ABD解析:当倾斜角为90°时,斜率不存在,故A 选项正确;设(0,2)关于直线1y x =+的对称点为(),m n ,则满足212122n mn m − =− + =+ ,解得:11m n = = ,故点(0,2)关于直线1y x =+的对称点为(1,1),B 正确;当在x 轴和y 轴上截距都等于0时,此时直线为y x =,故C 错误;直线20x y −−=与两坐标轴的交点坐标为()2,0与()0,2−,故与两坐标轴围成的三角形的面积为12222××=,D 正确. 故选:ABD.11、已知点P在双曲线2:116x C −=上,12,F F 是双曲线C 的左、右焦点,若12PF F 的面积为20,则下列说法正确的有( ) A .点P 到x 轴的距离为203B .1250|3|||PF PF += C .12PF F 为钝角三角形 D .12F PF ∠等于π3【答案】BC解析:因为双曲线22:1169x y C −=,所以5c =,又因为12112102022P P F P F S c y y =⋅=⋅⋅= ,所以4P y =,所以选项A 错误;将其代入22:1169x y C −=得2241169x −=,即20||3x =,由对称性,不妨取P 的坐标为20,43,可知2133PF =,由双曲线定义可知1213372833PF PF a ++ 所以121337|||350|33PF PF +=+=,所以选项B 正确; 由对称性,对于上面点P , 在12PF F 中,12371321033PF c PF =>=>=, 且24012020553PF k −==>−,所以12PF F 为钝角三角形,选项C 正确;因为122920tan tan 22PF F b S θθ=== ,所以9πtan tan 2206θ=<=, 即π26θ<,所以12π3F PF θ∠=<,所以选项D 错误(余弦定理也可以解决); 12、设O 为坐标原点,F 为抛物线2:2(0)C x py p =>的焦点,过焦点F 且倾斜角为 θ的直线l 与抛物线C 交于M ,N 两点(点M 在第二象限),当30θ=2,则下列说法正确的是( ) A.3p =B.MON △C.存在直线l ,使得90OMF ONF ∠∠>°+D.分别过点M ,N 且与抛物线相切的两条直线互相垂直 【答案】ABD解析:作出如图所示图形:对A,由抛物线定义及题意得222sin 302M M py py +==− , 即2212MM py p y+= =−,解得3p =,故A 正确; 对B,3p =,则30,2F,当直线l 的斜率不存在时,显然不合题意,设()11,M x y ,()22,N x y ,设直线l的方程为y kx =22py =得2690x kx −−=,则12126,9x x k x x +==−,121322MON S x x =×−=△当且仅当0k =时等号成立,故B 正确;对C,121212123322OM ON x x y y x x kx kx ⋅=+=+++ ()()()221212393919162424k x x k x x k k k =++++=−++⋅+故MON ∠钝角,则不存在直线l ,使得90OMF ONF ∠+∠>°,故C 错误; 对D,26x y =,即216y x =,故13y x ′=,1x ,在点N 2x ,121x x =−,故相切的两条直线互相垂直,故D 正确.故选:ABD.第Ⅱ卷三、填空题(本大题共4小题,共20分)13、已知圆:C 2220x y x ++=,若直线y kx =被圆C 截得的弦长为1,则k =_______. 【答案】为解析:将2220x y x ++=化为标准式得()2211x y ++=,故半径为1; 圆心()1,0−到直线y kx =,由弦长为1可得1=,解得k =.故答案为:.14、椭圆22:143x y C +=的左、右顶点分别为12,A A ,点P 在 C 上且直线2PA 斜率的取值范围是[]2,1−−,那么直线1PA 斜率的取值范围是__________。

2024届安徽省怀宁中学高二上数学期末统考模拟试题含解析

2024届安徽省怀宁中学高二上数学期末统考模拟试题含解析

20.(12 分)已知椭圆 C: x2 a2
y2 b2
1a
b 0
短轴长为 2,且点 M
2, 2
3 2

C

的 (1)求椭圆 C 的标准方程;
(2)设 F1 、 F2 为椭圆的左、右焦点,过 F2 的直线 l 交椭圆 C 与 A、B 两点,若 ABF1 的面积是 6 ,求直线 l 的方 2
__________
14.如图,把正方形纸片 ABCD 沿对角线 AC 折成直二面角,则折纸后异面直线 AB , CD 所成的角为___________.
15.已知数列{an}满足 an+2=an+1-an(n∈N*),且 a1= 2,a2= 3,则 a2022 的值为_________.
16.设正方形 ABCD 的边长是 2 ,在该正方形区域内随机取一个点,则此点到点 A 的距离大于 2 的概率是_____
当在 ABC 中, sin A sin B 2Rsin A 2Rsin B a b , 反之 a b 2Rsin A 2Rsin B sin A sin B ,故为充要条件,故 C 错; 当 a 3时, loga 3 loga a , loga 3 1 , loga 9 2 , 充分条件,
则 A(0,0,0), D(0, 4,0),C(4, 4,0), P(0,0,6) , E(0, 2,3) , CE (4, 2,3) , AD (0, 4,0)
设直线 EC 与平面 PAB 所成角为 ,又由题可知 AD 为平面 PAB 的一个法向量, 则 sin cos CE, AD CE AD 2 4 2 29
3. (x 1)10 的二项展开式中,二项式系数最大的项是.5 D.5 和 7

2023-2024学年浙江省宁波市余姚市高二上册期末数学模拟试题(含解析)

2023-2024学年浙江省宁波市余姚市高二上册期末数学模拟试题(含解析)

2023-2024学年浙江省宁波市余姚市高二上册期末数学模拟试题一、单选题1.直线1y x =+的倾斜角为()A .0B .4πC .2πD .34π【正确答案】B【分析】由直线的斜率与倾斜角的关系即可求解.【详解】设直线1y x =+的倾斜角为(0π)αα≤≤,由题意可知:tan 1α=,所以π4α=,故选.B2.已知(1,2,5),(2,1,)a b x x ==- ,若ab,则x =()A .2-B .12C .52D .72【正确答案】C【分析】根据空间向量共线定理列方程求x .【详解】因为ab,所以可设b a λ= ,又(1,2,5),(2,1,)a b x x ==-,所以2,12,5x x λλλ-===,所以51,22x λ==.故选:C.3.曲线()ln xf x x=在点(1,(1))f 处的切线方程为()A .0x y +=B .0x y -=C .10x y +-=D .10x y --=【正确答案】D【分析】先求函数在1x =处的导数,再根据导数的几何意义确定切线斜率,并利用点斜式求切线方程.【详解】函数()ln x f x x =的定义域为()0+∞,,其导函数()21ln xf x x -'=,所以()11f '=,所以曲线()ln xf x x=在点(1,(1))f 处的切线的斜率为1,又()10f =,故曲线()ln xf x x=在点(1,(1))f 处的切线方程为10x y --=.故选:D.4.已知F 是椭圆221167x y +=的左焦点,P 为椭圆上任意一点,点Q 的坐标为(2,1)-,则||||PQ PF +的最小值为()A .1B .8C .3D【正确答案】B【分析】将||||PQ PF +转化到8PQ PF '+-,当三点共线且P 在射线F Q '的延长线上时,取得最小值.【详解】椭圆221167x y +=的43a b c ===,,点Q 在椭圆内部,如图,设椭圆的右焦点为()3,0F ',则28PF PF a '+==;8PQ PF PQ PF '∴+=+-8PQ PF '=+-;由图形知,当P 在直线QF '上时,PQ PF QF ''==-,当P 不在直线'QF 上时,根据三角形的两边之差小于第三边有,PQ PF QF ''<=-,∴当P 在射线F Q '的延长线上时,'PQ PF -取得最小值PQ PF ∴+的最小值为8.故选:B5.在四面体ABCD 中,ABC 为正三角形,DB ⊥平面ABC ,且AB BD =,若3AE AB =,2C F C D= ,则异面直线DE 和BF 所成角的余弦值等于()A.13B.13C.39D.39-【正确答案】A【分析】由条件建立空间直角坐标系,求异面直线DE 和BF 的方向向量,利用向量夹角公式求其夹角可得结论.【详解】因为DB ⊥平面ABC ,ABC 为正三角形,故以B 为原点,以,BC BD为,y z 轴的正方向,建立空间直角坐标系,设6AB =,则()()()()0,0,6,0,6,0,,0,0,0D C A B ,由3AE AB =,2C F C D =,可得()()2,0,0,3,3E F ,所以()()2,6,0,3,3DE BF =-=,所以cos ,13DE BF DE BF DE BF ⋅==-,所以异面直线DE 和BF故选:A.6.某中学响应政府号召,积极推动“公益一小时”,鼓励学生利用暑假时间积极参与社区服务,为了保障学生安全,与社区沟通实行点对点服务.原计划第一批派遣18名学生,以后每批增加6人.由于志愿者人数暴涨,学校与社区临时决定改变派遣计划,具体规则为:把原计划拟派遣的各批人数依次构成的数列记为{}n a ,在数列{}n a 的任意相邻两项k a 与1(1,2,)k a k += 之间插入3k 个2,使它们和原数列的项构成一个新的数列{}n b .按新数列{}n b 的各项依次派遣支教学生.记50S 为派遣了50批学生后参加公益活动学生的总数,则50S 的值为()A .198B .200C .240D .242【正确答案】B【分析】由已知确定数列{}n a 的通项公式,再确定数列{}n b 的项的取值规律,再求其前50项的和.【详解】由已知原计划第一批派遣18名学生,以后每批增加6人.所以数列{}n a 为等差数列,且118a =,数列{}n a 的公差6d =,所以612n a n =+,数列{}n b 为数列{}n a 的任意相邻两项k a 与1(1,2,)k a k += 之间插入3k 个2所得,所以数列{}n b 满足条件,118b =,当24n ≤≤时,2n b =,524b =,当614n ≤≤时,2n b =,1530b =,当1642n ≤≤时,2n b =,4336b =,当4450n ≤≤时,2n b =,所以数列{}n b 的前50项的和为18243036462200++++⨯=,故选:B.7.已知圆22:1C x y +=,椭圆22:143x y Γ+=,过C 上任意一点P 作圆C 的切线l ,交Γ于A ,B 两点,过A ,B 分别作椭圆Γ的切线,两切线交于点Q ,则||OQ (O 为坐标原点)的最大值为()A .16B .8C .4D .2【正确答案】C【分析】先得到椭圆2222:1(0)x y E a b a b+=>>在()00,P x y 处的切线方程为00221x x y y a b +=,考虑切线l 的斜率不存在和存在两种情况,得到椭圆两切线方程,联立后得到点Q 的坐标,求出当切线斜率不存在时,||4OQ =,当切线l 斜率存在时,设为y kx b =+,由l 与圆相切得到221b k =+,求出椭圆两切线方程,得到43,Q Q k x y b b =-=,求出4OQ <,求出||OQ 的最大值.【详解】当P 点坐标为()1,0±时,此时切线l 的斜率不存在,不妨设:1l x =,此时22:143x y Γ+=中令1x =得:32y =±,所以不妨令331,,1,22A B⎛⎫⎛⎫- ⎪ ⎝⎭⎝⎭,下面证明椭圆2222:1(0)x y E a b a b+=>>在()00,P x y 处的切线方程为00221x x y y a b +=,理由如下:当切线的斜率存在时,设切线方程为y kx m =+,代入椭圆方程得:()22222222220a k b x a kmx a m a b +++-=,由()()()222222222240a km a k b a m a b ∆=-+-=,化简得:22220a k m b -+=,所以()22022222a km a kx m a k b --===+,把20a k x m -=代入00y kx m =+,得:20b y m =,于是2200022200mx x b x b k a a y a y =-=-⋅=-则椭圆的切线斜率为2020b x a y -,所以椭圆的切线方程为()200020b x y y x x a y -=--,整理得:222222220000a y y b x x b x a y a b +=+=,方程两边同除以22a b ,得到00221x x y ya b+=,当切线斜率不存在时,即此时(),0P a ,故切线方程为x a =,00221x x y ya b+=中令00,0x a y ==,可得x a =,故当切线斜率不存在,切线也满足00221x x y ya b+=,综上:椭圆2222:1(0)x y E a b a b+=>>在()00,P x y 处的切线方程为00221x x y y a b +=,故过331,,1,22A B⎛⎫⎛⎫- ⎪ ⎝⎭⎝⎭的两切线分别为142x y +=和142x y -=,联立可得:()4,0Q ,此时4OQ =,同理可得:1l x =-时,4OQ =,当切线l 的斜率存在时,设为y kx b =+,因为y kx b =+与22:1C x y +=1=,即221b k =+,y kx b =+与223412x y +=联立得:()2223484120k xkbx b +++-=,设()()1122,,,A x y B x y ,则过()()1122,,,A x y B x y 的椭圆的切线方程为11143x x y y +=和22143x x y y+=,联立得:()()()()212112*********Q y y kx b kx b kx x y x y x kx b x kx bb-+--===--+-+,()()()()212121122112333Q x x x x y x y x y x kx b x kx b b--===-+-+,则4OQ ==<=,综上:OQ 的最大值为4.故选:C过圆()()222x a y b r -+-=上一点()00,x y 的切线方程为:()()()()200x a x a y b y b r --+--=,过圆()()222x a y b r -+-=外一点()00,x y 的切点弦方程为.()()()()200x a x a y b y b r--+--=过椭圆22221x y a b+=上一点()00,P x y 的切线方程为00221x x y y a b +=,过双曲线22221x y a b-=上一点()00,P x y 的切线方程为00221x x y y a b -=8.已知抛物线2:4C x y =,焦点为F ,准线为l ,过F 的直线交C 于A ,B 两点,过B 作l 的垂线交l 于点D ,若BDF V的面积为||||AF BF =()A .3B .13C .2D .12【正确答案】B【分析】联立直线与抛物线的方程,结合焦半径可得111AF BF+=,根据BDF V 的面积可解得23y =,进而得214BF BD y ==+=,即可求解43AF =.【详解】焦点()0,1F ,设直线AB 的方程为1y kx =+,联立直线与抛物线的方程得2214404y kx x kx x y=+⎧⇒--=⎨=⎩,设()()1122,,,A x y B x y ,则12124,4x x k x x +==-,所以()22212121212242,116x x y y k x x k y y +=++=+==,故()()212212121111114211111111421y y k AF BF y y y y k +++++++=+===+++++++,()()()(22222221111422BDFS BD x y x y y ==+=+=V ,化简得()()22222351603y y y y -++=⇒=,所以214BFBD y ==+=,由111AF BF +=,所以43AF =,故||1||3AF BF =,故选:B二、多选题9.关于x ,y 的方程221(R)1x y m m m +=∈-表示的曲线可以是()A .圆B .椭圆C .双曲线D .抛物线【正确答案】BC【分析】先得到0m ≠且1m ≠,再结合方程特点,分1m >,01m <<和0m <三种情况求出答案.【详解】显然0m ≠且1m ≠,若010m m >⎧⎨->⎩,即1m >时,此时2211x y m m +=-表示椭圆;若()10m m -<,即01m <<时,此时2211x y m m +=-表示双曲线;若0m <,此时2211x y m m +=-无解,综上:方程221(R)1x y m m m +=∈-表示的曲线可以是椭圆,也可以是双曲线.故选:BC10.已知等差数列{}n a ,其前n 项和为n S ,若91580,1a S a ><-,则下列结论正确的是()A .98a a >B .使0n S >的n 的最大值为16C .公差0d <D .当8n =时n S 最大【正确答案】ACD【分析】根据条件可得80a >,890a a +<,可判断A 正确,98820d a a a =-<-< 可判断C 正确,再根据15160,0S S ><可判断B 错误,又因为8,0,9,0n n n a n a ≤>≥<可判断D 正确.【详解】 等差数列{}n a ,115815815()05,201S a a a a +=∴=>>,又99889810,0a a a a a a <-∴<-+<<,98a a ∴>,A 正确.98820d a a a =-<-< ,C 正确.89161168916160()()022a a S a a a a +<∴=+=+< ,150,S >使0n S >的n 的最大值为15.B 错误.890,0a a ><∴ 当8,0,9,0n n n a n a ≤>≥<,所以当8n =时n S 最大.D 正确.故选:ACD11.瑞士著名数学家欧拉在1765年提出定理:三角形的外心、重心、垂心位于同一直线上,这条直线被后人称为三角形的“欧拉线”.若ABC 满足AC BC =,顶点(0,1)A ,(2,1)B -,且其“欧拉线”与圆222:(4)M x y r -+=相切,则下列结论正确的是()A .题中的“欧拉线”为方程:10x y --=B .圆M 上的点到直线0x y -=C .若圆M 与圆22()8xy a +-=有公共点,则[4,4]a ∈-D .若点(,)x y 在圆M 上,则1y x +的最大值是41【正确答案】ABD【分析】A 选项,分析得到其欧拉线过线段AB 的中点()1,0,且与直线AB 垂直,从而求出ABC 的欧拉线方程;B 选项,根据ABC 的欧拉线与222:(4)M x y r -+=相切,列出方程,求出r ,得到圆M 上的点到直线0x y -=的最小值为圆心M 到直线0x y -=的距离减去半径,求出答案;C 选项,根据两圆有公共点,列出不等式组,求出22a -≤≤;D 选项,1yx +的几何意义为点(),x y 与()1,0-两点的斜率,数形结合得到当过()1,0-的直线l 与M相切,且斜率为正时,1yx +取得最大值,利用点到直线距离公式求出答案.【详解】线段AB 的中点坐标为0211,22+-⎛⎫⎪⎝⎭,即()1,0,直线AB 的斜率为()11102--=--,因为AC BC =,所以ABC 为等腰三角形,三角形的外心、重心、垂心位于同一直线上,其欧拉线过点()1,0,且与直线AB 垂直,故ABC 的欧拉线斜率为1,则方程为1y x =-,即10x y --=,A 正确;ABC 的欧拉线与222:(4)M x y r -+=相切,故2r ==,圆心()4,0M 到直线0x y -=的距离为d ==则圆M 上的点到直线0x y -=的最小距离为d r -==B 正确;若圆229:(4)2M x y -+=与圆22()8x y a +-=有公共点,则3222≤,解得:a ≤C 错误;1yx +为点(),x y 与()1,0-两点的斜率,当过()1,0-的直线l 与229:(4)2M x y -+=相切,且直线l 的斜率为正时,1y x +取得最大值,设直线():1l y k x =+2=,解得:41k =,故1y x +的最大值是41,D 正确.故选:ABD12.在四棱锥P ABCD -中,底面ABCD 为正方形,1PA PB PC PD AB =====,E ,F 分别为线段,PB BC (含端点)上动点,则()A .存在无数个点对E ,F ,使得平面AEF ⊥平面ABCDB .存在唯一点对E ,F ,使得平面AEF ⊥平面PBCC .若EF BC ⊥,则四面体P AEF -的体积最大值为96D .若//EF 平面PCD ,则四面体A BEF -【正确答案】ACD【分析】连接,AC BD ,记其交点为O ,在线段PB 上任取一点E ,过点E ,作//EH PO ,证明EH ⊥平面ABCD ,连接AH ,并延长交BC 于点F ,证明平面AEF ⊥平面ABCD ,判断A ,将四棱锥补形为长方体,过点A 确定平面PBC 的垂线,结合面面垂直的判断定理判断B ,根据条件确定EF 的位置特征,结合锥体体积公式求四面体P AEF -,A BEF -的体积最大值,由此判断CD.【详解】因为1PA PB PC PD AB =====,底面ABCD 为正方形,所以四棱锥P ABCD -为正四棱锥,由已知可得AC =连接,AC BD ,记其交点为O ,由正四棱锥性质可得PO ⊥平面ABCD ,因为1PA =,2AO =,所以2PO =,对于A ,在线段PB 上任取一点E ,过点E ,作//EH PO ,EH 交BD 与H ,则EH ⊥平面ABCD ,连接连接AH ,并延长交BC 于点F ,因为EH ⊂平面AEF ,EH ⊥平面ABCD ,所以平面AEF ⊥平面ABCD ,故A 正确;对于B ,将正四棱锥补形为长方体1111ABCD A B C D -,过点P 作11//NM B C ,连接,BN MC ,又11//BC B C ,又11MN B C BC ==,所以四边形BCMN 为平行四边形,过点A 作AQ BN ⊥,垂足为Q ,因为BC ⊥平面11ABB A ,AQ ⊂平面11ABB A ,所以AQ BC ⊥,BC BN B = ,,BC BN ⊂平面PBC ,所以AQ ⊥平面PBC ,在线段BC 上任取一点F ,连接QF 交BC 于点E ,因为AQ ⊂平面AEF ,所以平面AEF ⊥平面PBC ,B 错误;对于C ,因为四面体P AEF -的体积等于四面体A PEF -的体积,因为AQ ⊥平面PEF ,所以四面体A PEF -的高为AQ ,因为1121,2AB AA BB PO ====,所以32NA NB ==,因为1221224ABN S =⨯1224AQ BN ⨯=,所以63AQ =,作侧面PBC ,连接点P 和BC 的中点S ,则PS BC ⊥,因为EF BC ⊥,所以//EF PS ,设BF x =,则102x <≤,13,2EF SF x ==-,所以)211333222432PEF S x x x x ⎛⎫=⨯-=-≤ ⎪⎝⎭又四面体P AEF -的体积13P AEF A PEF PEF V V S AQ--==⋅所以四面体P AEF -的体积最大值为1362332396⨯=,C 正确;对于D ,因为//EF 平面PCD ,EF ⊂平面PBC ,平面PBC ⋂平面PCD PC =,所以//EF PC ,设BF x =,则01x <≤,BE x =,π3EBF ∠=,所以2BEF S =≤F 和点C 重合,点E 和点P 重合时取等号,又AQ ⊥平面BEF,AQ =,所以四面体A BEF -的体积最大值为1312=,D 正确;故选:ACD.本题是立体几何综合问题,主要考查面面垂直和线面垂直的关系,线面平行性质定理和锥体的体积计算,对学生的素质要求较高.三、填空题13.已知(1,2,1),(1,0,0)a b == ,则a 在b 方向上的投影向量为________________.【正确答案】()1,0,0b = 【分析】根据投影向量的定义即可由数量积求解.【详解】由于1b = ,故a 在b 方向上的投影向量为()cos ,1,0,0a b a b b b b b⋅=== ,故()1,0,0b = 14.设函数()ln 2f x x mx =-(m 为实数),若()f x 在[1,)+∞上单调递减,则实数m 的取值范围_____________.【正确答案】1,2⎡⎫+∞⎪⎢⎣⎭【分析】首先根据题意得到[)1,x ∞∈+,()0f x '≤,再根据1y x=的单调性即可得到答案.【详解】()12f x m x'=-,因为函数()ln 2f x x mx =-在区间[)1,+∞上单调递减,所以[)1,x ∞∈+,120m x-≤恒成立,即[)1,x ∞∈+,max12m x ⎛⎫≥ ⎪⎝⎭.又1y x =在[)1,+∞上单调递减,所以max11x ⎛⎫= ⎪⎝⎭,故21m ≥,即12m ≥,所以m 的取值范围为1,2⎡⎫+∞⎪⎢⎣⎭.故答案为.1,2⎡⎫+∞⎪⎢⎣⎭15.已知数列{}n a 满足111,2n n a a a n +==+,则n a =___________.【正确答案】1321n n -⋅--.【分析】由递推关系证明数列{}1n a n ++为等比数列,结合等比数列通项公式求其通项,由此可得n a .【详解】因为12n n a a n +=+,所以()1221n n a n a n +++=++,又11a =,所以123a +=,故数列{}1n a n ++为等比数列,首项为3,公比为2,所以1132n n a n -++=⋅,故1321n n a n -=⋅--,故答案为.1321n n -⋅--16.已知椭圆2222:1(0)x y C a b a b +=>>,过左焦点F 作直线交C 于A ,B 两点,连接AO (O 为坐标原点)并延长交椭圆于点D ,若0,||4||AB DF DF BF ⋅== ,则椭圆的离心率为_____________.【分析】根据椭圆的焦点三角形满足的边关系,结合勾股定理即可求解.【详解】设右焦点为E ,连接,AE BE ,由0,AB DF ⋅= 故AB DF ⊥ ,由,OF OE OA OD ==,所以四边形AFDE 为平行四边形,由于AB DF ⊥ ,进而可得四边形AFDE 为矩形,设BF x =,则4DF x =,因此4,24,22AE x AF a x BE a BF a x ==-=-=-,在直角三角形ABE 中,222AE AB BE +=,即()()22216232x a x a x +-=-,解得3a x =,所以42,24,233AE a AF a x a EF c ==-==,故222164499c a a =+,故2295c a =,即3e =,故53四、解答题17.已知空间三点(1,0,2),(0,1,2),(3,0,4)A B C --,设,AB a AC b ==.(1)求a 与b 的夹角θ的余弦值;(2)若向量ka b + 与- a kb 互相垂直,求k 的值.【正确答案】(1)12-(2)3132【分析】(1)先求出向量,a b ,再利用空间向量的夹角公式求解即可;(2)利用向量垂直的充要条件列出方程,解方程求出k 的值.【详解】(1)因为(1,1,0)a AB OB OA ==-= ,(2,0,2)b AC ==- ,所以空间向量的夹角公式,可得1cos 21144a b a bθ==-+⨯+ ,所以a 与b 的夹角θ的余弦值为12-.(2)由(1)可知(1,1,0)a = ,(2,0,2)b =- .因为向量ka b + 与- a kb 互相垂直,所以()()0ka b a kb +⋅-= ,所以222(1)0k a k b k a b -+-= ,所以2282(1)0k k k ---=,所以2310k k --=,解得3132k ±=.18.在①22n S n n =+;②3267,18a a a =+=;③153,35a S ==这三个条件中任选一个,补充在下面问题中,然后解答补充完整的题目.问题:已知等差数列{},n n a S 为其前n 项和,若______________.(1)求数列{}n a 的通项公式;(2)设()12N n n n b n a a *+=∈,求证:数列{}n b 的前n 项和13n T <.注:如果选择多个条件分别解答,按第一个解答计分.【正确答案】(1)21n a n =+(2)证明见解析.【分析】(1)选①由n a 与n S 的关系求解即可;选②③由等差数列的通项公式与求和公式求解即可;(2)由(1)可得112123n b n n =-++,利用裂项相消法证明即可.【详解】(1)若选①:在等差数列{}n a 中,113a S ==,当2n ≥时,()()221212121n n n a S S n n n n n -=-=+----=+,1a 也符合,∴21n a n =+;若选②:在等差数列{}n a 中,326718a a a =⎧⎨+=⎩ ,11272618a d a d +=⎧∴⎨+=⎩,解得132a d =⎧⎨=⎩()()1132121n a a n d n n ∴=+-=+-=+;若选③:在等差数列{}n a 中,1513545352a S a =⎧⎪⎨⨯=+=⎪⎩,解得132a d =⎧⎨=⎩()()1132121n a a n d n n ∴=+-=+-=+;(2)证明:由(1)得211(21)(23)2123n b n n n n ==-++++,所以111111111.355721233233n T n n n =-+-+-=-<+++L 19.已知圆22:(2)(3)4C x y -+-=,直线:(1)(21)53l m x m y m +++=+.(1)判断并证明直线l 与圆C 的位置关系;(2)设直线l 与圆C 交于A ,B 两点,若点A ,B 分圆周得两段弧长之比为1:2,求直线l 的方程.【正确答案】(1)直线l 与圆C 相交,证明见解析;(2)直线l 的方程为2y =或1x =.【分析】(1)由题可得()2530m x y x y +-++-=,由25030x y x y +-=⎧⎨+-=⎩得直线l 恒过定点,再由定点与圆的位置关系可得直线与圆的位置关系;(2)利用条件可分析出弦所对圆心角,据此求出圆心到直线的距离,即可求解.【详解】(1)因为直线l 的方程为(1)(21)53m x m y m +++=+,所以()2530m x y x y +-++-=,由25030x y x y +-=⎧⎨+-=⎩得,12x y =⎧⎨=⎩,所以直线l 恒过定点(1,2)P ,因为22(12)(23)4-+-<,所以点(1,2)P 在圆内,故直线l 与圆C 相交;(2)因为圆C 的方程为22(2)(3)4-+-=x y ,所以点C 的坐标为()2,3,半径为2,因为点A 、B 分圆周得两段弧长之比为1:2,故120ACB ∠= ,所以30CAB ∠= ,故圆心到直线的距离12r d ==,直线斜率不存在时,直线l 的方程为1x =,因为点()2,3C 到直线1x =的距离为1,所以直线1x =满足条件,即直线l 的方程可能为1x =,当直线斜率存在时,设直线方程为2(1)y k x -=-,1=,解得0k =,所以直线l 的方程为2y =,故直线l 的方程为2y =或1x =.20.已知正项数列{}n a 的前n 项和为n S.若11,2n a a ==2n ≥且N n *∈).(1)求证:数列为等差数列,并求数列{}n a 的通项公式;(2)若22n n n b a +=⋅,求{}n b 前n 项和n T .【正确答案】(1)1,121,24n n a n n =⎧⎪=⎨+≥⎪⎩;(2)()12124n n T n +=-+.【分析】(1)由1n n n a S S -=-,结合已知递推关系进行转化,然后结合等差数列的通项公式及递推关系可求;(2)由已知先求n b ,根据错位相减即可求和.【详解】(1)由题意得:当2n ≥时,22122()2(2(2(n n n a S S -=-=-=,因为0n a >,0>,12=,1=,所以数列是以1为首项,以12为公差的等差数列,111(1)22n n ++-=,所以21(2n n S +=,当2n ≥时,221121()()224n n n n n n a S S -++=-=-=,由于11a =不适合上式,故1,121,24n n a n n =⎧⎪=⎨+≥⎪⎩;(2)当1n =时,18b =,当2n ≥时,()22121224n n n b n n ++=+=⋅,所以18T =,当2n ≥时,()2438527292212n n T n =+⨯+⨯+⨯+⋅⋅⋅++,()4153216527292212n n T n +=+⨯+⨯+⨯+⋅⋅⋅++,相减得()()()()()322311142128522222212122212122412n nn n n n T n n n -+++--=-+⨯+⨯++⋅⋅⋅+-+=+⨯-+=---,故()12124n n T n +=-+,此时18T =也适合,故()12124n n T n +=-+.21.如图,在四棱锥P ABCD -中,PA ⊥底面π,,,3ABCD AD AB AB DC ABC ⊥∠=∥,,2AB BC PA ==.点A 在平面PBC 内的投影恰好为PBC 的重心E ,连接PE 并延长交BC 于F.(1)求证:AF BC ⊥;(2)求平面ACE 与平面ABCD 所成夹角的余弦值.【正确答案】(1)证明见解析;(2)平面ACE 与平面ABCD【分析】(1)方法一:由条件根据线面垂直判定定理证明BC ⊥平面AEF ,由此证明AF BC ⊥.方法二:由已知证明F 为BC 的中点,结合等腰三角形性质证明AF BC ⊥;(2)建立空间直角坐标系,求平面ACE 与平面ABCD 的法向量,再由向量夹角公式求其夹角余弦,由此可得结论.【详解】(1)方法一:因为PA ⊥底面ABCD ,BC ⊂底面ABCD ,所以PA BC ⊥,因为AE ⊥平面PBC ,BC ⊂平面PBC ,所以AE BC ⊥,又,PE PA ⊂平面PAE ,PE PA P = ,所以BC ⊥平面PAF ,又AF ⊂平面PAF ,所以AF BC⊥方法二:因为点E 为PBC 的重心,点F 为PE 的延长线与BC 的交点,所以点F 为线段BC 的中点,因为AB BC =,π3ABC ∠=,所以ABC 为等边三角形,所以AF BC ⊥;(2)因为PA ⊥底面ABCD ,,AB AD ⊂底面ABCD ,所以,PA AB PA AD ⊥⊥,又AD AB ⊥,如图以点A 为原点,,,AB AD AP 为,,x y z 轴正方向,建立空间直角坐标系,设AB t =,则()()(),,0,0,,0,0,0,2,0,0,022t C B t P A ⎛⎫ ⎪ ⎪⎝⎭,因为点E 为PBC的重心,所以2,,623t E ⎛⎫ ⎪ ⎪⎝⎭,所以2,23t AE ⎫=⎪⎪⎝⎭,()0,,2PB t =- ,由已知⊥AE 平面PBC ,PB ⊂平面PBC ,所以AE PB ⊥,即0AE PB ⋅= 所以214023t -=,所以t =所以C ⎫⎪⎪⎭,23E ⎫⎪⎪⎝⎭,设平面ACE 的法向量为(),,n x y z = ,则00n AC n AE ⎧⋅=⎪⎨⋅=⎪⎩,所以0320333y x y z +=++=⎩,取1x =可得,y z ==所以(1,n = 为平面ACE 的一个法向量,又()0,0,1m = 为平面ABCD的一个法向量,cos ,3m n m n m n ⋅== ,所以平面ACE 与平面ABCD22.已知双曲线22:(0)C x y λλ-=>,焦点F(1)求λ;(2)动点M ,N 在曲线C 上,已知点(2,1)A -,直线,AM AN 分别与y 轴相交的两点关于原点对称,点Q 在直线MN 上,AQ MN ⊥,证明:存在定点T ,使得||QT 为定值.【正确答案】(1)3λ=;(2)证明见解析.【分析】(1)由双曲线方程求其渐近线方程,由点到直线距离公式列方程求λ;(2)证明当MN 斜率不存在时不合题意,设直线MN 方程与双曲线C 的方程联立,根据直线,AM AN 与y 轴的两交点关于原点对称结合韦达定理即可求解.【详解】(1)由已知双曲线C 的渐近线方程为y x =±,因为焦点F=所以3λ=,(2)当直线MN 的斜率k 不存在时,此时,M N 两点关于x 轴对称,若直线,AM AN 与y 轴的两交点关于原点对称,则A 在x 轴上,与题意矛盾,因此直线MN 的斜率存在.设直线MN 的方程为y kx m =+,联立223y kx m x y =+⎧⎨-=⎩,整理得()2221230k x kmx m ----=,由已知210k -≠,且()()222244130k m k m ∆=--+>,所以1k ≠±,且2233k m -<,设()11,M x y ,()22,N x y ,12221km x x k +=-,212231m x x k --=-.直线,AM AN 分别与y 轴相交的两点为1M ,1N ,∴直线AM 方程为()111212y y x x +=---,令0x =,则111120,2x y M x ⎛⎫+ ⎪-⎝⎭,同理221220,2x y N x ⎛⎫+ ⎪-⎝⎭,可得11221222022x y x y x x +++=--,∴()()11221222022x kx m x kx m x x +++++=--,即()()()()1221212221220k x m x k x m x ⎡⎤⎡⎤++-+++-=⎣⎦⎣⎦,∴()()1212422(42)80k m x x k x x m +-+-++=,∴()()22223422428011km m k m k m k k ---+⋅-++=--,∴()()()()22212213410k m km k m m k -+⋅++++-=,∴22222422263440k m km km km k m m mk -++++++-=,∴()224630m k m k ++++=,()()3210m m k +++=,当210m k ++=时,21m k =--,此时直线MN 方程为()21y k x =--恒过定点()2,1A -,与已知矛盾,∴3m =-,直线MN 方程为3y kx =-,恒过定点()0,3E -∵AQ MN ⊥,设AE 中点为T ,∴()1,2T -,∴12QT AE ==为定值,∴存在()1,2T -使QT .方法点睛:求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新高二数学上期末模拟试题及答案一、选择题1.如图,一个边长为2的正方形里有一个月牙形的图案,为了估算这个月牙形图案的面积,向这个正方形里随机投入500粒芝麻,经过统计,落在月牙形图案内的芝麻有150粒,则这个月牙图案的面积约为( )A .35B .45C .1D .652.气象意义上的春季进入夏季的标志为连续5天的日平均温度不低于022C .现有甲、乙、丙三地连续5天的日平均气温的记录数据(记录数据都是正整数):①甲地:5个数据是中位数为24,众数为22;②乙地:5个数据是中位数为27,总体均值为24;③丙地:5个数据中有一个数据是32,总体均值为26,总体方差为10.8则肯定进入夏季的地区有( )A .①②③B .①③C .②③D .①3.将A ,B ,C ,D ,E ,F 这6个字母随机排成一排组成一个信息码,则所得信息码恰好满足A ,B ,C 三个字母连在一起,且B 在A 与C 之间的概率为( )A .112B .15C .115D .2154.如果数据121x +、221x +、、21n x +的平均值为5,方差为16,则数据:153x -、253x -、、53n x -的平均值和方差分别为( ) A .1-,36 B .1-,41 C .1,72 D .10-,1445.学校为了解新课程标准提升阅读要求对学生阅读兴趣的影响情况,随机抽取了100名学生进行调查.根据调查结果绘制学生周末阅读时间的频率分布直方图如图所示:将阅读时间不低于30分钟的观众称为“阅读霸”,则下列命题正确的是( )A .抽样表明,该校有一半学生为阅读霸B .该校只有50名学生不喜欢阅读C .该校只有50名学生喜欢阅读D .抽样表明,该校有50名学生为阅读霸6.某市委积极响应十九大报告提出的“到2020年全面建成小康社会”的目标,鼓励各县积极脱贫,计划表彰在农村脱贫攻坚战中的杰出村代表,已知A ,B 两个贫困县各有15名村代表,最终A 县有5人表现突出,B 县有3人表现突出,现分别从A ,B 两个县的15人中各选1人,已知有人表现突出,则B 县选取的人表现不突出的概率是( ) A .13 B .47 C .23 D .567.执行如图所示的程序框图,如果输入的1a =-,则输出的S =A .2B .3C .4D .58.类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设2AD BD =,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )A .14B .13C .17D .4139.设数据123,,,,n x x x x 是郑州市普通职工*(3,)n n n N ≥∈个人的年收入,若这n 个数据的中位数为x,平均数为y,方差为z,如果再加上世界首富的年收入1n x+,则这1n+个数据中,下列说法正确的是()A.年收入平均数大大增大,中位数一定变大,方差可能不变B.年收入平均数大大增大,中位数可能不变,方差变大C.年收入平均数大大增大,中位数可能不变,方差也不变D.年收入平均数可能不变,中位数可能不变,方差可能不变10.执行如图所示的程序框图,若输入2x=-,则输出的y=()A.8-B.4-C.4D.811.如图,边长为2的正方形有一内切圆.向正方形内随机投入1000粒芝麻,假定这些芝麻全部落入该正方形中,发现有795粒芝麻落入圆内,则用随机模拟的方法得到圆周率π的近似值为()A.3.1B.3.2C.3.3D.3.412.2路公共汽车每5分钟发车一次,小明到乘车点的时刻是随机的,则他候车时间不超过两分钟的概率是()A.25B.35C.23D.15二、填空题13.执行如图所示的程序框图若输人x的值为3,则输出y的值为______.14.执行如图所示的程序框图,若输入的1,7s k ==则输出的k 的值为_______.15.在[1,1]-上随机地取一个数k ,则事件“直线y kx =与圆22(5)9x y -+=相离”发生的概率为_______。

16.若(9)85a =,(5)301b =,(2)1001c =,则这三个数字中最大的是___17.阅读如图所示的程序框图,若,,,则输出的结果是________.18.若从甲、乙、丙、丁4位同学中选出2名代表参加学校会议,则甲、乙两人至少有一人被选中的概率为____.19.如图是一个算法流程图,则输出的S 的值为______.20.如图是一个算法的流程图,则输出的a的值是__________.三、解答题21.某高中为了选拔学生参加“全国高中数学联赛”,先在本校进行初赛(满分150分),随机抽取100名学生的成绩作为样本,并根据他们的初赛成绩得到如图所示的频率分布直方图.(1)求频率分布直方图中a 的值;(2)根据频率分布直方图,估计这次初赛成绩的平均数、中位数、众数.22.为了解贵州省某州2020届高三理科生的化学成绩的情况,该州教育局组织高三理科生进行了摸底考试,现从参加考试的学生中随机抽取了100名理科生,,将他们的化学成绩(满分为100分)分为[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]6组,得到如图所示的频率分布直方图.(1)求a 的值;(2)记A 表示事件“从参加考试的所有理科生中随机抽取一名学生,该学生的化学成绩不低于70分”,试估计事件A 发生的概率;(3)在抽取的100名理科生中,采用分层抽样的方法从成绩在[60,80)内的学生中抽取10名,再从这10名学生中随机抽取4名,记这4名理科生成绩在[60,70)内的人数为X ,求X 的分布列与数学期望.23.用秦九韶算法求()543383f x x x x =+-25126x x ++-,当2x =时的值. 24.如下图是某校高三(1)班的一次数学知识竞赛成绩的茎叶图(图中仅列出[50,60),[90,100)的数据)和频率分布直方图.(1)求分数在[50,60)的频率及全班人数;(2)求频率分布直方图中的,x y ;(3)若要从分数在[80,100)之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在[90,100)之间的概率.25.某小区为了提高小区内人员的读书兴趣,特举办读书活动,准备进一定量的书籍丰富小区图书站,由于不同年龄段需要看不同类型的书籍,为了合理配备资源,现对小区看书人员进行年龄调查,随机抽取了一天40名读书者进行调查. 将他们的年龄分成6段: [)[)[)[)[)[)20,30,30,40,40.50,50,60,60,70,70,80,后得到如图所示的频率分布直方图,问:(1)在40名读书者中年龄分布在[)30,60的人数;(2)估计40名读书者年龄的平均数和中位数.26.某城市交通部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[)50,60,[)60,70,[)70,80,[)80,90,[]90,100分成5组,制成如图所示频率分直方图.(1)求图中x 的值及这组数据的众数;(2)已知满意度评分值在[)50,60内的男生数与女生数的比为3:2,若在满意度评分值为[)50,60的人中随机抽取2人进行座谈,求2人均为男生的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】利用与面积有关的几何概型概率计算公式求解即可.【详解】由题可知,正方形的面积为=22=4S ⨯正,设这个月牙图案的面积为S ,由与面积有关的几何概型概率计算公式可得,向这个正方形里随机投入芝麻,落在月牙形图案内的概率为150=4500S S P S ==正,解得65S =. 故选:D【点睛】本题考查与面积有关的几何概型概率计算公式;属于基础题、常考题型.2.B解析:B【解析】试题分析:由统计知识①甲地:5个数据的中位数为24,众数为22可知①符合题意;而②乙地:5个数据的中位数为27,总体均值为24中有可能某一天的气温低于22C ,故不符合题意,③丙地:5个数据中有一个数据是32,总体均值为26,总体方差为10.8.若由有某一天的气温低于22C 则总体方差就大于10.8,故满足题意,选C考点:统计初步3.C解析:C【解析】【分析】将A ,B ,C 三个字捆在一起,利用捆绑法得到答案.【详解】 由捆绑法可得所求概率为242466A A 1A 15P ==. 故答案为C【点睛】本题考查了概率的计算,利用捆绑法可以简化运算.4.A解析:A【解析】【分析】计算出数据1x 、2x 、、n x 的平均值x 和方差2s 的值,然后利用平均数和方差公式计算出数据153x -、253x -、、53n x -的平均值和方差. 【详解】设数据1x 、2x 、、n x 的平均值为x ,方差为2s , 由题意()()()()121221212121215n n x x x x x x x n n ++++++++=+=+=,得2x =,由方差公式得()()()()()()22212212121212121n x x x x x x n⎡⎤⎡⎤⎡⎤+-+++-++++-+⎣⎦⎣⎦⎣⎦()()()2221224416n x x x x x x s n ⎡⎤-+-++-⎢⎥⎣⎦===,24s ∴=. 所以,数据153x -、253x -、、53n x -的平均值为()()()12535353n x x x n -+-+-()1235535321n x x x x n+++=-=-=-⨯=-,方差为()()()()()()22212535353535353n x x x x x x n ⎡⎤⎡⎤⎡⎤---+---++---⎣⎦⎣⎦⎣⎦()()()2221229936n x x x x x x s n ⎡⎤-+-++-⎢⎥⎣⎦===. 故选:A.【点睛】 本题考查平均数与方差的计算,熟练利用平均数与方差的公式计算是解题的关键,考查计算能力,属于中等题.5.A解析:A【解析】【分析】根据频率分布直方图得到各个时间段的人数,进而得到结果.【详解】根据频率分布直方图可列下表:故选A.【点睛】这个题目考查了频率分布直方图的实际应用,以及样本体现整体的特征的应用,属于基础题.6.B解析:B【解析】【分析】由古典概型及其概率计算公式得:有人表现突出,则B 县选取的人表现不突出的概率是6041057=,得解. 【详解】由已知有分别从A ,B 两个县的15人中各选1人,已知有人表现突出,则共有111115*********C C C C ⋅-⋅=种不同的选法,又已知有人表现突出,且B 县选取的人表现不突出,则共有1151260C C ⋅=种不同的选法,已知有人表现突出,则B 县选取的人表现不突出的概率是6041057=. 故选:B .【点睛】本题考查条件概率的计算,考查运算求解能力,求解时注意与古典概率模型的联系.7.B解析:B 【解析】 【详解】阅读流程图,初始化数值1,1,0a k S =-==. 循环结果执行如下:第一次:011,1,2S a k =-=-==; 第二次:121,1,3S a k =-+==-=; 第三次:132,1,4S a k =-=-==; 第四次:242,1,5S a k =-+==-=; 第五次:253,1,6S a k =-=-==; 第六次:363,1,7S a k =-+==-=, 结束循环,输出3S =.故选B.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.求解时,先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,如:是求和还是求项.8.C解析:C 【解析】 【分析】由题意求出AB =,所求概率即为DEF ABCS P S=,即可得解.【详解】由题意易知120ADB ∠=,AF FD BD ==,由余弦定理得22222cos1207AB AD BD AD BD BD =+-⋅⋅=即AB =,所以AB =,则所求概率为217DEF ABCSFD P SAB ⎛⎫=== ⎪⎝⎭. 故选:C. 【点睛】本题考查了几何概型概率的求法和余弦定理的应用,属于中档题.9.B解析:B 【解析】∵数据x 1,x 2,x 3,…,x n 是郑州普通职工n (n ⩾3,n ∈N ∗)个人的年收入, 而x n +1为世界首富的年收入则x n +1会远大于x 1,x 2,x 3,…,x n , 故这n +1个数据中,年收入平均数大大增大, 但中位数可能不变,也可能稍微变大,但由于数据的集中程序也受到x n +1比较大的影响,而更加离散,则方差变大. 故选B10.C解析:C 【解析】 【分析】执行程序框图,可得程序框图的功能是计算并输出分段函数32,0,0x x y x x ⎧>=⎨≤⎩的值,从而计算得解. 【详解】执行程序框图,可得程序框图的功能是计算并输出分段函数32,0,0x x y x x ⎧>=⎨≤⎩的值,由于20x =-<,可得2(2)4y =-=,则输出的y 等于4,故选C. 【点睛】该题考查的是有关程序框图的问题,涉及到的知识点有读取程序框图的输出的结果,在解题的过程中,需要明确框图的功能,从而求得结果.11.B解析:B 【解析】 【分析】由圆的面积公式得:S π=圆,由正方形的面积公式得:4S =正,由几何概型中的面积型结合随机模拟试验可得:7951000S S =圆正,得解. 【详解】由圆的面积公式得:S π=圆, 由正方形的面积公式得:4S =正, 由几何概型中的面积型可得:7951000S S =圆正, 所以79543.21000π⨯=≈, 故选:B . 【点睛】本题考查了圆的面积公式、正方形的面积公式及几何概型中的面积型,属简单题.解析:A【解析】分析:根据已知中某公共汽车站每隔5分钟有一辆车通过,我们可以计算出两辆车间隔的时间对应的几何量长度为5,然后再计算出乘客候车时间不超过2分钟的几何量的长度,然后代入几何概型公式,即可得到答案详解::∵公共汽车站每隔5分钟有一辆车通过当乘客在上一辆车开走后3分钟内到达候车时间会超过2分钟∴乘客候车时间不超过2分钟的概率为53255P-==.故选A .点睛:本题考查的知识点是几何概型,其中计算出所有事件和满足条件的事件对应的几何量的值是解答此类问题的关键二、填空题13.63【解析】【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量y的值模拟程序的运行过程分析循环中各变量值的变化情况可得答案【详解】解:模拟程序的运行可得x=3y=7不满足条件|解析:63【解析】【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量y的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】解:模拟程序的运行,可得x=3y=7不满足条件|x-y|>31,执行循环体,x=7,y=15不满足条件|x-y|>31,执行循环体,x=15,y=31不满足条件|x-y|>31,执行循环体,x=31,y=63此时,满足条件|x-y|>31,退出循环,输出y的值为63.故答案为63.【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.14.5【解析】【分析】模拟执行程序框图依次写出每次循环得到的的值当时根据题意退出循环输出结果【详解】模拟执行程序框图可得;;;;此时退出循环输出结果故答案为5【点睛】该题考查的是有关程序框图的问题涉及到【解析】 【分析】模拟执行程序框图,依次写出每次循环得到的,s k 的值,当5,58s k ==时,根据题意,退出循环,输出结果. 【详解】模拟执行程序框图,可得1,7S k ==;771,688s k =⋅==;763,5874s k =⋅==;355,5468s k =⋅==; 此时,57810<,退出循环,输出结果, 故答案为5. 【点睛】该题考查的是有关程序框图的问题,涉及到的知识点有计算循环结构程序框图输出结果的问题,属于简单题目.15.【解析】【分析】首先找出圆的圆心坐标与半径的大小求得圆心到直线的距离根据直线与圆相离得到圆心到直线的距离大于半径求得的范围之后应用长度型几何概型概率公式求得结果【详解】圆的圆心为半径为圆心到直线的距 解析:14【解析】 【分析】首先找出圆的圆心坐标与半径的大小,求得圆心到直线的距离,根据直线与圆相离,得到圆心到直线的距离大于半径,求得k 的范围,之后应用长度型几何概型概率公式求得结果. 【详解】圆22(5)9x y -+=的圆心为(5,0),半径为3, 圆心到直线y kx =的距离为d =要使直线y kx =与圆22(5)9x y -+=相离,3>,解得2916k >,即33(,][,)44k ∈-∞-⋃+∞, 所以在区间[1,1]-上随机取一个数k ,使得直线y kx =与圆22(5)9x y -+=相离的概率为33(1)11441(1)4P ---+-==--, 故答案是:14.该题考查的是有关几何概型概率求解问题,涉及到的知识点有直线与圆的位置关系,属于简单题目.16.【解析】【分析】将三个数都转化为10进制的数然后比较大小即可【详解】故最大【点睛】本题考查了不同进制间的转化考查了学生的计算能力属于基础题 解析:a【解析】 【分析】将三个数都转化为10进制的数,然后比较大小即可。

相关文档
最新文档