必修一函数定义域值域和单调性奇偶性练习题
函数的单调性与奇偶性-练习题-基础

1 函数单调性(一) (一)选择题 1.函数xx f 3)(=在下列区间上不是..减函数的是( ) A .(0,+∞) B .(-∞,0) C .(-∞,0)∪(0,+∞) D .(1,+∞) 2.下列函数中,在区间(1,+∞)上为增函数的是( ) A .y =-3x +1B .x y 2=C .y =x 2-4x +5D .y =|x -1|+23.设函数y =(2a -1)x 在R 上是减函数,则有 A .21≥a B .21≤a C .21>a D .21<a ~4.若函数f (x )在区间[1,3)上是增函数,在区间[3,5]上也是增函数,则函数f (x )在区间[1,5]上( )A .必是增函数B .不一定是增函数C .必是减函数D .是增函数或减函数 (二)填空题5.函数f (x )=2x 2-mx +3在[-2,+∞)上为增函数,在(-∞,-2)上为减函数,则m =______.6.若函数xax f =)(在(1,+∞)上为增函数,则实数a 的取值范围是______. 7.函数f (x )=1-|2-x |的单调递减区间是______,单调递增区间是______. 8.函数f (x )在(0,+∞)上为减函数,那么f (a 2-a +1)与)43(f 的大小关系是______。
*9.若函数f (x )=|x -a |+2在x ∈[0,+∞)上为增函数,则实数a 的取值范围是______. -(三)解答题10.函数f (x ),x ∈(a ,b )∪(b ,c )的图象如图所示,有三个同学对此函数的单调性作出如下的判断:甲说f (x )在定义域上是增函数;乙说f (x )在定义域上不是增函数,但有增区间, 丙说f (x )的增区间有两个,分别为(a ,b )和(b ,c ) 请你判断他们的说法是否正确,并说明理由。
;11.已知函数.21)(-=xx f (1)求f (x )的定义域;(2)证明函数f (x )在(0,+∞)上为减函数.12.已知函数||1)(x x f =. (1)用分段函数的形式写出f (x )的解析式;&(2)画出函数f (x )的图象,并根据图象写出函数f (x )的单调区间及单调性.2 函数单调性(二) (一)选择题1.一次函数f (x )的图象过点A (0,3)和B (4,1),则f (x )的单调性为( )(A .增函数B .减函数C .先减后增D .先增后减 2.已知函数y =f (x )在R 上是增函数,且f (2m +1)>f (3m -4),则m 的取值范围是( ) A .(-∞,5)B .(5,+∞)C .),53(+∞D .)53,(-∞3.函数f (x )在区间(-2,3)上是增函数,则下列一定是y =f (x )+5的递增区间的是( )A .(3,8)B .(-2,3)C .(-3,-2)D .(0,5) 4.已知函数f (x )在其定义域D 上是单调函数,其值域为M ,则下列说法中 ①若x 0∈D ,则有唯一的f (x 0)∈M ②若f (x 0)∈M ,则有唯一的x 0∈D !③对任意实数a ,至少存在一个x 0∈D ,使得f (x 0)=a ④对任意实数a ,至多存在一个x 0∈D ,使得f (x 0)=a 错误的个数是( ) A .1个 B .2个 C .3个 D .4个 (二)填空题 5.已知函数f (x )=3x +b 在区间[-1,2]上的函数值恒为正,则b 的取值范围是_____. 6.函数])2,1[(12∈-=x xx y 的值域是______. *7.已知函数f (x )的定义域为R ,且对任意两个不相等的实数x ,y ,都有0)()(<--yx y f x f 成立,则f (x )在R 上的单调性为________(填增函数或减函数或非单调函数). -8.若函数y =ax 和x by -=在区间(0,+∞)上都是减函数,则函数1+=x ab y 在(-∞,+∞)上的单调性是______(填增函数或减函数或非单调函数).9.若函数⎩⎨⎧<-≥+=)1(1)1(1)(2x ax x x x f 在R 上是单调递增函数,则a 的取值范围是______.(三)解答题10.某同学在求函数]4,1[,)(∈+=x x x x f 的值域时,计算出f (1)=2,f (4)=6,就直接得值域为[2,6].他的答案对吗,他这么做的理由是什么11.用max{a ,b }表示实数a ,b 中较大的一个,对于函数f (x )=2x ,xx g 1)(=,记F (x )=max{f (x ),g (x )},试画出函数F (x )的图象,并根据图象写出函数F (x )的单调区间.|*12.已知函数f (x )在其定义域内是单调函数,证明:方程f (x )=0至多有一个实数根.3 函数的奇偶性·(一)选择题1.下列函数中:①y =x 2(x ∈[-1,1]) ; ②y =|x |; ;1)(xx x f +=③ ④y =x 3(x ∈R ) 奇函数的个数是( ) A .1个 B .2个 C .3个 D .4个 2.对于定义域为R 的任意奇函数f (x )一定有( ) A .f (x )-f (-x )>0 B .f (x )-f (-x )≤0 C .f (x )·f (-x )<0 D .f (x )·f (-x )≤0¥3.函数⎩⎨⎧<+≥-=)0(1)0(1)(x x x x x fA .是奇函数不是偶函数B .是偶函数不是奇函数C .既不是奇函数也不是偶函数D .既是奇函数又是偶函数 4.下面四个结论中,正确命题的个数是( ) ①偶函数的图象一定与y 轴相交 ②奇函数的图象一定通过原点 ③偶函数的图象关于y 轴对称④既是奇函数,又是偶函数的函数一定是f (x )=0(x ∈R )。
人教版高中数学必修一知识点与典型习题——第二部分-函数(含答案)

2015-2016高一上学期期末复习知识点与典型例题人教数学必修一 第二部分 函数1、函数的定义域、值域2、判断相同函数3、分段函数4、奇偶性5、单调性1.定义域 值域(最值) 1.函数()()3log 3f x x =++的定义域为____________________ 2.函数22()log (23)f x x x 的定义域是( )(A) [3,1] (B) (3,1) (C) (,3][1,)-∞-+∞ (D) (,3)(1,)-∞-+∞3.2()23,(1,3]f x x x x =-+∈-的值域为____________________ 4.若函数21()2f x x x a =-+的定义域和值域均为[1,](1)b b >,求a 、b 的值.2.函数相等步骤:1、看定义域是否相等; 2、看对应关系(解析式)能否化简到相同1.下列哪组是相同函数?2(1)(),()x f x x g x x ==(2)()()f x x g x ==,2(3)()2lg ,()lg f x x g x x ==(4)(),()f x x g x ==3.分段函数基本思路:分段讨论 (1)求值问题1.24(),(5)(1)4xx f x f f x x ⎧<==⎨-≥⎩已知函数则_______________ 2.设函数211()21x x f x x x⎧+≤⎪=⎨>⎪⎩,则=))3((f f ______________(2)解方程1.2log ,11(),()1,12x x f x f x x x >⎧==⎨-≤⎩已知函数则的解为_________________2.已知⎩⎨⎧>-≤+=)0(2)0(1)(2x x x x x f ,若()10f x =,则x = .(3)解不等式1.21,0(),()1,0x f x f x x x x ⎧>⎪=>⎨⎪≤⎩已知函数则的解集为__________________2.2log ,0(),()023,0x x f x f x x x >⎧=>⎨+≤⎩已知函数则的解集为__________________(4)作图、求取值范围(最值)1.24-x ,0()2,012,0x f x x x x ⎧>⎪==⎨⎪-<⎩已知函数.(1)作()f x 的图象;(2)求2(1)f a +,((3))f f 的值;(3)当43x -≤<,求()f x 的取值集合(5)应用题(列式、求最值)1.为方便旅客出行,某旅游点有50辆自行车供租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每超过1元,租不出去的自行车就增加3辆,为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用y (元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得), (1)求函数f(x)的解析式及其定义域;(2)试问当每辆自行车的日租金定为多少元时,才能使一日的净收入最多?4.函数的单调性(1)根据图像判断函数的单调性——单调递增:图像上升 单调递减:图像下降 1.下列函数中,在区间(0,)+∞上为增函数的是( )A .ln(2)y x =+ B.y =.1()2xy = D .1y x x=+2.下列函数中,在其定义域内为减函数的是( )A .3y x =- B .12y x = C .2y x = D .2log y x =(2)证明函数的单调性步骤——取值、作差12()()f x f x -、变形、定号、下结论 1.已知函数11()(0,0)f x a x a x=->>. (1)求证:()f x 在(0,)+∞上是单调递增函数;(2)若()f x 在1[,2]2上的值域是1[,2]2,求a 的值.(3)利用函数的单调性求参数的范围1.2()2(1)2(2]f x x a x =+-+-∞在,上是减函数,则a 的范围是________2.若函数⎪⎩⎪⎨⎧<-≥-=2,1)21(,2,)2()(x x x a x f x 是R 上的单调递减函数,则实数a 的取值范围为( )A .)2,(-∞B .]813,(-∞ C .)2,0( D .)2,813[3.讨论函数223f(x)x ax =-+在(2,2)-内的单调性(4)利用函数的单调性解不等式1.()f x 是定义在(0,)+∞上的单调递增函数,且满足(32)(1)f x f -<,则实数x 的取值范围是( ) A . (,1)-∞ B . 2(,1)3 C .2(,)3+∞ D . (1,)+∞ 2.2()[1,1](1)(1)f x f m f m m --<-若是定义在上的增函数,且,求的范围(5)奇偶性、单调性的综合1.奇函数f(x)在[1,3]上为增函数,且有最小值7,则它在[-3,-1]上是____函数,有最___值___. 2.212()(11)()125ax b f x f x +=-=+函数是,上的奇函数,且. (1)确定()f x 的解析式;(2)用定义法证明()f x 在(1,1)-上递增;(3)解不等式(1)()0f t f t -+>.3.f(x)是定义在( 0,+∞)上的增函数,且()()()xf f x f y y=-(1)求f (1)的值.(2)若f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .5.函数的奇偶性(1)根据图像判断函数的奇偶性奇函数:关于原点对称;偶函数:关于y 轴对称 例:判断下列函数的奇偶性① y=x ³ ② y=|x|(2)根据定义判断函数的奇偶性一看定义域是否关于原点对称;二看()f x -与()f x 的关系1.设函数)(x f 和)(x g 分别是R 上的偶函数和奇函数,则下列结论恒成立的是( ) A .)()(x g x f +是偶函数 B .)()(x g x f -是奇函数 C .)()(x g x f +是偶函数 D .)()(x g x f -是奇函数 2.已知函数()log (1)log (1)(01)a a f x x x a a =+-->≠且 (1)求()f x 的定义域;(2)判断()f x 的奇偶性并予以证明。
高一数学必修一函数练习题

高一数学必修一函数练习题函数是高中数学中非常重要的概念,它描述了两个集合之间的一种对应关系。
下面为高一学生准备了一系列函数练习题,以帮助学生更好地理解和掌握函数的基本概念和性质。
练习题一:函数的定义域与值域1. 给定函数 \( f(x) = \frac{1}{x - 2} \),求其定义域。
2. 对于函数 \( g(x) = x^2 - 4x + 3 \),找出其值域。
练习题二:函数的单调性1. 判断函数 \( h(x) = x^3 - 3x \) 在 \( x \in (-\infty,\infty) \) 上的单调性。
2. 若函数 \( k(x) = 2x - 1 \) 在 \( x \in [0, 2] \) 上单调递增,求 \( k(x) \) 在 \( x \in [2, 4] \) 上的单调性。
练习题三:函数的奇偶性1. 判断函数 \( f(x) = |x| \) 是否为奇函数或偶函数。
2. 若函数 \( g(x) = x^2 + 1 \) 是偶函数,求证。
练习题四:复合函数1. 已知 \( f(x) = x^2 \) 和 \( g(x) = x + 3 \),求复合函数\( (f \circ g)(x) \)。
2. 若 \( h(x) = \sqrt{x} \) 和 \( k(x) = x - 1 \),求 \( (h \circ k)(x) \)。
练习题五:反函数1. 若 \( f(x) = 2x + 1 \),求其反函数 \( f^{-1}(x) \)。
2. 对于函数 \( g(x) = x^2 \),讨论其反函数的存在性。
练习题六:函数的图像与性质1. 画出函数 \( y = |x - 1| \) 的图像,并标出其顶点坐标。
2. 对于函数 \( y = x^3 \),描述其在 \( x = 0 \) 附近的图像变化趋势。
练习题七:函数的实际应用1. 某工厂生产的产品数量与时间的关系为 \( P(t) = 100t - 5t^2 \),求出生产量达到最大时的时间。
高一函数单调性奇偶性经典练习题

函数单调性奇偶性经典练习一、单调性题型高考中函数单调性在高中函数知识模块里面主要作为工具或条件使用,也有很多题会以判断单调性单独出题或有的题会要求先判断函数单调性才能进行下一步骤解答,另有部分以函数单调性质的运用为主. (一)函数单调性的判断 函数单调性判断常用方法:121212121212()()0()()()()0()()()()()()()()()()()()f x f x f x f x x x x x f x f x f x f x f x g x f x f x g x f x g x g x g x f x ->>⇒⎧<⎨-<<⇒⎩+⇒⎧-⎧⎪⇒-⇒⎨⎨-⎩⎪-⇒⎩即单调增函数定义法(重点):在其定义域内有任意,且即单调增函数复合函数快速判断:“同增异减”增为减函数基本初等函数加减(设为增函数,为减函数):增为增函数减互为反.⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩函数的两个函数具有相同的单调性例1 证明函数23()4x f x x +=-在区间(4)+∞,上为减函数(定义法)解析:用定义法证明函数的单调性,按步骤“一假设、二作差、三判断(与零比较)”进行.解:设12(4)x x ∈+∞,,且12x x <,1221121212232311()()()44(4)(4)x x x x f x f x x x x x ++--=-=---- 214x x >>Q 210x x ∴->,1(4)0x ->,2(4)0x -> 12()()f x f x ∴> 故函数()f x 在区间(4)+∞,上为减函数. 练习1 证明函数21()3x f x x -=+在区间(3)-+∞,上为减函数(定义法)练习2证明函数2()f x x =2()3-∞,上为增函数(定义法、快速判断法)练习3 求函数3()2x f x x -=+定义域,并求函数的单调增区间(定义法)练习4求函数()f x x =定义域,并求函数的单调减区间(定义法)(复合函数,基本初等函数相加减问题,反函数问题在本章结束时再练习) (二) 函数单调性的应用⎧⎪⎨⎪⎩单独考查单调性:结合单调函数变量与其对应函数值的关系求参数定义域与单调性结合:结合定义域与变量函数值关系求参数值域与单调性结合:利用函数单调性求值域 例1 若函数()f x 是定义在R 上的增函数,且2(2)(3)f x x f a +>+恒成立,数a 的围。
高中数学:函数的单调性、奇偶性、最值问题练习及答案

高中数学:函数的单调性、奇偶性、最值问题练习及答案1.已知奇函数f(x)的定义域为(-∞,0)∪(0,+∞),且不等式>0对任意两个不相等的正实数x1,x2都成立,则下列不等式中,正确的是()A.f(-5)>f(3)B.f(-5)<f(3)C.f(-3)>f(-5)D.f(-3)<f(-5)2.设f(x)是R上的偶函数,且在(0,+∞)上是减函数,若x1<0且x1+x2>0,则()A.f(-x1)>f(-x2)B.f(-x1)=f(-x2)C.f(-x1)<f(-x2)D.f(-x1)与f(-x2)的大小不确定3.已知函数f(x)是奇函数,且在(-∞,+∞)上为增函数,若x,y满足等式f(2x2-4x)+f(y)=0,则4x+y的最大值是()A.10B.-6C.8D.94.已知f(x)=ax2+bx+c(a≠0),且方程f(x)=x无实根.现有四个说法:①若a>0,则不等式f(f (x))>x对一切x∈R成立;②若a<0,则必存在实数x0使不等式f(f(x0))>x0成立;③方程f(f(x))=x一定没有实数根;④若a+b+c=0,则不等式f(f(x))<x对一切x∈R成立.其中说法正确的个数是()A.1B.2C.3D.45.区间[a,b]和[-b,-a]关于原点对称.(1)若f(x)为奇函数,且在[a,b]上有最大值M,则f(x)在[-b,-a]上有最________值________. (2)若f(x)为奇函数,f(x)+2在[a,b]上有最大值M,则f(x)+2在[-b,-a]上有最________值________.6.设定义在(-1,1)上的奇函数f(x)在[0,1)上单调递增,且有f(1-m)+f<0,求实数m的取值范围.7.已知定义在R上的奇函数f(x),当x>0时,f(x)=-x2+2x.(1)求函数f(x)在R上的解析式;(2)若函数f(x)在区间[-1,a-2]上单调递增,求实数a的取值范围.8.定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a,b∈R,有f(a+b)=f(a)f(b).(1)求证:f(0)=1;(2)求证:对任意的x∈R,恒有f(x)>0;(3)求证:f(x)是R上的增函数.9.若f(x)是定义在(0,+∞)上的增函数,且对一切x,y>0,满足f()=f(x)-f(y).(1)求f(1)的值;(2)若f(6)=1,解不等式f(x+3)-f()<2.10.定义在(0,+∞)上的函数f(x)满足f(mn)=f(m)+f(n)(m,n>0),且当x>1时,f(x)>0. (1)求f(1)的值;(2)求证f=f(m)-f(n);(3)求证f(x)在(0,+∞)上是增函数;(4)若f(2)=1,解不等式f(x+2)-f(2x)>2;(5)比较f的大小.11.若函数f(x)的定义域是R,且对任意x,y∈R,都有f(x+y)=f(x)+f(y)成立.(1)试判断f(x)的奇偶性;(2)若f(8)=4,求f(-)的值.12.已知f(x)是定义在R上的不恒为0的函数,且对于任意的x,y∈R,有f(x·y)=xf(y)+yf(x). (1)求f(0),f(1)的值;(2)判断函数f(x)的奇偶性,并证明你的结论.13.已知函数f(x)对任意实数x,y恒有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,又f(1)=-2.(1)判断f(x)的奇偶性;(2)求证:f(x)是R上的减函数;(3)求f(x)在区间[-3,3]上的值域;(4)若对任意x∈R,不等式f(ax2)-2f(x)<f(x)+4恒成立,求a的取值范围.14.设f(x)是定义在[-1,1]上的奇函数,且对任意a,b∈[-1,1],当a+b≠0时,都有>0.(1)若a>b,试比较f(a)与f(b)的大小;(2)解不等式f(x-)<f(x-);(3)如果g(x)=f(x-c)和h(x)=f(x-c2)这两个函数的定义域的交集是空集,求c的取值范围.15.已知函数f(x)是定义在区间[-1,1]上的奇函数,且f(1)=1,若对于任意的m,n∈[-1,1]有>0. (1)判断函数的单调性(不要求证明);(2)解不等式f<f(1-x);(3)若f(x)≤-2at+2对于任意的x∈[-1,1],a∈[-1,1]恒成立,求实数t的取值范围.16.已知函数f(x)=x-.(1)判断函数f(x)的奇偶性,并加以证明;(2)用定义证明函数f(x)在区间[1,+∞)上为增函数;(3)若函数f(x)在区间[2,a]上的最大值与最小值之和不小于,求a的取值范围.17.已知函数f(x)=x2+2.(1)求函数f(x)的定义域和值域;(2)判断函数f(x)的奇偶性和单调性;(3)求函数f(x)在区间(-1,2]上的最大值和最小值.18.已知函数f(x)=ax2+bx+1(a,b均为实数),x∈R,F(x)=(1)若f(-1)=0,且函数f(x)的值域为[0,+∞),求F(x)的解析式;(2)在(1)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围;(3)设mn<0,m+n>0,a>0,且f(x)为偶函数,判断F(m)+F(n)是否大于零,并说明理由.19.已知函数f(x)=-(常数a>0).(1)设m·n>0,证明:函数f(x)在[m,n]上单调递增;(2)设0<m<n,且f(x)的定义域和值域都是[m,n],求n-m的最大值.20.已知函数y=f(x)是定义在R上的奇函数,且当x≥0时,f(x)=-x2+ax.(1)若a=-2,求函数f(x)的解析式;(2)若函数f(x)为R上的单调减函数,①求a的取值范围;②若对任意实数m,f(m-1)+f(m2+t)<0恒成立,求实数t的取值范围.21.已知二次函数f(x)的最小值为1,且f(0)=f(2)=3.(1)求f(x)的解析式;(2)若f(x)在区间[3a,a+1]上不单调,求实数a的取值范围;(3)在区间[-1,1]上,y=f(x)的图象恒在y=2x+2m+1的图象上方,试确定实数m的取值范围.22.已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若a,b∈[-1,1],a+b≠0时,有>0成立. (1)判断f(x)在[-1,1]上的单调性;(2)解不等式f(x+)<f();(3)若f(x)≤m2-2am+1对所有的a∈[-1,1]恒成立,求实数m的取值范围.答案1.已知奇函数f(x)的定义域为(-∞,0)∪(0,+∞),且不等式>0对任意两个不相等的正实数x1,x2都成立,则下列不等式中,正确的是()A.f(-5)>f(3)B.f(-5)<f(3)C.f(-3)>f(-5)D.f(-3)<f(-5)【答案】C【解析】设0<x1<x2,则x1-x2<0,由>0,得f(x1)-f(x2)<0,即f(x1)<f(x2),∴f(x)在(0,+∞)上为增函数,∴f(x)在(-∞,0)上也是增函数,∴由-3>-5,可得f(-3)>f(-5).2.设f(x)是R上的偶函数,且在(0,+∞)上是减函数,若x1<0且x1+x2>0,则()A.f(-x1)>f(-x2)B.f(-x1)=f(-x2)C.f(-x1)<f(-x2)D.f(-x1)与f(-x2)的大小不确定【答案】A【解析】∵x1<0,x1+x2>0,∴x2>-x1>0,又f(x)在(0,+∞)上是减函数,∴f(x2)<f(-x1),∵f(x)是偶函数,∴f(-x2)=f(x2)<f(-x1).3.已知函数f(x)是奇函数,且在(-∞,+∞)上为增函数,若x,y满足等式f(2x2-4x)+f(y)=0,则4x+y的最大值是()A.10B.-6C.8D.9【答案】C【解析】∵奇函数f(x)在(-∞,+∞)上是增函数,∴f(2x2-4x)=-f(y)=f(-y),∴2x2-4x=-y,∴4x+y=4x-2x2+4x=-2(x-2)2+8≤8,故选C.4.已知f(x)=ax2+bx+c(a≠0),且方程f(x)=x无实根.现有四个说法:①若a>0,则不等式f(f (x))>x对一切x∈R成立;②若a<0,则必存在实数x0使不等式f(f(x0))>x0成立;③方程f(f(x))=x一定没有实数根;④若a+b+c=0,则不等式f(f(x))<x对一切x∈R成立.其中说法正确的个数是()A.1B.2C.3D.4【答案】C【解析】∵方程f(x)=x无实根,∴f(x)-x>0或f(x)-x<0.∵a>0,∴f(x)-x>0对一切x∈R成立,∴f(x)>x,用f(x)代替x,∴f(f(x))>f(x)>x,∴说法①正确;同理若a<0,则有f(f(x))<x,∴说法②错误;说法③正确;∵a+b+c=0,∴f(1)-1<0,∴必然归为a<0,有f(f(x))<x,∴说法④正确.故选C.填空5.区间[a,b]和[-b,-a]关于原点对称.(1)若f(x)为奇函数,且在[a,b]上有最大值M,则f(x)在[-b,-a]上有最________值________. (2)若f(x)为奇函数,f(x)+2在[a,b]上有最大值M,则f(x)+2在[-b,-a]上有最________值________.【答案】(1)小-M(2)小-M+4【解析】(1)设x∈[-b,-a],则-x∈[a,b],∴f(-x)≤M且存在x0∈[a,b],使f(x0)=M.∵f(x)为奇函数,∴-f(x)≤M,f(x)≥-M,且存在-x0∈[-b,-a],使f(-x0)=-M.∴f(x)在[-b,-a]上有最小值-M.(2)由(1)知,f(x)在[a,b]上有最大值M-2时,f(x)在[-b,-a]上有最小值-M+2.∴f(x)+2在[-b,-a]上有最小值-M+4.解答6.设定义在(-1,1)上的奇函数f(x)在[0,1)上单调递增,且有f(1-m)+f<0,求实数m的取值范围.【答案】由于函数f(x)的定义域为(-1,1),则有解得0<m<.又f(1-m)+f<0,所以f(1-m)<-f.而函数f(x)为奇函数,则有f(1-m)<f.因为函数f(x)是奇函数,且在[0,1)上单调递增,所以函数f(x)在定义域(-1,1)上单调递增,则有1-m<2m-,解得m>,故实数m的取值范围为.7.已知定义在R上的奇函数f(x),当x>0时,f(x)=-x2+2x.(1)求函数f(x)在R上的解析式;(2)若函数f(x)在区间[-1,a-2]上单调递增,求实数a的取值范围.【答案】(1)设x<0,则-x>0,f(-x)=-(-x)2+2(-x)=-x2-2x.又f(x)为奇函数,所以f(-x)=-f(x).于是当x<0时f(x)=x2+2x,又因为f(x)为奇函数,所以f(0)=0,所以f(x)=(2)要使f(x)在[-1,a-2]上单调递增,结合f(x)的图象知所以1<a≤3,故实数a的取值范围是(1,3].8.定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a,b∈R,有f(a+b)=f(a)f(b).(1)求证:f(0)=1;(2)求证:对任意的x∈R,恒有f(x)>0;(3)求证:f(x)是R上的增函数.【答案】(1)令a=b=0,则f(0)=[f(0)]2,∵f(0)≠0,∴f(0)=1.(2)令a=x,b=-x,则f(0)=f(x)f(-x),∴f(-x)=.由已知当x>0时,f(x)>1>0,则当x<0时,-x>0,f(-x)>0,∴f(-x)=>0,又当x=0时,f(0)=1>0,∴对任意x∈R,f(x)>0.(3)任取x2>x1,则f(x2)>0,f(x1)>0,x2-x1>0,∴=((x 2)·f(-x1)=f(x2-x1)>1,∴f(x2)>f(x1),∴f(x)在R上是增函数.9.若f(x)是定义在(0,+∞)上的增函数,且对一切x,y>0,满足f()=f(x)-f(y).(1)求f(1)的值;(2)若f(6)=1,解不等式f(x+3)-f()<2.【答案】(1)在f()=f(x)-f(y)中,令x=y=1,则有f(1)=f(1)-f(1),∴f(1)=0.(2)∵f(6)=1,∴f(x+3)-f()<2=f(6)+f(6),∴f(3x+9)-f(6)<f(6).即f()<f(6).∵f(x)是定义在(0,+∞)上的增函数,∴解得-3<x<9,即不等式的解集为(-3,9).10.定义在(0,+∞)上的函数f(x)满足f(mn)=f(m)+f(n)(m,n>0),且当x>1时,f(x)>0. (1)求f(1)的值;(2)求证f=f(m)-f(n);(3)求证f(x)在(0,+∞)上是增函数;(4)若f(2)=1,解不等式f(x+2)-f(2x)>2;(5)比较f与的大小.【答案】(1)令m=n=1,由条件得f(1)=f(1)+f(1),∴f(1)=0.(2)f(m)=f(·n)=f()+f(n),即f()=f(m)-f(n).(3)任取x1,x2∈(0,+∞),且x1<x2,则>1.由(2)得f(x2)-f(x1)=f()>0,即f(x2)>f(x1).∴f(x)在(0,+∞)上是增函数.(4)由于f(2)=1,∴2=f(2)+f(2)=f(4),∴f(x+2)-f(2x)>2⇒f(x+2)>f(2x)+f(4)⇒f(x+2)>f(8x).又f(x)在(0,+∞)上为增函数,∴解得0<x<.故不等式f(x+2)-f(2x)>2的解集为{x|0<x<}.(5)∵f(mn)=f(m)+f(n),∴=f(mn),f()=[f()+f()]=f[()2],∵()2-mn=()2≥0,∴()2≥mn(当且仅当m=n时取等号),又f(x)在(0,+∞)上是增函数,∴f[()2]≥f(mn).∴f()≥11.若函数f(x)的定义域是R,且对任意x,y∈R,都有f(x+y)=f(x)+f(y)成立.(1)试判断f(x)的奇偶性;(2)若f(8)=4,求f(-)的值.【答案】(1)在f(x+y)=f(x)+f(y)中,令x=y=0,得f(0+0)=f(0)+f(0),∴f(0)=0.再令y=-x,得f(x-x)=f(x)+f(-x),即f(x)+f(-x)=0,∴f(-x)=-f(x),故f (x)为奇函数.(2)令y=x,由条件f(x+y)=f(x)+f(y),得f(2x)=2f(x).由此可得f(8)=2·f(4)=2·2f(2)=2·2·2f(1)=24·f=4,∴f=,∴f=-f=-.12.已知f(x)是定义在R上的不恒为0的函数,且对于任意的x,y∈R,有f(x·y)=xf(y)+yf(x). (1)求f(0),f(1)的值;(2)判断函数f(x)的奇偶性,并证明你的结论.【答案】(1)∵f(x·y)=xf(y)+yf(x),令x=y=0,得f(0)=0+0=0,即f(0)=0.令x=y=1,得f(1)=1·f(1)+1·f(1),∴f(1)=0.(2)∵f(1)=f[(-1)·(-1)]=(-1)f(-1)+(-1)f(-1)=0,∴f(-1)=0.对任意的x∈R,f(-x)=f[(-1)·x]=(-1)f(x)+xf(-1)=-f(x),∴f(x)是奇函数.13.已知函数f(x)对任意实数x,y恒有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,又f(1)=-2.(1)判断f(x)的奇偶性;(2)求证:f(x)是R上的减函数;(3)求f(x)在区间[-3,3]上的值域;(4)若对任意x∈R,不等式f(ax2)-2f(x)<f(x)+4恒成立,求a的取值范围.【答案】(1)取x=y=0,则f(0+0)=2f(0),∴f(0)=0.取y=-x,则f(x-x)=f(x)+f(-x),∴f(-x)=-f(x)对任意x∈R恒成立,∴f(x)为奇函数.(2)任取x1,x2∈(-∞,+∞),且x1<x2,则x2-x1>0,f(x2)+f(-x1)=f(x2-x1)<0,∴f(x2)<-f(-x1).又f(x)为奇函数,∴f(x1)>f(x2),∴f(x)是R上的减函数.(3)由(2)知f(x)在R上为减函数,∴对任意x∈[-3,3],恒有f(3)≤f(x)≤f(-3),∵f(3)=f(2)+f(1)=f(1)+f(1)+f(1)=-2×3=-6,∴f(-3)=-f(3)=6,f(x)在[-3,3]上的值域为[-6,6].(4)f(x)为奇函数,整理原式得f(ax2)+f(-2x)<f(x)+f(-2),则f(ax2-2x)<f(x-2),∵f(x)在(-∞,+∞)上是减函数,∴ax2-2x>x-2,当a=0时,-2x>x-2在R上不是恒成立,与题意矛盾;当a>0时,ax2-2x-x+2>0,要使不等式恒成立,则Δ=9-8a<0,即a>;当a<0时,ax2-3x+2>0在R上不是恒成立,不合题意.综上所述,a的取值范围为(,+∞).14.设f(x)是定义在[-1,1]上的奇函数,且对任意a,b∈[-1,1],当a+b≠0时,都有>0.(1)若a>b,试比较f(a)与f(b)的大小;(2)解不等式f(x-)<f(x-);(3)如果g(x)=f(x-c)和h(x)=f(x-c2)这两个函数的定义域的交集是空集,求c的取值范围. 【答案】(1)任取-1≤x 1<x2≤1,则f(x2)-f(x1)=f(x2)+f(-x1)=·(x2-x1)>0,∴f(x2)>f(x1),∴f(x)在[-1,1]上是增函数.∵a,b∈[-1,1],且a>b,∴f(a)>f(b).(2)∵f(x)是[-1,1]上的增函数,∴由不等式f(x-)<f(x-)得解得∴-≤x≤,∴原不等式的解集是{x|-≤x≤}.(3)设函数g(x),h(x)的定义域分别是P和Q,则P={x|-1≤x-c≤1}={x|c-1≤x≤c+1},Q={x|-1≤x-c2≤1}={x|c2-1≤x≤c2+1}于是P∩Q=∅的条件是c-1>c2+1(无解),或c+1<c2-1,即c2-c-2>0,解得c>2或c<-1.故c的取值范围是{c|c>2或c<-1}.15.已知函数f(x)是定义在区间[-1,1]上的奇函数,且f(1)=1,若对于任意的m,n∈[-1,1]有>0. (1)判断函数的单调性(不要求证明);(2)解不等式f<f(1-x);(3)若f(x)≤-2at+2对于任意的x∈[-1,1],a∈[-1,1]恒成立,求实数t的取值范围.【答案】(1)函数f(x)在区间[-1,1]上是增函数.(2)由(1)知函数f(x)在区间[-1,1]上是增函数,由f<f(1-x),得解得0≤x<.所以不等式f<f(1-x)的解集为.(3)因为函数f(x)在区间[-1,1]上是增函数,且f(1)=1,要使得对于任意的x∈[-1,1],a∈[-1,1]都有f(x)≤-2at+2恒成立,只需对任意的a∈[-1,1],-2at+2≥1恒成立.令y=-2at+1,此时y可以看作a的一次函数,且在a∈[-1,1]时,y≥0恒成立.因此只需解得-≤t≤,所以实数t的取值范围为.16.已知函数f(x)=x-.(1)判断函数f(x)的奇偶性,并加以证明;(2)用定义证明函数f(x)在区间[1,+∞)上为增函数;(3)若函数f(x)在区间[2,a]上的最大值与最小值之和不小于,求a的取值范围. 【答案】(1)函数f(x)=x-是奇函数,∵函数f(x)=x-的定义域为(-∞,0)∪(0,+∞),在x轴上关于原点对称,且f(-x)=-x-=-(x-)=-f(x),∴函数f(x)=x-是奇函数.(2)证明设任意实数x1,x2∈[1,+∞),且x1<x2,则f(x1)-f(x2)=(x1-)-(x2-)=,∵1≤x1<x2,∴x1-x2<0,x1x2>0,x1x2+1>0,∴<0,∴f(x1)-f(x2)<0,即f(x1)<f(x2),∴函数f(x)在区间[1,+∞)上为增函数.(3)∵[2,a]⊆[1,+∞),∴函数f(x)在区间[2,a]上也为增函数.∴f(x)max=f(a)=a-,f(x)min=f(2)=,若函数f(x)在区间[2,a]上的最大值与最小值之和不小于,则a-+≥-,∴a≥4,∴a的取值范围是[4,+∞).17.已知函数f(x)=x2+2.(1)求函数f(x)的定义域和值域;(2)判断函数f(x)的奇偶性和单调性;(3)求函数f(x)在区间(-1,2]上的最大值和最小值.【答案】(1)定义域为R,值域为{y|y≥2}.(2)因为f(x)定义域关于原点对称,且f(-x)=f(x),所以f(x)为偶函数;在区间(0,+∞)上单调递增,在区间(-∞,0]上单调递减.(3)f(x)的对称轴为x=0,f(x)min=f(0)=2,f(-1)=3,f(2)=6,所以f(x)max=6.18.已知函数f(x)=ax2+bx+1(a,b均为实数),x∈R,F(x)=(1)若f(-1)=0,且函数f(x)的值域为[0,+∞),求F(x)的解析式;(2)在(1)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围;(3)设mn<0,m+n>0,a>0,且f(x)为偶函数,判断F(m)+F(n)是否大于零,并说明理由. 【答案】(1)∵若f(-1)=0,∴a-b+1=0,①又∵函数f(x)的值域为[0,+∞),∴a≠0.由y=a(x+)2+,知=0,即4a-b2=0.②解①②,得a=1,b=2.∴f(x)=x2+2x+1=(x+1)2.∴F(x)=(2)由(1)得g(x)=f(x)-kx=x2+2x+1-kx=x2+(2-k)x+1=(x+)2+1-. 又∵当x∈[-2,2]时,g(x)=f(x)-kx是单调函数.∴≤-2或≥2,即k≤-2或k≥6,故实数k的取值范围为(-∞,-2]∪[6,+∞).(3)大于零,理由如下:∵f(x)为偶函数,∴f(x)=ax2+1,∴F(x)=不妨设m>n,则n<0.由m+n>0,得m>-n>0,∴|m|>|-n|,又a>0,∴F(m)+F(n)=f(m)-f(n)=(am2+1)-(an2+1)=a(m2-n2)>0,∴F(m)+F(n)大于零.19.已知函数f(x)=-(常数a>0).(1)设m·n>0,证明:函数f(x)在[m,n]上单调递增;(2)设0<m<n,且f(x)的定义域和值域都是[m,n],求n-m的最大值.【答案】(1)证略;(2)因为f(x)在[m,n]上单调递增,f(x)的定义域、值域都是[m,n]⇔f(m)=m,f(n)=n,即m,n是方程f(x)=x的两个根,即方程-=x有两个正根.整理得a2x2-(2a2+a)x+1=0,所以n-m==,令=t(t>0),n-m==,所以当t=时,n-m最大值为.20.已知函数y=f(x)是定义在R上的奇函数,且当x≥0时,f(x)=-x2+ax.(1)若a=-2,求函数f(x)的解析式;(2)若函数f(x)为R上的单调减函数,①求a的取值范围;②若对任意实数m,f(m-1)+f(m2+t)<0恒成立,求实数t的取值范围.【答案】(1)当x<0时,-x>0,又∵f(x)为奇函数,且a=-2,∴当x<0时,f(x)=-f(-x)=x2-2x,∴f(x)=(2)①当a≤0时,对称轴x=≤0,∴f(x)=-x2+ax在[0,+∞)上单调递减,由于奇函数在关于原点对称的区间上单调性相同,∴f(x)在(-∞,0)上单调递减,又在(-∞,0)上f(x)>0,在(0,+∞)上f(x)<0,∴当a≤0时,f(x)为R上的单调减函数.当a>0时,f(x)在上单调递增,在上单调递减,不合题意.∴函数f(x)为单调减函数时,a的取值范围为a≤0.②∵f(m-1)+f(m2+t)<0,∴f(m-1)<-f(m2+t),又∵f(x)是奇函数,∴f(m-1)<f(-t-m2),又∵f(x)为R上的单调减函数,∴m-1>-t-m2恒成立,∴t>-m2-m+1=-2+对任意实数m恒成立,∴t>.即t的取值范围是.21.已知二次函数f(x)的最小值为1,且f(0)=f(2)=3.(1)求f(x)的解析式;(2)若f(x)在区间[3a,a+1]上不单调,求实数a的取值范围;(3)在区间[-1,1]上,y=f(x)的图象恒在y=2x+2m+1的图象上方,试确定实数m的取值范围. 【答案】(1)由已知,得函数f(x)图象的对称轴为直线x=1,可设f(x)=a(x-1)2+1,由f(0)=3,得a=2,故f(x)=2x2-4x+3.(2)要使函数f(x)在区间[3a,a+1]上不单调,则3a<1<a+1,解得0<a<.(3)由已知y=f(x)的图象恒在y=2x+2m+1的图象上方,得2x2-4x+3>2x+2m+1恒成立,化简得x2-3x+1-m>0恒成立,其中-1≤x≤1.设g(x)=x2-3x+1-m,则只要g(x)min>0即可,而g(x)min =g(1)=-1-m,由-1-m>0,得m<-1.22.已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若a,b∈[-1,1],a+b≠0时,有>0成立.(1)判断f(x)在[-1,1]上的单调性;(2)解不等式f(x+)<f();(3)若f(x)≤m2-2am+1对所有的a∈[-1,1]恒成立,求实数m的取值范围. 【答案】(1)任取x1,x2∈[-1,1],且x1<x2,则-x2∈[-1,1].∵f(x)为奇函数,∴f(x 1)-f(x2)=f(x1)+f(-x2)=·(x1-x2).由已知得>0,又x1-x2<0,∴f(x1)-f(x2)<0,即f(x1)<f(x2),∴f(x)在[-1,1]上单调递增.(2)∵f(x)在[-1,1]上单调递增,∴结合不等式的性质及二次函数的图象,得-≤x<-1.故原不等式的解集为{x|-≤x<-1}.(3)∵f(1)=1,且f(x)在[-1,1]上单调递增,∴在[-1,1]上,f(x)≤1.问题转化为m2-2am+1≥1,即m2-2am≥0,对a∈[-1,1]成立.设g(a)=-2m·a+m2,①若m=0,则g(a)=0≥0,对a∈[-1,1]恒成立.②若m≠0,则g(a)为关于a的一次函数,若g(a)≥0对a∈[-1,1]恒成立,必须有g(-1)≥0,且g(1)≥0,即结合相应各函数图象,得m≤-2或m≥2.综上所述,实数m的取值范围是(-∞,-2]∪{0}∪[2,+∞).。
高中数学《函数的单调性与奇偶性》针对练习及答案

第二章 函数2.2.2 函数的单调性与奇偶性(针对练习)针对练习针对练习一 单调性与奇偶性的判断1.下列函数中,既是奇函数,又是R 上的增函数的是( ) A .cos y x x = B .66x x y -=- C .23y x =+ D .1y x x =+2.下列函数中,是奇函数且在()0,∞+上为增函数的是( )A .()1f x x=- B .()f x C .()f x x = D .()31f x x =+3.下列函数在其定义域内既是奇函数又单调递减的是( ) A .sin y x =- B .cos 2y x = C .tan y x = D .3y x =-4.下列函数是偶函数且在(0,+∞)是增函数的是( ) A .2xy =B .2y xC .12y x =D .13xy ⎛⎫= ⎪⎝⎭5.下列函数中,是奇函数,又在定义域内为减函数的是( )A .12xy ⎛⎫= ⎪⎝⎭B .2y x=C .32y x =-D .2log ()y x =-针对练习二 函数(包含复合函数)的单调区间6.若函数()f x 的图象如图所示,则其单调递减区间是( )A .[]4,1--,[]1,4B .[]1,1-C .[]4,4-D .[]22-,7.函数()1x f x x在( )A .(,1)(1,)-∞⋃+∞上是增函数B .(,1)(1,)-∞⋃+∞上是减函数C .(,1)-∞和(1,)+∞上是增函数D .(,1)-∞和(1,)+∞上是减函数8.已知函数()212f x x x =+-,则下列结论正确的是( )A .()f x 在区间(],1-∞上是增函数B .()f x 在区间[)1,-+∞上是增函数C .()f x 在区间(],1-∞上是减函数D .()f x 在区间[)1,-+∞上是减函数9.函数()f x )A .[)2+∞,B .12⎛⎤-∞ ⎥⎝⎦,C .12⎡⎫+∞⎪⎢⎣⎭, D .(]1-∞-,10.函数12y ⎛= ⎪⎝⎭A .11,2⎡⎤-⎢⎥⎣⎦B .1,2⎛⎤-∞ ⎥⎝⎦C .12⎡⎫+∞⎪⎢⎣⎭D .1,22⎡⎤⎢⎥⎣⎦针对练习三 根据奇偶性求解析式11.设()f x 为奇函数,且当0x ≥时,()21xf x =-,则当0x <时,()f x =( )A .21x --B .21x -+C .21x ---D .21x --+12.已知偶函数()f x ,当0x >时,()23f x x =-,则当0x <时,()f x =( ) A .23x -- B .23x +C .23x -+D .23x -13.函数()y f x =是R 上的奇函数,当0x <时,()2f x x =-,则当0x >时,()f x =( ) A .2x - B .2x -C .2x --D .2x14.已知()f x 是定义在R 上的奇函数,当0x <时,2()f x x x =-,则当0x >时,()f x =( )A .2x x -B .2x x --C .2x x -+D .2x x +15.已知函数()f x 是定义在R 上的奇函数,当0x >时,()ln f x x =,则()f e -=( )A .1-B .1C .2D .2-针对练习四 根据单调性与奇偶性解不等式16.设函数||()x f x e =,则使得(21)()f x f x -<成立的x 的取值范围是( ) A .1,13⎛⎫ ⎪⎝⎭B .1,(1,)3⎛⎫-∞+∞ ⎪⎝⎭C .11,33⎛⎫- ⎪⎝⎭ D .11,,33⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭17.若函数y =f (x )在R 上单调递增,且2(1)(1)f m f m +<-+,则实数m 的取值范围是( ) A .(1,0)- B .(2,1)- C .(0,1) D .(,1)(0,)-∞-+∞18.已知定义在实数集R 上的偶函数()f x 在区间[0,)+∞是单调增函数,若(1)(2)f a f -<,则实数a 的取值范围是( )A .13a -<<B .1a <-或3a >C .31a -<<D .3a <-或1a >19.函数()y f x =在R 上为增函数,且(2)(9)f m f m >+,则实数m 的取值范围是( ) A .()9,+∞B .[)9,+∞C .(),9-∞-D .(],9-∞-20.已知函数21()ln(1)1f x x x=+-+,若实数a 满足313(log )(log )2(1)f a f a f +≤,则a 取值范围( ) A .[]1,3 B .10,3⎛⎤⎥⎝⎦C .(]0,3D .1,33⎡⎤⎢⎥⎣⎦针对练习五 根据单调性与奇偶性比大小21.若定义在R 上偶函数()f x 在[)0,+∞上是减函数,下列各式一定成立的是( ) A .()()06f f < B .()()32f f -> C .()()13f f -> D .()()58f f -<-22.设偶函数()f x 的定义域为R ,当(,0]x ∈-∞时,()f x 是增函数,则52f ⎛⎫⎪⎝⎭,(f ,()f π的大小关系是( )A.5()(2f f f π⎛⎫>> ⎪⎝⎭B.5(()2f f f π⎛⎫>> ⎪⎝⎭C.5(()2f f f π⎛⎫>> ⎪⎝⎭D.5()(2f f f π⎛⎫>> ⎪⎝⎭23.若函数()f x 是偶函数,且在区间[0,3]上单调递减,则( ) A .()()1(2)3f f f ->> B .()()()312f f f >-> C .()()()213f f f >-> D .()()()321f f f >>-24.定义在R 上的偶函数()f x 满足:对任意的()1212,(,0]x x x x ∈-∞≠,有()()()21210x x f x f x -->⎡⎤⎣⎦.则当n *∈N 时,有( )A .(1)()(1)f n f n f n +<-<-B .(1)()(1)f n f n f n -<-<+C .()(1)(1)f n f n f n -<-<+D .(1)(1)()f n f n f n +<-<-25.定义在R 上的偶函数()f x 在[)0+∞,上是减函数,则( ) A .(1)(2)(3)f f f <-< B .(3)(2)(1)f f f <-< C .(2)(1)(3)f f f -<<D .(3)(1)(2)f f f <<-针对练习六 根据单调性求参数26.设函数()()12f x a x b =-+R 上的增函数,则有( ) A .12a < B .12a >C .12a <-D .12a >-27.函数221y x mx =++在[2,)+∞单调递增,则实数m 的取值范围是( ) A .[2,)-+∞ B .[2,)+∞ C .(,2)-∞ D .(,2]-∞28.若函数()()212f x a x =-+为R 上的减函数,则实数a 的取值范围为( )A .a >1B .a <1C .11a -<<D .-1≤a ≤129.已知0a >且1a ≠,函数(1)34,(0)(),(0)xa x a x f x a x -+-≤⎧=⎨>⎩满足对任意实数12x x ≠,都有2121()()0f x f x x x ->-成立,则a 的取值范围是( )A .0,1B .1,C .51,3⎛⎤⎥⎝⎦D .5,23⎡⎫⎪⎢⎣⎭30.已知(32)4,1()log ,1aa x a x f x x x -+<⎧=⎨≥⎩, 对任意1212,(,),x x x x ∈-∞+∞≠,都有1212()()0f x f x x x -<-,那么实数a 的取值范围是 A .()0,1B .2(0,)3C .1173⎡⎫⎪⎢⎣⎭, D .22,73⎡⎫⎪⎢⎣⎭针对练习七 根据奇偶性求参数31.若函数(31)()y x x a =+-为偶函数,则a =( ) A .1 B .-1 C .13D .232.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( ) A .1- B .13C .0D .333.已知函数222,0()0,0,0x x x f x x x mx x ⎧-+>⎪==⎨⎪+<⎩是奇函数.则实数m 的值是( )A .0B .2C .4D .-234.若()3351f x x x a =++-为奇函数,则a 的值为( )A .0B .-1C .1D .235.若函数()(21)()xf x x x a =+-为奇函数,则a =( )A .12 B .23C .34D .1第二章 函数2.2.2 函数的单调性与奇偶性(针对练习)针对练习针对练习一 单调性与奇偶性的判断1.下列函数中,既是奇函数,又是R 上的增函数的是( ) A .cos y x x = B .66x x y -=- C .23y x =+ D .1y x x =+【答案】B 【解析】 【分析】利用函数奇偶性的定义和单调性的定义逐个分析判断 【详解】对于A ,因为()()cos()cos ()f x x x x x f x -=--=-=-,所以cos y x x =是奇函数,但不单调,所以A 错误;对于B ,因为()66(66)()x x x x f x f x ---=-=--=-,所以66x x y -=-是奇函数,因为6x y =是增函数,6x y -=是减函数,所以66x x y -=-是增函数,所以B 正确;对于C ,因为22()()33()f x x x f x -=-+=+=,所以23y x =+是偶函数,所以C 错误; 对于D ,因为()()()11f x x x x x f x f x -=--+=-+≠-≠,所以1y x x =+是非奇非偶函数,所以D 错误. 故选:B2.下列函数中,是奇函数且在()0,∞+上为增函数的是( ) A .()1f x x=- B .()f x C .()f x x = D .()31f x x =+【答案】A 【解析】 【分析】利用函数奇偶性的定义和单调性的定义逐个分析判断即可 【详解】对于A ,定义域为{}0x x ≠,因为()()11f x f x x x-=-==--,所以函数是奇函数,任取12,(0,)x x ∈+∞,且12x x <,则2121211211()()x xf x f x x x x x --=-+=,因为12,(0,)x x ∈+∞,且12x x <,所以21()()0f x f x ->,即21()()f x f x >,所以()f x 在()0,∞+上为增函数,所以A 正确,对于B ,因为定义域为{}0x x ≥,所以函数()f x 为非奇非偶函数,所以B 错误, 对于C ,因为定义域为R ,因为()()f x x x f x -=-==,所以()f x 为偶函数,所以C 错误,对于D ,因为定义域为R ,因为()()3311()()f x x x f x f x -=-+=-+≠≠-,所以函数()f x 为非奇非偶函数,所以D 错误, 故选:A3.下列函数在其定义域内既是奇函数又单调递减的是( ) A .sin y x =- B .cos 2y x = C .tan y x = D .3y x =-【答案】D 【解析】对于基本初等函数,直接判断其奇偶性和单调性. 【详解】选项A: sin y x =-为偶函数,故A 错误; 选项B: cos 2y x =为偶函数,故B 错误;选项C: tan y x =为奇函数但是在,22k k ππππ⎛⎫-++ ⎪⎝⎭上单增,故C 错误;选项D: 3y x =-既是奇函数又是R 上单调递减. 故选:D4.下列函数是偶函数且在(0,是增函数的是( ) A .2xy =B .2y xC .12y x =D .13xy ⎛⎫= ⎪⎝⎭【答案】B 【解析】 【分析】根据指数函数、二次函数、幂函数的性质进行判断即可. 【详解】因为指数函数不具有奇偶性,所以排除A 、D ,因为幂函数12y x =的定义域为非负实数集,不关于原点对称,所以不具有奇偶性,故排除, 二次函数2yx 图象关于纵轴对称,所以该二次函数是偶函数,它又在(0,+∞)单调递增, 故选:B5.下列函数中,是奇函数,又在定义域内为减函数的是( )A .12xy ⎛⎫= ⎪⎝⎭B .2y x=C .32y x =-D .2log ()y x =-【答案】C 【解析】利用奇函数的定义和减函数的定义,再结合基本函数的性质求解即可 【详解】解:对于A ,D ,由指数函数和对数函数的性质可知其为非奇非偶函数,所以A ,D 不符合题意,对于B ,由反比例函数的性质可知,其为奇函数,在(,0)-∞和(0,)+∞上为减函数,所以不符合题意,对于C ,由于33()2()2()f x x x f x -=--==-,所以3()2f x x =-为奇函数,任取12,x x R ∈,且12x x <,则120x x -<332121()()2(2)f x f x x x -=---33122()x x =- 221211222()()x x x x x x =-++222121232()[()]024x x x x x =-++< 所以21()()f x f x <,所以3()2f x x =-为R 上的减函数,所以C 符合题意, 故选:C针对练习二 函数(包含复合函数)的单调区间6.若函数()f x 的图象如图所示,则其单调递减区间是( )A .[]4,1--,[]1,4B .[]1,1-C .[]4,4-D .[]22-,【答案】B 【解析】 【分析】利用图象判断函数单调性的方法直接写出函数()f x 单调递减区间. 【详解】观察函数()f x 的图象,可知函数()f x 的单调递减区间为[]1,1-. 故选:B 7.函数()1x f x x在( )A .(,1)(1,)-∞⋃+∞上是增函数B .(,1)(1,)-∞⋃+∞上是减函数C .(,1)-∞和(1,)+∞上是增函数D .(,1)-∞和(1,)+∞上是减函数【答案】C 【解析】 【分析】分离常数,作出函数图象,观察即可得出结果. 【详解】1111()1111111x x x f x xxxxx,函数的定义域为(,1)(1,)-∞⋃+∞, 其图象如下:由图象可得函数在(,1)-∞和(1,)+∞上是增函数. 故选:C8.已知函数()212f x x x =+-,则下列结论正确的是( )A .()f x 在区间(],1-∞上是增函数B .()f x 在区间[)1,-+∞上是增函数C .()f x 在区间(],1-∞上是减函数D .()f x 在区间[)1,-+∞上是减函数【答案】A 【解析】配方得二次函数的对称轴,然后判断. 【详解】2()(1)2f x x =--+,对称轴为1x =,二次项系数为10-<,因此()f x 在(,1]-∞上递增,在[1,)+∞上递减, 故选:A .9.函数()f x )A .[)2+∞,B .12⎛⎤-∞ ⎥⎝⎦,C .12⎡⎫+∞⎪⎢⎣⎭, D .(]1-∞-,【答案】C 【解析】根据解析式,先求出函数的定义域;再令22t x x =-+,结合二次函数单调性,以及. 【详解】因为22172024x x x ⎛⎫-+=-+> ⎪⎝⎭显然恒成立,所以函数()f x =R ;令22t x x =-+,则22t x x =-+是开口向上的二次函数,且对称轴为12x =,所以22t x x =-+在12⎛⎤-∞ ⎥⎝⎦,上单调递减,在12⎡⎫+∞⎪⎢⎣⎭,上单调递增; 根据复合函数单调性的判定方法可得,()f x 12⎡⎫+∞⎪⎢⎣⎭,. 故选:C. 【点睛】本题主要考查求根式型复合函数的单调区间,属于基础题型.10.函数12y ⎛= ⎪⎝⎭A .11,2⎡⎤-⎢⎥⎣⎦B .1,2⎛⎤-∞ ⎥⎝⎦C .12⎡⎫+∞⎪⎢⎣⎭D .1,22⎡⎤⎢⎥⎣⎦【答案】D 【解析】 【分析】利用复合函数的单调性求解即可. 【详解】由题得函数的定义域为{|12}x x -≤≤,设函数u u 在1]2[-1,单调递增,在1[2]2,单调递减, 因为函数1()2uv =在定义域上单调递减,所以函数12y ⎛= ⎪⎝⎭1[2]2,单调递增. 故选D 【点睛】和分析推理能力.针对练习三 根据奇偶性求解析式11.设()f x 为奇函数,且当0x ≥时,()21xf x =-,则当0x <时,()f x =( )A .21x --B .21x -+C .21x ---D .21x --+【答案】D 【解析】 【分析】根据题意,设0x <,则0x ->,由函数的解析式可得()21x f x ---=,结合函数的奇偶性分析可得答案. 【详解】根据题意,设0x <,则0x ->, 则()21x f x ---=,又由()f x 为奇函数,则()()21x f x f x -=-=-+-, 故选:D12.已知偶函数()f x ,当0x >时,()23f x x =-,则当0x <时,()f x =( ) A .23x -- B .23x +C .23x -+D .23x -【答案】A 【解析】设0x <,则0x ->,可得()23f x x -=--,利用偶函数的定义()()f x f x -=即可求解. 【详解】设0x <,则0x ->, 所以()23f x x -=--,又()f x 为偶函数,所以()()f x f x -=, 所以()()230f x x x =--<. 故选:A.13.函数()y f x =是R 上的奇函数,当0x <时,()2f x x =-,则当0x >时,()f x =( ) A .2x - B .2x -C .2x --D .2x【答案】C 【解析】 【分析】直接利用代入法求函数解析式. 【详解】当0x >时,0x -<,所以()()2f x x f x -=+=-,所以()2f x x =--. 故选:C .14.已知()f x 是定义在R 上的奇函数,当0x <时,2()f x x x =-,则当0x >时,()f x =( ) A .2x x - B .2x x -- C .2x x -+ D .2x x +【答案】D 【解析】 【分析】利用奇函数的等式()()f x f x -=-求解.【详解】因为()f x 是定义在R 上的奇函数, 所以()()f x f x -=-,x ∈R .当0x >时,0x -<,()()()()22f x f x x x x x ⎡⎤=--=----=+⎣⎦. 故选:D.15.已知函数()f x 是定义在R 上的奇函数,当0x >时,()ln f x x =,则()f e -=( )A .1-B .1C .2D .2-【答案】A 【解析】根据奇函数的定义求函数值. 【详解】 ∵()f x 是奇函数,∵()()ln 1f e f e e -=-=-=-. 故选:A .针对练习四 根据单调性与奇偶性解不等式16.设函数||()x f x e =,则使得(21)()f x f x -<成立的x 的取值范围是( ) A .1,13⎛⎫ ⎪⎝⎭B .1,(1,)3⎛⎫-∞+∞ ⎪⎝⎭C .11,33⎛⎫- ⎪⎝⎭ D .11,,33⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭【答案】A 【解析】首先判断出函数为偶函数,再判断出函数的单调性,根据单调性可得21x x -<,解绝对值不等式即可求解. 【详解】||()x f x e =,则()()xxf x ee f x --===,函数为偶函数,当0x ≥时,()x f x e =,所以函数在[)0,+∞单调递增, 所以函数在(),0-∞上单调递减, 若(21)()f x f x -<,则21x x -<,即23410x x -+<,解得113x <<,所以不等式的解集为1,13⎛⎫ ⎪⎝⎭.故选:A17.若函数y =f (x )在R 上单调递增,且2(1)(1)f m f m +<-+,则实数m 的取值范围是( ) A .(1,0)- B .(2,1)- C .(0,1) D .(,1)(0,)-∞-+∞【答案】A 【解析】由函数y =f (x )在R 上单调递增,将2(1)(1)f m f m +<-+可化为211m m +<-+,解不等式可得答案 【详解】解:因为函数y =f (x )在R 上单调递增,且2(1)(1)f m f m +<-+, 所以211m m +<-+,解得10m -<<, 故选:A18.已知定义在实数集R 上的偶函数()f x 在区间[0,)+∞是单调增函数,若(1)(2)f a f -<,则实数a 的取值范围是( )A .13a -<<B .1a <-或3a >C .31a -<<D .3a <-或1a >【答案】A 【解析】由偶函数的性质将不等式(1)(2)f a f -<转化为(1)(2)f a f -<,再由其在[0,)+∞是单调增函数,可得12a -<,从而可求出a 的取值范围 【详解】解:因为()f x 是定义在实数集R 上的偶函数,且(1)(2)f a f -<, 所以(1)(2)f a f -<,因为函数()f x 在区间[0,)+∞是单调增函数, 所以12a -<,解得13a -<<, 故选:A19.函数()y f x =在R 上为增函数,且(2)(9)f m f m >+,则实数m 的取值范围是( )A .()9,+∞B .[)9,+∞C .(),9-∞-D .(],9-∞-【答案】A 【解析】根据单调性可得29m m >+,解出即可. 【详解】解:∵()y f x =在R 上为增函数,且(2)(9)f m f m >+, ∵29m m >+,解得9m >, 故选:A . 【点睛】本题主要考查根据函数的单调性解不等式,属于基础题. 20.已知函数21()ln(1)1f x x x=+-+,若实数a 满足313(log )(log )2(1)f a f a f +≤,则a 取值范围( ) A .[]1,3 B .10,3⎛⎤⎥⎝⎦C .(]0,3D .1,33⎡⎤⎢⎥⎣⎦【答案】D 【解析】 【分析】首先判断()f x 的单调性和奇偶性,由此化简不等式313(log )(log )2(1)f a f a f +≤,并求得a 的取值范围. 【详解】()f x 的定义域为R ,且()()f x f x -=,所以()f x 是偶函数.当0x >时,21()ln(1)1f x x x =+-+,2ln(1)y x =+和11y x=-+在()0,∞+上递增,所以()f x 在()0,∞+上递增,而()f x 是偶函数,故()f x 在(),0-∞上递减.依题意313(log )(log )2(1)f a f a f +≤,即33(log )(log )2(1)f a f a f +-≤,即332(log )2(1)(log )(1)f a f f a f ≤⇔≤,所以331log 11log 133a a a ≤⇔-≤≤⇔≤≤,所以a 的取值范围是1,33⎡⎤⎢⎥⎣⎦故选:D 【点睛】本小题主要考查解函数不等式,属于基础题.针对练习五 根据单调性与奇偶性比大小21.若定义在R 上偶函数()f x 在[)0,+∞上是减函数,下列各式一定成立的是( ) A .()()06f f < B .()()32f f -> C .()()13f f -> D .()()58f f -<-【答案】C 【解析】 【分析】由偶函数及在[)0,+∞上是减函数,知在(,0]-∞上是增函数,即可判断各项的正误. 【详解】A :在[)0,+∞上是减函数,即()()06f f >,错误;B :(3)(3)f f -=,()f x 在[)0,+∞上是减函数,有()()32f f <,即()()32f f -<,错误;C :(1)(1)f f -=,()f x 在[)0,+∞上是减函数,有()()31f f <,即()()13f f ->,正确;D :由题意,()f x 在(,0]-∞上是增函数,()()58f f ->-,错误; 故选:C22.设偶函数()f x 的定义域为R ,当(,0]x ∈-∞时,()f x 是增函数,则52f ⎛⎫⎪⎝⎭,(f ,()f π的大小关系是( )A .5()(2f f f π⎛⎫>> ⎪⎝⎭B .5(()2f f f π⎛⎫>> ⎪⎝⎭C .5(()2f f f π⎛⎫>> ⎪⎝⎭D .5()(2f f f π⎛⎫>> ⎪⎝⎭【答案】C 【解析】根据偶函数的性质可得(f f =,由函数的单调性可得函数值的大小关系. 【详解】根据偶函数的性质可知,(f f =当[)0,x ∈+∞时,()f x 是减函数,因为5π2<,所以5()2f f f π⎛⎫>> ⎪⎝⎭故选:C. 【点睛】思路点睛:在比较函数值大小的题目中,主要根据函数的单调性进行判断.当自变量不在同一单调区间时,可以结合偶函数的性质将自变量x 转化为同一单调区间,再进行判断即可.23.若函数()f x 是偶函数,且在区间[0,3]上单调递减,则( ) A .()()1(2)3f f f ->> B .()()()312f f f >-> C .()()()213f f f >-> D .()()()321f f f >>-【答案】A 【解析】由(1)(1)f f -=,结合单调性得出()()1(2)3f f f ->>. 【详解】因为函数()f x 是偶函数,所以(1)(1)f f -= 又()f x 在区间[0,3]上单调递减,且123<< 所以(1)(2)(3)f f f ∴>>,即()()1(2)3f f f ->> 故选:A24.定义在R 上的偶函数()f x 满足:对任意的()1212,(,0]x x x x ∈-∞≠,有()()()21210x x f x f x -->⎡⎤⎣⎦.则当n *∈N 时,有( )A .(1)()(1)f n f n f n +<-<-B .(1)()(1)f n f n f n -<-<+C .()(1)(1)f n f n f n -<-<+D .(1)(1)()f n f n f n +<-<-【答案】A 【解析】首先判断出函数的单调性,再根据函数为偶函数即可求解. 【详解】对任意的()1212,(,0]x x x x ∈-∞≠,()()()21210x x f x f x -->⎡⎤⎣⎦,所以函数在(,0]-∞上为增函数,又因为函数()f x 在R 上的偶函数,所以函数在[)0,+∞上为减函数,且()()f n f n -=, 因为11n n n -<<+,所以(1)()(1)f n f n f n ->>+. 所以(1)()(1)f n f n f n ->->+. 故选:A25.定义在R 上的偶函数()f x 在[)0+∞,上是减函数,则( ) A .(1)(2)(3)f f f <-< B .(3)(2)(1)f f f <-< C .(2)(1)(3)f f f -<< D .(3)(1)(2)f f f <<-【答案】B 【解析】由偶函数的性质将自变量转化到[)0+∞,上,再由函数在[)0+∞,上是减函数可比较大小 【详解】解:因为()f x 是定义在R 上的偶函数, 所以(2)(2)f f -=,因为()f x 在[)0+∞,上是减函数,且321>>, 所以(3)(2)(1)f f f <<,即(3)(2)(1)f f f <-<, 故选:B 【点睛】此题考查利用函数的奇偶性和单调性比较大小,属于基础题针对练习六 根据单调性求参数26.设函数()()12f x a x b =-+是R 上的增函数,则有( ) A .12a < B .12a >C .12a <-D .12a >-【答案】A 【解析】函数()()12f x a x b =-+是R 上的增函数,则120a ->,可得答案. 【详解】函数()()12f x a x b =-+是R 上的增函数,则120a ->,即12a < 故选:A27.函数221y x mx =++在[2,)+∞单调递增,则实数m 的取值范围是( ) A .[2,)-+∞ B .[2,)+∞ C .(,2)-∞ D .(,2]-∞【答案】A 【解析】直接由抛物线的对称轴和区间端点比较大小即可. 【详解】函数221y x mx =++为开口向上的抛物线,对称轴为x m =- 函数221y x mx =++在[2,)+∞单调递增,则2m -≤,解得2m ≥-. 故选:A.28.若函数()()212f x a x =-+为R 上的减函数,则实数a 的取值范围为( )A .a >1B .a <1C .11a -<<D .-1≤a ≤1【答案】C 【解析】利用用一次函数的单调性得到210a -<,再由二次不等式的解法,即可得解. 【详解】函数()()212f x a x =-+为R 上的减函数,则210a -<, 解得11a -<<; 故选:C.29.已知0a >且1a ≠,函数(1)34,(0)(),(0)xa x a x f x a x -+-≤⎧=⎨>⎩满足对任意实数12x x ≠,都有2121()()0f x f x x x ->-成立,则a 的取值范围是( )A .0,1B .1,C .51,3⎛⎤⎥⎝⎦D .5,23⎡⎫⎪⎢⎣⎭【答案】C 【解析】由2121()()0f x f x x x ->-可得函数()f x 在R 上为增函数,所以010134a a a a ⎧->⎪>⎨⎪≥-⎩,从而可求出a 的取值范围 【详解】解:因为()f x 对任意实数12x x ≠,都有2121()()0f x f x x x ->-成立,所以()f x 在R 上为增函数,所以010134a a a a ⎧->⎪>⎨⎪≥-⎩,解得513a <≤,所以a 的取值范围为51,3⎛⎤⎥⎝⎦,故选:C 30.已知(32)4,1()log ,1a a x a x f x x x -+<⎧=⎨≥⎩, 对任意1212,(,),x x x x ∈-∞+∞≠,都有1212()()0f x f x x x -<-,那么实数a 的取值范围是 A .()0,1 B .2(0,)3C .1173⎡⎫⎪⎢⎣⎭, D .22,73⎡⎫⎪⎢⎣⎭【答案】D 【解析】 【分析】根据题设条件可以得到()f x 为R 上的减函数,根据各自范围上为减函数以及分段点处的高低可得实数a 的取值范围. 【详解】因为任意1212,(,),x x x x ∈-∞+∞≠,都有1212()()0f x f x x x -<-,所以对任意的12x x <,总有()()12f x f x >即()f x 为R 上的减函数,所以01320720a a a <<⎧⎪-<⎨⎪-≥⎩,故2273a ≤<,故选D.【点睛】分段函数是单调函数,不仅要求各范围上的函数的单调性一致,而且要求分段点也具有相应的高低分布,我们往往容易忽视后者.针对练习七 根据奇偶性求参数31.若函数(31)()y x x a =+-为偶函数,则a =( )A .1B .-1C .13 D .2【答案】C【解析】【分析】若()y f x =,由奇偶性的性质有()()f x f x =-即可求参数a .【详解】若()y f x =,则()f x 23(13)x a x a =+--为偶函数,∵()()f x f x =-,即223(13)3()(13)()x a x a x a x a +--=-+---,∵2(13)0a x -=恒成立,可得13a =.故选:C32.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( )A .1-B .13 C .0 D .3【答案】B【解析】【分析】根据()f x 的奇偶性求得,a b ,从而求得a b +.【详解】由于()f x 是偶函数,所以0b =,且111233a a a a b -=-⇒=⇒+=.故选:B33.已知函数222,0()0,0,0x x x f x x x mx x ⎧-+>⎪==⎨⎪+<⎩是奇函数.则实数m 的值是( )A .0B .2C .4D .-2【答案】B【解析】【分析】利用函数为奇函数可得()()f x f x -=-,代入即可求解.【详解】取0x >,则0x -<,因为函数为奇函数,则()()f x f x -=-,即()()()222x m x x x -+-=--+, 整理可得2mx x -=-,即2m =.故选:B34.若()3351f x x x a =++-为奇函数,则a 的值为( )A .0B .-1C .1D .2【答案】C【解析】【分析】 根据奇函数的性质()00f =求解即可【详解】∵()f x 为R 上的奇函数,∵()00f =得a =1.验证满足题意.故选:C35.若函数()(21)()x f x x x a =+-为奇函数,则a =( ) A .12B .23C .34D .1 【答案】A【解析】【分析】根据奇函数性质取1和-1分别代入,函数值和为0,即可求得.【详解】 ∵()(21)()x f x x x a =+-为奇函数,∵(1)(1)0f f -+=,得12a =. 故选:A.。
函数的奇偶性和单调性综合训练

偶函数
如果对于函数$f(x)$的定义域内任意一个$x$,都有$f(-x)=f(x)$,则 称$f(x)$为偶函数。
奇函数和偶函数的性质
奇函数的图像关于原点对称,即当$x$取任意值时,其对应的$y$ 值都是关于原点对称的。
偶函数的图像关于y轴对称,即当$x$取任意值时,其对应的$y$ 值都是关于y轴对称的。
利用奇偶性和单调性解题
利用奇偶性求函数值
对于奇函数,有$f(-x) = -f(x)$;对于偶函数, 有$f(-x) = f(x)$。
利用单调性比较函数值大小
在单调递增区间内,如果$x_1 < x_2$,则$f(x_1) < f(x_2)$;在单调递减区间内,如果$x_1 < x_2$,则 $f(x_1) > f(x_2)$。
奇偶性的判断方法
定义法
根据奇偶函数的定义来判断。
图像法
通过观察函数的图像来判断。
代数法
通过代入特殊值来判断。
单调性的定义
单调递增
如果对于函数$f(x)$的定义域内的任意两个数$x_1$和$x_2$($x_1<x_2$),都有$f(x_1)<f(x_2)$,则 称函数$f(x)$在定义域内单调递增。
函数的奇偶性和单调性综合训 练
目
CONTENCT
录
• 函数的奇偶性 • 函数的单调性 • 奇偶性与单调性的关系 • 综合训练题 • 总结与回顾
01
函数的奇偶性
奇函数和偶函数的定义
奇函数
如果对于函数$f(x)$的定义域内任意一个$x$,都有$f(-x)=-f(x)$, 则称$f(x)$为奇函数。
100%
导数法
通过求函数的导数并判断导数的正 负来判断。如果导数大于0,则为 增函数;如果导数小于0,则为减 函数。
高一函数的奇偶性和周期性知识点+例题+练习 含答案

1.函数的奇偶性奇偶性定义图象特点偶函数一般地,设函数y=f(x)的定义域为A如果对于任意的x∈A,都有f(-x)=f(x),那么称函数y=f(x)是偶函数.关于y轴对称奇函数如果对于任意的x∈A,都有f(-x)=-f(x),那么称函数y=f(x)是奇函数.关于原点对称2.周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)偶函数图象不一定过原点,奇函数的图象一定过原点.(×)(2)若函数y=f(x+a)是偶函数,则函数y=f(x)关于直线x=a对称.(√)(3)函数f(x)在定义域上满足f(x+a)=-f(x),则f(x)是周期为2a(a>0)的周期函数.(√)(4)若函数y=f(x+b)是奇函数,则函数y=f(x)关于点(b,0)中心对称.(√)(5)如果函数f(x),g(x)为定义域相同的偶函数,则F(x)=f(x)+g(x)是偶函数.(√)(6)若T是函数的一个周期,则nT(n∈Z,n≠0)也是函数的周期.(√)1.(2015·福建改编)下列函数中,①y=x;②y=|sin x|;③y=cos x;④y=e x-e-x为奇函数的是________.(填函数序号)答案 ④解析 对于④,f (x )=e x -e -x 的定义域为R ,f (-x )=e -x -e x =-f (x ),故y =e x -e -x 为奇函数.而y =x 的定义域为{x |x ≥0},不具有对称性,故y =x 为非奇非偶函数.y =|sin x |和y =cos x 为偶函数.2.已知f (x )是定义在R 上的奇函数,f (x +1)是偶函数,则f (1)+f (2)+f (3)+f (4)=________. 答案 0解析 由f (x +1)是偶函数得f (-x +1)=f (x +1),又f (x )是定义在R 上的奇函数,所以f (-x +1)=-f (x -1),即-f (x -1)=f (x +1),所以f (x +2)=-f (x ),即f (x )+f (x +2)=0,所以f (1)+f (3)=0,f (2)+f (4)=0,因此f (1)+f (2)+f (3)+f (4)=0. 3.(2015·天津)已知定义在R 上的函数f (x )=2|x-m |-1(m 为实数)为偶函数,记a =f (log 0.53),b=f (log 25),c =f (2m ),则a ,b ,c 的大小关系为______________. 答案 c <a <b解析 由函数f (x )=2|x -m |-1为偶函数,得m =0, 所以f (x )=2|x |-1,当x >0时,f (x )为增函数, log 0.53=-log 23,所以log 25>|-log 23|>0, 所以b =f (log 25)>a =f (log 0.53)>c =f (2m )=f (0).4.(2014·天津)设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2, -1≤x <0,x , 0≤x <1,则f (32)=________.答案 1解析 函数的周期是2, 所以f (32)=f (32-2)=f (-12),根据题意得f (-12)=-4×(-12)2+2=1.5.(教材改编)已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x (1+x ),则x <0时,f (x )=________. 答案 x (1-x )解析 当x <0时,则-x >0,∴f (-x )=(-x )(1-x ).又f (x )为奇函数,∴f (-x )=-f (x )=(-x )(1-x ), ∴f (x )=x (1-x ).题型一 判断函数的奇偶性例1 判断下列函数的奇偶性: (1)f (x )=x 3-x ; (2)f (x )=(x +1)1-x1+x; (3)f (x )=⎩⎪⎨⎪⎧x 2+x , x <0,-x 2+x , x >0.解 (1)定义域为R ,关于原点对称, 又f (-x )=(-x )3-(-x )=-x 3+x =-(x 3-x ) =-f (x ), ∴函数为奇函数.(2)由1-x1+x ≥0可得函数的定义域为(-1,1].∵函数定义域不关于原点对称, ∴函数为非奇非偶函数.(3)当x >0时,-x <0,f (x )=-x 2+x , ∴f (-x )=(-x )2-x =x 2-x =-(-x 2+x )=-f (x ); 当x <0时,-x >0,f (x )=x 2+x , ∴f (-x )=-(-x )2-x =-x 2-x =-(x 2+x )=-f (x ).∴对于x ∈(-∞,0)∪(0,+∞), 均有f (-x )=-f (x ).∴函数为奇函数.思维升华 (1)利用定义判断函数奇偶性的步骤:(2)分段函数奇偶性的判断,要注意定义域内x 取值的任意性,应分段讨论,讨论时可依据x 的范围取相应的解析式化简,判断f (x )与f (-x )的关系,得出结论,也可以利用图象作判断.(1)下列四个函数:①f (x )=-x |x |;②f (x )=x 3;③f (x )=sin x ;④f (x )=ln xx,同时满足以下两个条件:①定义域内是减函数;②定义域内是奇函数的是________.(2)函数f (x )=log a (2+x ),g (x )=log a (2-x )(a >0且a ≠1),则函数F (x )=f (x )+g (x ),G (x )=f (x )-g (x )分别是______________(填奇偶性). 答案 (1)① (2)偶函数,奇函数解析 (1)①中,f (x )=⎩⎪⎨⎪⎧-x 2,x >0,x 2,x ≤0,由函数性质可知符合题中条件,故①正确;②中,对于比较熟悉的函数f (x )=x 3可知不符合题意,故②不正确;③中,f (x )=sin x 在定义域内不具有单调性,故②不正确;④中,定义域关于原点不对称,故④不正确. (2)F (x ),G (x )定义域均为(-2,2),由已知F (-x )=f (-x )+g (-x )=log a (2-x )+log a (2+x )=F (x ), G (-x )=f (-x )-g (-x )=log a (2-x )-log a (2+x ) =-G (x ),∴F (x )是偶函数,G (x )是奇函数.题型二 函数的周期性例2 (1)设f (x )是定义在R 上的周期为3的函数,当x ∈[-2,1)时,f (x )=⎩⎪⎨⎪⎧4x 2-2,-2≤x ≤0,x ,0<x <1,则f ⎝⎛⎭⎫52=________. (2)已知f (x )是定义在R 上的偶函数,并且f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则f (105.5)=______.答案 (1)-1 (2)2.5解析 (1)因为f (x )是周期为3的周期函数, 所以f ⎝⎛⎭⎫52=f ⎝⎛⎭⎫-12+3=f ⎝⎛⎭⎫-12 =4×⎝⎛⎭⎫-122-2=-1. (2)由已知,可得f (x +4)=f [(x +2)+2] =-1f (x +2)=-1-1f (x )=f (x ).故函数的周期为4.∴f (105.5)=f (4×27-2.5)=f (-2.5)=f (2.5). ∵2≤2.5≤3,由题意,得f (2.5)=2.5. ∴f (105.5)=2.5.思维升华 (1)函数的周期性反映了函数在整个定义域上的性质.对函数周期性的考查,主要涉及函数周期性的判断,利用函数周期性求值. (2)函数周期性的三个常用结论: ①若f (x +a )=-f (x ),则T =2a , ②若f (x +a )=1f (x ),则T =2a ,③若f (x +a )=-1f (x ),则T =2a (a >0).设函数f (x )(x ∈R )满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝⎛⎭⎫23π6=____________. 答案 12解析 ∵f (x +2π)=f (x +π)+sin(x +π)=f (x )+sin x -sin x =f (x ),∴f (x )的周期T =2π, 又∵当0≤x <π时,f (x )=0,∴f ⎝⎛⎭⎫5π6=0, 即f ⎝⎛⎭⎫-π6+π=f ⎝⎛⎭⎫-π6+sin ⎝⎛⎭⎫-π6=0, ∴f ⎝⎛⎭⎫-π6=12,∴f ⎝⎛⎭⎫23π6=f ⎝⎛⎭⎫4π-π6=f ⎝⎛⎭⎫-π6=12.题型三 函数性质的综合应用命题点1 函数奇偶性的应用例3 (1)已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)=________.(2)(2015·课标全国Ⅰ)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________. 答案 (1)1 (2)1解析 (1)因为f (x )是偶函数,g (x )是奇函数,所以f (1)+g (1)=f (-1)-g (-1)=(-1)3+(-1)2+1=1.(2)f (x )为偶函数,则ln(x +a +x 2)为奇函数,所以ln(x +a +x 2)+ln(-x +a +x 2)=0,即ln(a +x 2-x 2)=0,∴a =1.命题点2 单调性与奇偶性、周期性结合例4 (1)已知f (x )是定义在R 上的以3为周期的偶函数,若f (1)<1,f (5)=2a -3a +1,则实数a的取值范围为________.(2)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则f (-25),f (11),f (80)的大小关系是__________________. 答案 (1)(-1,4) (2)f (-25)<f (80)<f (11)解析 (1)∵f (x )是定义在R 上的周期为3的偶函数, ∴f (5)=f (5-6)=f (-1)=f (1),∵f (1)<1,f (5)=2a -3a +1,∴2a -3a +1<1,即a -4a +1<0,解得-1<a <4.(2)∵f (x )满足f (x -4)=-f (x ),∴f (x -8)=f (x ),∴函数f (x )是以8为周期的周期函数,则f (-25)=f (-1), f (80)=f (0),f (11)=f (3). 由f (x )是定义在R 上的奇函数, 且满足f (x -4)=-f (x ), 得f (11)=f (3)=-f (-1)=f (1).∵f (x )在区间[0,2]上是增函数, f (x )在R 上是奇函数,∴f (x )在区间[-2,2]上是增函数, ∴f (-1)<f (0)<f (1), 即f (-25)<f (80)<f (11).思维升华 (1)关于奇偶性、单调性、周期性的综合性问题,关键是利用奇偶性和周期性将未知区间上的问题转化为已知区间上的问题.(2)掌握以下两个结论,会给解题带来方便:①f (x )为偶函数⇔f (x )=f (|x |).②若奇函数在x =0处有意义,则f (0)=0.(1)若f (x )=ln(e 3x +1)+ax 是偶函数,则a =________.(2)已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2-4x ,则不等式f (x )>x 的解集用区间表示为________.答案 (1)-32(2)(-5,0)∪(5,+∞)解析 (1)函数f (x )=ln(e 3x +1)+ax 是偶函数,故f (-x )=f (x ),即ln(e -3x +1)-ax =ln(e 3x +1)+ax ,化简得ln1+e 3xe 3x +e 6x=2ax =ln e 2ax ,即1+e 3xe 3x +e6x =e 2ax ,整理得e 3x +1=e 2ax +3x (e 3x +1),所以2ax +3x =0,解得a =-32.(2)∵f (x )是定义在R 上的奇函数,∴f (0)=0. 又当x <0时,-x >0, ∴f (-x )=x 2+4x .又f (x )为奇函数,∴f (-x )=-f (x ), ∴f (x )=-x 2-4x (x <0), ∴f (x )=⎩⎪⎨⎪⎧x 2-4x ,x >0,0,x =0,-x 2-4x ,x <0.①当x >0时,由f (x )>x 得x 2-4x >x ,解得x >5;②当x =0时,f (x )>x 无解;③当x <0时,由f (x )>x 得-x 2-4x >x , 解得-5<x <0.综上得不等式f (x )>x 的解集用区间表示为(-5,0)∪(5,+∞).2.忽视定义域致误典例 (1)若函数f (x )=k -2x1+k ·2x在定义域上为奇函数,则实数k =________.(2)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是________.易错分析 (1)解题中忽视函数f (x )的定义域,直接通过计算f (0)=0得k =1. (2)本题易出现以下错误:由f (1-x 2)>f (2x )得1-x 2>2x ,忽视了1-x 2>0导致解答失误. 解析 (1)∵f (-x )=k -2-x1+k ·2-x =k ·2x -12x +k,∴f (-x )+f (x )=(k -2x )(2x +k )+(k ·2x -1)·(1+k ·2x )(1+k ·2x )(2x +k )=(k 2-1)(22x +1)(1+k ·2x )(2x +k ).由f (-x )+f (x )=0可得k 2=1, ∴k =±1.(2)画出f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0的图象,由图象可知,若f (1-x 2)>f (2x ),则⎩⎪⎨⎪⎧1-x 2>0,1-x 2>2x ,即⎩⎪⎨⎪⎧-1<x <1,-1-2<x <-1+2,得x ∈(-1,2-1). 答案 (1)±1 (2)(-1,2-1)温馨提醒 (1)已知函数的奇偶性,利用特殊值确定参数,要注意函数的定义域.(2)解决分段函数的单调性问题时,应高度关注:①对变量所在区间的讨论.②保证各段上同增(减)时,要注意左、右段端点值间的大小关系.③弄清最终结果取并集还是交集.[方法与技巧]1.判断函数的奇偶性,首先应该判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件. 2.利用函数奇偶性可以解决以下问题①求函数值;②求解析式;③求函数解析式中参数的值;④画函数图象,确定函数单调性. 3.在解决具体问题时,要注意结论“若T 是函数的周期,则kT (k ∈Z 且k ≠0)也是函数的周期”的应用. [失误与防范]1.f (0)=0既不是f (x )是奇函数的充分条件,也不是必要条件.应用时要注意函数的定义域并进行检验.2.判断分段函数的奇偶性时,要以整体的观点进行判断,不可以利用函数在定义域某一区间上不是奇、偶函数而否定函数在整个定义域的奇偶性.A 组 专项基础训练 (时间:40分钟)1.下列函数中,①y =log 2|x |;②y =cos 2x ;③y =2x -2-x 2;④y =log 22-x 2+x ,既是偶函数又在区间(1,2)上单调递增的是________. 答案 ①解析 对于①,函数y =log 2|x |是偶函数且在区间(1,2)上是增函数;对于②,函数y =cos 2x在区间(1,2)上不是增函数;对于③,函数y =2x -2-x 2不是偶函数;对于④,函数y =log 22-x2+x 不是偶函数.2.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=3x +m (m 为常数),则f (-log 35)的值为________. 答案 -4解析 由f (x )是定义在R 上的奇函数,得f (0)=1+m =0,解得m =-1,∴f (x )=3x -1.∵log 35>log 31=0,∴f (-log 35)=-f (log 35)=3log 5(31)--=-4.3.已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (2 019)=________. 答案 -2解析 ∵f (x +4)=f (x ),∴f (x )是以4为周期的周期函数, ∴f (2 019)=f (504×4+3)=f (3)=f (-1).又f (x )为奇函数,∴f (-1)=-f (1)=-2×12=-2, 即f (2 019)=-2.4.若函数f (x )=(ax +1)(x -a )为偶函数,且函数y =f (x )在x ∈(0,+∞)上单调递增,则实数a 的值为________. 答案 1解析 ∵函数f (x )=(ax +1)(x -a )=ax 2+(1-a 2)x -a 为偶函数, ∴f (-x )=f (x ),即f (-x )=ax 2-(1-a 2)x -a =ax 2+(1-a 2)x -a , ∴1-a 2=0,解得a =±1.当a =1时,f (x )=x 2-1,在x ∈(0,+∞)上单调递增,满足条件.当a =-1时,f (x )=-x 2+1,在x ∈(0,+∞)上单调递减,不满足条件.故a =1.5.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2+2x ,若f (2-a 2)>f (a ),则实数a 的取值范围是____________. 答案 (-2,1)解析 ∵f (x )是奇函数,∴当x <0时,f (x )=-x 2+2x .作出函数f (x )的大致图象如图中实线所示,结合图象可知f (x )是R 上的增函数,由f (2-a 2)>f (a ),得2-a 2>a ,解得-2<a <1.6.函数f (x )在R 上为奇函数,且当x >0时,f (x )=x +1,则当x <0时,f (x )=________. 答案 --x -1解析 ∵f (x )为奇函数,当x >0时,f (x )=x +1,∴当x <0时,-x >0,f (-x )=-x +1=-f (x ),即x <0时,f (x )=-(-x +1)=--x -1. 7.已知定义在R 上的偶函数f (x )在[0,+∞)上单调递增,且f (1)=0,则不等式f (x -2)≥0的解集是____________________.答案 (-∞,1]∪[3,+∞)解析 由已知可得x -2≥1或x -2≤-1,解得x ≥3或x ≤1,∴所求解集是(-∞,1]∪[3,+∞).8.设定义在R 上的函数f (x )同时满足以下条件:①f (x )+f (-x )=0;②f (x )=f (x +2);③当0≤x ≤1时,f (x )=2x -1,则f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫32+f (2)+f ⎝⎛⎭⎫52=________. 答案 2解析 依题意知:函数f (x )为奇函数且周期为2,∴f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫32+f (2)+f ⎝⎛⎭⎫52=f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫-12+f (0)+f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫12+f (1)-f ⎝⎛⎭⎫12+f (0)+f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫12+f (1)+f (0)=212-1+21-1+20-1= 2. 9.已知函数f (x )=⎩⎪⎨⎪⎧ -x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.解 (1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x .又f (x )为奇函数,所以f (-x )=-f (x ).于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2.(2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].10.设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ),当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数;(2)当x ∈[2,4]时,求f (x )的解析式;(3)计算f (0)+f (1)+f (2)+…+f (2 016).(1)证明 ∵f (x +2)=-f (x ),∴f (x +4)=-f (x +2)=f (x ).∴f (x )是周期为4的周期函数.(2)解 ∵x ∈[2,4],∴-x ∈[-4,-2],∴4-x ∈[0,2],∴f (4-x )=2(4-x )-(4-x )2=-x 2+6x -8.又f (4-x )=f (-x )=-f (x ),∴-f (x )=-x 2+6x -8,即f (x )=x 2-6x +8,x ∈[2,4].(3)解 ∵f (0)=0,f (1)=1,f (2)=0,f (3)=-1.又f (x )是周期为4的周期函数,∴f (0)+f (1)+f (2)+f (3)=f (4)+f (5)+f (6)+f (7)=…=f (2 012)+f (2 013)+f (2 014)+f (2 015)=0.∴f (0)+f (1)+f (2)+…+f (2 016)=f (2 016)=f (0)=0.B 组 专项能力提升(时间:20分钟)11.已知f (x )是定义域为(-1,1)的奇函数,而且f (x )是减函数,如果f (m -2)+f (2m -3)>0,那么实数m 的取值范围是____________.答案 ⎝⎛⎭⎫1,53 解析 ∵f (x )是定义域为(-1,1)的奇函数,∴-1<x <1,f (-x )=-f (x ).∴f (m -2)+f (2m -3)>0可转化为f (m -2)>-f (2m -3),∴f (m -2)>f (-2m +3),∵f (x )是减函数,∴m -2<-2m +3,∵⎩⎪⎨⎪⎧ -1<m -2<1,-1<2m -3<1,m -2<-2m +3.∴1<m <53. 12.设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫32,则a +3b 的值为________.答案 -10解析 因为f (x )是定义在R 上且周期为2的函数,所以f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12,且f (-1)=f (1),故f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫-12,从而12b +212+1=-12a +1,即3a+2b=-2.①由f(-1)=f(1),得-a+1=b+2 2,即b=-2a.②由①②得a=2,b=-4,从而a+3b=-10.13.已知f(x)是R上最小正周期为2的周期函数,且当0≤x<2时,f(x)=x3-x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点个数为________.答案7解析因为当0≤x<2时,f(x)=x3-x,又f(x)是R上最小正周期为2的周期函数,且f(0)=0,所以f(6)=f(4)=f(2)=f(0)=0.又f(1)=0,所以f(3)=f(5)=0.故函数y=f(x)的图象在区间[0,6]上与x轴的交点个数为7.14.设函数f(x)是定义在R上的偶函数,且对任意的x∈R恒有f(x+1)=f(x-1),已知当x∈[0,1]时,f(x)=2x,则有①2是函数f(x)的周期;②函数f(x)在(1,2)上是减函数,在(2,3)上是增函数;③函数f(x)的最大值是1,最小值是0.其中所有正确命题的序号是________.答案①②解析在f(x+1)=f(x-1)中,令x-1=t,则有f(t+2)=f(t),因此2是函数f(x)的周期,故①正确;当x∈[0,1]时,f(x)=2x是增函数,根据函数的奇偶性知,f(x)在[-1,0]上是减函数,根据函数的周期性知,函数f(x)在(1,2)上是减函数,在(2,3)上是增函数,故②正确;由②知f(x)在[0,2]上的最大值f(x)max=f(1)=2,f(x)的最小值f(x)min=f(0)=f(2)=20=1,且f(x)是周期为2的周期函数.∴f(x)的最大值是2,最小值是1,故③错误.15.函数f(x)的定义域为D={x|x≠0},且满足对于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2).(1)求f(1)的值;(2)判断f(x)的奇偶性并证明你的结论;(3)如果f(4)=1,f(x-1)<2,且f(x)在(0,+∞)上是增函数,求x的取值范围.解 (1)∵对于任意x 1,x 2∈D , 有f (x 1·x 2)=f (x 1)+f (x 2),∴令x 1=x 2=1,得f (1)=2f (1),∴f (1)=0.(2)f (x )为偶函数.证明:令x 1=x 2=-1,有f (1)=f (-1)+f (-1),∴f (-1)=12f (1)=0. 令x 1=-1,x 2=x 有f (-x )=f (-1)+f (x ), ∴f (-x )=f (x ),∴f (x )为偶函数.(3)依题设有f (4×4)=f (4)+f (4)=2, 由(2)知,f (x )是偶函数,∴f (x -1)<2⇔f (|x -1|)<f (16).又f (x )在(0,+∞)上是增函数.∴0<|x -1|<16,解之得-15<x <17且x ≠1. ∴x 的取值范围是{x |-15<x <17且x ≠1}.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学函数练习题
一、 求函数的定义域
1、 求下列函数的定义域:
⑴y =
⑵y =
⑶01
(21)1
11y x x =+-+-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;
3、若函数(1)f x +的定义域为[]-23,,
则函数(21)f x -的定义域是 ;函数1(2)f x +的定义域为 。
4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。
二、求函数的值域
5、求下列函数的值域:
⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311
x y x -=
+
⑷311x y x -=+ (5)x ≥ ⑸
y =⑹ 225941x x y x +=-+
⑺31y x x =-++ ⑻2y x x =- ⑼ y =
⑽ 4y =⑾y x =-
6、已知函数222()1
x ax b f x x ++=+的值域为[1,3],求,a b 的值。
三、求函数的解析式系
1、已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。
2、已知()f x 是二次函数,且2
(1)(1)24f x f x x x ++-=-,求()f x 的解析式。
3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。
4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+
,则当(,0)x ∈-∞时()f x =____ _
()f x 在R 上的解析式为
5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1
f x
g x x +=-,求()f x 与()g x 的解析表达式
四、求函数的单调区间
6、求下列函数的单调区间:
⑴ 2
23y x x =++ ⑵y ⑶ 261y x x =--
7、函数()f x 在[0,)+∞上是单调递减函数,则2
(1)f x -的单调递增区间是
8、函数236
x y x -=+的递减区间是 ;函数y =的递减区间是。