图形的变换知识点

合集下载

图形的变换知识点梳理

图形的变换知识点梳理

第一单元图形的变换(知识点梳理)一、对称1、轴对称图形:如果把一个图形沿着一条直线对折,直线两边的图形能【】,那么这样的图形叫做【轴对称图形】。

折痕所在的直线就是【】。

两边图形重合时互相重合的点叫做【】,也叫();互相重合的线段叫做对应线段。

互相重合的角叫做对应角。

2、轴对称的性质:对应点到对称轴的【】。

或者说“对称轴【垂直平分】对应点的连线。

”3、轴对称的特征:沿对称轴对折,对应点、对应线段、对应角都【】。

4、画一个图形的轴对称图形的方法:(1)找出所给图形的【】,如图形的顶点、相交点、端点等,(分别用字母A、B、C······标出)。

(2)数出或量出图形关键点到对称轴的距离。

(3)在对称轴的另一侧找出关键点的【】。

(4)按照所给图形,顺次连结各点,就画出所给图形的轴对称图形。

歌诀巧记:关键点,要选准,点轴距离数格算。

细心找准对应点,有序连点图形现。

5、轴对称图形的对称轴画法:一要找准图形的一对【】,连接对称点;二是过这条线段的【】作这条线段的垂线,这条垂线所在的直线就是这个轴对称图形的对称轴。

6、我们以前学过的图形如长方形、正方形等都是轴对称图形,长方形有()对称轴【两组对边中点的连线上】,正方形有()对称轴【两组对边中点的连线(2条)、对角线(2条)】,等腰梯形有()对称轴【相互平行一组对边中点连线上】,菱形有()对称轴【2条对角线】,等腰三角形有()对称轴【顶点到对边中点的连线上】,等边三角形有()对称轴【顶点到对边中点的连线(3条)】,圆有()对称轴。

二、旋转1、()是指物体绕着某一点或轴运动。

2、旋转三要素:固定的()(或旋转中心)(有时也叫定点)、()和()。

在描述物体旋转时,一定要说出这三要素的状况。

3、旋转(固定)点:物体旋转时所绕的点(或轴)就是旋转点(或旋转中心)。

4、旋转方向:钟表中时针的旋转方向称为(),与钟表时针的旋转方向相反的方向称为()。

中考数学知识点总结:图形的变换

中考数学知识点总结:图形的变换

中考数学知识点总结:图形的变换1、平移(1)定义:把一个图形沿着某一直线方向移动,这种图形的平行移动,简称为平移。

(2)平移的性质:平移后的图形与原图形全等;对应角相等;对应点所连的线段平行(或在同一条直线上)且相等。

(3)坐标的平移:点(x,y)向右平移a个单位长度后的坐标变为(x+a,y);点(x,y)向左平移a个单位长度后的坐标变为(x-a,y);点(x,y)向上平移a个单位长度后的坐标变为(x,y+a);点(x,y)向下平移a个单位长度后的坐标变为(x,y-a)。

2、轴对称(1)轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称。

这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。

(2)轴对称图形:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形。

这条直线叫做它的对称轴。

(3)轴对称的性质:关于某条直线对称的图形是全等形。

经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

(4)线段垂直平分线的性质线段垂直平分线上的点到这条线段两个端点的距离相等;与一条线段两个端点距离相等的点,在线段的垂直平分线上。

(5)坐标与轴对称:点(x,y)关于x轴对称的点的坐标是(x,-y);点(x,y)关于y轴对称的点的坐标是(-x,y);3、旋转(1)旋转定义:把一个平面图形绕着平面内某一点O转动一个角度,叫做图形的旋转。

点O叫做旋转中心,转动的角叫做旋转角。

如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点。

旋转的性质:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前后的图形全等。

(2)中心对称定义:把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称。

几何变换的认识和基本原理

几何变换的认识和基本原理

几何变换的认识和基本原理几何变换是指通过对平面上的点、线、面进行位置、形状或尺寸上的改变,从而得到一个新的图形。

在计算机图形学和计算机视觉等领域,几何变换是非常重要的基础知识。

本文将介绍几何变换的认识和基本原理。

一、平移变换平移变换是指将一个图形沿着某个方向平行移动一定的距离。

平移变换可以用以下公式表示:[x', y'] = [x + dx, y + dy]其中,(x, y)是原始图形上的一个点,(dx, dy)是平移的距离,(x', y')是平移后得到的新点的坐标。

二、旋转变换旋转变换是指将一个图形绕着某个中心点按照一定的角度旋转。

旋转变换可以用以下公式表示:[x', y'] = [x*cosθ - y*sinθ, x*sinθ + y*cosθ]其中,(x, y)是原始图形上的一个点,θ是旋转的角度,(x', y')是旋转后得到的新点的坐标。

三、缩放变换缩放变换是指将一个图形按照一定的比例因子放大或缩小。

缩放变换可以用以下公式表示:[x', y'] = [s*x, s*y]其中,(x, y)是原始图形上的一个点,s是缩放的比例因子,(x', y')是缩放后得到的新点的坐标。

四、对称变换对称变换是指将一个图形关于某一直线或某一点进行对称。

对称变换可以分为关于x轴对称、关于y轴对称、关于原点对称等。

不同类型的对称变换具体的公式略有不同,但原理都是将图形上的点映射到其关于对称轴的对称位置。

五、仿射变换仿射变换是指将一个图形通过平移、旋转和缩放等基本变换来进行综合变换。

仿射变换可以用以下矩阵表示:[x', y'] = [a*x + b*y + c, d*x + e*y + f]其中,a、b、c、d、e、f为变换矩阵中的参数,(x, y)是原始图形上的一个点,(x', y')是变换后得到的新点的坐标。

初中数学图形变换知识点整理

初中数学图形变换知识点整理

初中数学图形变换知识点整理初中数学中,图形变换是一个重要的知识点,它包括了平移、旋转、对称和放缩四个部分。

这些变换不仅在初中数学中有着广泛的应用,也是进一步学习几何知识和应用问题的基础。

下面将对这些知识点进行整理和阐述。

一、平移平移是指将一个图形沿着一定的方向和距离移动,平移后的图形与原图形相似,只是位置发生了改变。

在平移中,有以下几个关键概念需要注意:1. 平移的向量:平移是向量的运算,表示为→AB,表示从点A到点B的位移,也可以表示成矢量形式(AB)。

2. 平移的性质:平移具有保持图形大小、形状和方向不变的性质。

即平移后的图形与原图形全等。

3. 平移的规律:平移的规律可以总结为“横坐标加上有向线段的横坐标,纵坐标加上有向线段的纵坐标”。

即新图形的坐标为(x+a,y+b),其中a和b为向量→AB的横纵坐标。

二、旋转旋转是指将一个图形围绕一个中心点旋转一定的角度,旋转后的图形与原图形形状相似,但方向可能有所改变。

在旋转中,要注意以下几个关键概念:1. 旋转中心:旋转中心是图形旋转的轴心点,围绕该点进行旋转。

旋转中心可以是图像的一个顶点、中点或者其他位置。

2. 旋转角度:旋转角度是指图形旋转的角度,可以是正数也可以是负数。

顺时针旋转角度为负,逆时针旋转角度为正。

3. 旋转规律:旋转后的图形的顶点坐标可以通过坐标公式得出。

对于顺时针旋转,坐标公式为:新坐标点的横坐标为原坐标点的纵坐标,新坐标点的纵坐标为原坐标点的横坐标的相反数。

对于逆时针旋转,公式则相反。

三、对称对称是指图形通过某一条直线、点或平面变换后重合,这条直线、点或平面称为对称轴。

对称中需要注意以下几个关键概念:1. 对称轴:对称轴是图形对称的参考线。

对称轴可以是一条直线、一个点或平面。

2. 对称性质:对称是指图形经过对称变换后,与原图形完全重合,即图形左右对称、上下对称或中心对称。

3. 对称变换规律:对称变换后的图形的坐标可以通过规律得出。

初中数学图形变换知识点整理

初中数学图形变换知识点整理

初中数学图形变换知识点整理图形变换是初中数学中的重要内容,它涵盖了平移、旋转、翻折和放缩等多个知识点。

了解图形变换的概念和基本原理,对于学好初中数学和几何学有着重要的意义。

本文将对初中数学图形变换的知识点进行整理和总结。

首先,我们来讨论平移。

平移是指在平面内保持大小和形状不变,只改变位置的变换。

通过平移变换,图形在平面内沿着某一方向移动,可以描述为向上、向下、向左或向右平移。

平移的关键是平移向量,它由水平方向和垂直方向的平移量组成。

平移变换可以用向量法来表示,即将平移向量的水平位移和垂直位移分别应用到图形的每一个点上。

接下来是旋转变换。

旋转是指围绕某一点旋转图形的变换。

在旋转变换中,旋转中心是关键点,它决定了旋转的中心和方向。

通过角度来确定旋转的大小,顺时针旋转和逆时针旋转分别由正负角度表示。

旋转变换可以用正弦和余弦函数来表示,通过坐标变换的方式来实现。

对于一个图形中的点,通过将其坐标按照旋转公式进行计算,可以得到旋转后的新坐标。

第三个知识点是翻折变换。

翻折是指关于某条直线对称的变换。

在翻折变换中,直线称为对称轴,它决定了翻折的位置和方向。

通过关于对称轴两侧的点对应,可以得到翻折后的新图形。

对称轴可以是水平线、垂直线或斜线,只要两侧的点位置对应即可。

翻折变换也可以通过坐标变换的方式来实现,通过确定翻折的对称轴和对称中心,将图形上的点按照对称关系进行计算。

最后是放缩变换。

放缩是指改变图形的尺寸大小的变换。

放缩变换可以分为放大和缩小两种情况。

放大是指增加图形的尺寸,缩小是指减小图形的尺寸。

放缩变换可以通过改变图形的横坐标和纵坐标的比例因子来实现。

比例因子大于1时图形放大,小于1时图形缩小。

放缩变换还可以通过矩阵变换的方式来实现,通过对图形的顶点坐标进行矩阵运算,可以得到放缩后的新坐标。

在实际问题中,图形变换常常与应用问题相结合。

例如,在地图上标记某一城市的位置时,可以通过平移变换将城市的位置标记到地图上的正确位置;在建筑设计中,可以使用旋转变换来调整建筑物的朝向;在布艺设计中,可以使用翻折变换来设计出各种不同的花纹;在制作模型时,可以使用放缩变换来控制模型的尺寸大小。

图形的变换归纳总结

图形的变换归纳总结

图形的变换归纳总结图形变换是数学中的一个重要概念,它涉及到图形在平面内的平移、旋转、镜像和缩放等操作。

通过对图形变换的归纳总结,我们能够更好地理解其规律和性质,并应用于解决实际问题。

本文将从平移、旋转、镜像和缩放四个方面来归纳总结图形变换的相关知识。

一、图形平移图形平移是指在平面内保持大小和形状不变的情况下,将图形沿平行向量平移一定距离。

平移变换的特点是新旧图形相似,仅位置发生改变。

平移变换常用符号表示为T(x, y) = (x + a, y + b),其中T表示平移操作,(x, y)表示原始图形的坐标,而(a, b)表示平移向量的坐标。

通过平移变换,我们可以得到同一图形在不同位置的变化。

二、图形旋转图形旋转是指将图形按照某一中心点旋转一定角度,使其形状和大小保持不变。

旋转变换的特点是新旧图形相似,仅方向发生改变。

旋转变换常用符号表示为R(θ),其中R表示旋转操作,θ表示旋转的角度。

旋转角度可正可负,表示顺时针或逆时针方向的旋转。

通过旋转变换,我们可以得到同一图形在不同方向的变化。

三、图形镜像图形镜像是指将图形沿一条直线作对称操作,使其形状和大小保持不变。

镜像变换的特点是新旧图形相似,仅位置关系发生改变。

镜像变换常用符号表示为M(x, y),其中M表示镜像操作,(x, y)表示原始图形的坐标。

镜像操作可以分为水平镜像和垂直镜像两种情况。

通过镜像变换,我们可以得到同一图形在不同位置关系下的变化。

四、图形缩放图形缩放是指按照一定的比例改变图形的大小,使其形状保持不变。

缩放变换的特点是新旧图形相似,仅大小发生改变。

缩放变换常用符号表示为S(k),其中S表示缩放操作,k表示缩放的比例因子。

比例因子k可以大于1表示放大操作,也可以小于1表示缩小操作。

通过缩放变换,我们可以得到同一图形在不同大小比例下的变化。

通过对图形变换的归纳总结,我们可以发现以下规律:1. 平移、旋转和缩放操作都可以通过坐标变换实现,其中平移操作相对简单,仅需改变图形的坐标即可;旋转和缩放操作则需要通过旋转矩阵和缩放矩阵进行计算。

图形的变化与对称

图形的变化与对称

图形的变化与对称一、图形的变换1.平移:在平面内,将一个图形整体按照某个直线方向移动一定的距离,这种移动叫做图形的平移。

2.旋转:在平面内,将一个图形绕一点按某个方向转动一个角度,这种移动叫做图形的旋转。

3.轴对称:在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

二、图形的对称性1.对称轴:一个图形沿一条直线对折,对折后的两部分都能完全重合,这条直线就叫做这个图形的对称轴。

2.对称点:一个图形沿一条直线对折,对折后的两部分都能完全重合,这个图形的每个点都有一个对应的对称点。

3.中心对称:在平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心。

三、图形的对称性质1.对称图形的性质:对称图形的大小、形状和位置都不变,只是位置发生了变化。

2.轴对称图形的性质:轴对称图形沿对称轴对折,对折后的两部分完全重合。

3.中心对称图形的性质:中心对称图形绕对称中心旋转180°,旋转后的图形和原图形完全重合。

四、图形的变换与对称的应用1.利用图形的变换与对称解决实际问题,如设计图案、解决几何题等。

2.了解图形的变换与对称在生活中的应用,如建筑设计、艺术创作等。

1.判断题:(1)平移是将图形沿着一个方向移动一定的距离。

()(2)旋转是将图形绕一个点转动一个角度。

()(3)如果一个图形沿一条直线对折,对折后的两部分完全重合,这个图形就是轴对称图形。

()(4)对称轴是将图形分成两个完全相同部分的一条直线。

()2.选择题:(1)以下哪个选项不是图形的变换?()A.平移B.旋转C.翻转D.缩放(2)一个图形沿一条直线对折,对折后的两部分完全重合,这个图形沿该直线叫做什么?( )A.对称轴B.对称点C.对称线D.对称面3.解答题:(1)请描述轴对称图形的特点。

(2)请描述中心对称图形的特点。

图形的变换知识点总结

图形的变换知识点总结

第五部分图形的变换平移、旋转和翻折是几何变换中的三种基本变换。

所谓几何变换就是根据确定的法则,对给定的图形(或其一部分)施行某种位置变化,然后在新的图形中分析有关图形之间的关系。

一、平移(1)平移的定义:在平面内,将一个图形整体沿某一方向由一个位置平移到另一个位置,图形的这种移动,叫做平移变换,简称平移,平移前后互相重合的点叫做对应点。

(2)平移的性质:①对应点的连线平行(或共线)且相等②对应线段平行(或共线)且相等,平移前后的两条对应线段的四个端点所围成的四边形为平行四边形(四个端点共线除外)③对应角相等,对应角两边分别平行,且方向一致。

(3)用坐标表示平移:如果把一个图形各个点的横坐标都加上(或减去)一个正数a,纵坐标不变,相应的新图形就是把原图形向右(或向左)平移a个单位长;如果把一个图形各个点的纵坐标都加上(或减去)一个正数a,横坐标不变,相应的新图形就是把原图形向上(或向下)平移a个单位长。

(从坐标来讲:向正方向平移为加,逆方向平移为减)(4)平移的两个要素:平移方向、平移距离(5)平移作图的步骤和方法:将原图形的各个特征点按规定的方向平移,得到相应的对称点,再将各对称点进行相应连接,即得到平移后的图形,方法有如下三种:平行线法、对应点连线法、全等图形法。

平移求阴影部分面积二、旋转旋转的定义:在平面内,将一个图形绕一个定点沿某个方向转动一个角度成为与原来相等的图形,这样的图形运动叫做图形的旋转,这个定点叫做旋转中心,图形转动的角叫做旋转角.旋转具有以下特征:(1)对应点与旋转中心的连线所成夹角等于旋转角;(2)对应点到旋转中心的距离相等;(3)对应角、对应线段相等;(4)图形的形状和大小都不变。

(5)对应线段的垂直平分线都经过旋转中心常见的旋转模型:(利用旋转做辅助线的思路)三、旋转类型题目1、正三角形类型在正ΔABC 中,P 为ΔABC 内一点,将ΔABP 绕A 点按逆时针方向旋转60°,使得AB 与AC 重合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版五年级下册数学第一单元
图形的变换包括:、、。

其中只是改变原图形位置的变换是、。

一、图形的平移
1、平移不改变图形的和。

2、平移的三要素:原图形的位置、平移的方向、平移的距离。

平移的方向一般为:水平方向、垂直方向两种。

平移的距离:一般为几个单位长度(也即几个方格)。

3、平移是整个图形的移动,图形的每个关键点都需要按要求移动。

4、图形平移的步骤:(1)确定原图形位置、平移的方向、平移的距离。

(2)找出原图形的各关键点。

(3)根据题目要求将各个点依次平移。

(4)顺次连接平移后的各点,标明各点名称。

二、轴对称
1、一个图形沿着某一条直线折叠,如果直线的图形能够重合,就说这一个图形是轴对称图形。

这条直线叫做图形的。

2、轴对称图形一定有对称轴,而且至少有条对称轴,常见的例如:、、、、、;有两条对称轴的常见图形有、;有三条对称轴的常见图形有;正方形有条对称轴;五角星和正五边形有条对称轴;正六变形有条对称轴。

三、轴对称图形的画法
1、轴对称图形的性质:(1)对称轴两边的图形一定完全相同
(2)对应点也关于对称轴对称
(3)对应点的连线垂直于对称轴
(4)对应点到对称轴的距离相等
2、轴对称图形的画法:(1)根据题意确定已知图形以及对称轴位置
(2)找出已知图形的关键点
(3)一次过每个点作垂直于对称轴的虚线(根据性质3)
(4)在对称轴另一侧确定各对应点位置(根据性质4)
(5)标明各点对应名称,顺次连接各对应点得到轴对称图形。

四、确定轴对称图形的对称轴
沿某条直线对折之后,两边的图形能够完全重叠,这条直线就是图形的对称轴。

五、轴对称和成轴对称
六、图形旋转的特点
1、旋转前后图形形状和大小都不变。

2、每组对应点与旋转中心的连线所成角的度数都等于旋转角度。

3、各对应点之间的距离也相等。

七、图形旋转的三要素
1、旋转中心:可以在已知图形上也可以在已知图形外。

2、旋转方向:顺时针和逆时针。

3、旋转角度:常见的有45°、90°180°等。

八、旋转图形的画法
1、确定旋转中心、旋转方向、旋转角度
2、找去原图形的各关键点
3、依次将各关键点与旋转中心连接(用虚线)
4、将各连线按要求旋转一定角度后,确定各虚线的长度,标出对应点。

5、将个对应点连接并标出名称。

相关文档
最新文档