九年级中考专题复习
人教版九年级中考数学 考点复习 全等三角形 专题练习

人教版九年级中考数学考点复习全等三角形专题练习一.选择题(本大题共10道小题)1. 已知图中的两个三角形全等,则∠1等于( )A.47°B.57°C.60°D.73°2. 如图,在△ABC和△DCB中,∠ACB=∠DBC,添加一个条件,不能证明△ABC和△DCB全等的是( )A.∠ABC=∠DCBB.AB=DCC.AC=DBD.∠A=∠D3. 如图,点B,F,C,E共线,∠B=∠E,BF=EC,添加一个条件,不能判断△ABC≌△DEF的是( )A.AB=DEB.∠A=∠DC.AC=DFD.AC∥FD4. 如图,等腰△ABC中,点D,E分别在腰AB,AC上,添加下列条件,不能判定△ABE≌△ACD的是( )A.AD=AEB.BE=CDC.∠ADC=∠AEBD.∠DCB=∠EBC5. 如图,△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F.若∠BCE=65°,则∠CAF的度数为( )A.30°B.25°C.35°D.65°6. 在正方形网格中,∠AOB的位置如图所示,则下列各点中到∠AOB两边距离相等的点是( )A.点QB.点NC.点RD.点M7. 工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在∠AOB的两边OA,OB上分别取OC=OD,移动角尺,使角尺两边相同的刻度分别与点C,D重合,这时过角尺顶点M的射线OM就是∠AOB的平分线.这里构造全等三角形的依据是( )A.SASB.ASAC.AASD.SSS8. 如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36o.连接AC、BD交于点M,连接OM.下列结论:①∠AMB=36o;②AC=BD;③OM平分∠AOD;④MO平分∠AMD其中正确的结论个数有( )个.A.4B.3C.2D.19. 下面是黑板上出示的尺规作图题需要回答横线上符号代表的内容.如图,已知∠AOB,求作:∠DEF,使∠DEF=∠AOB.作法:(1)以△为圆心,任意长为半径画弧,分别交OA,OB于点P,Q;(2)作射线EG,并以点E为圆心,○长为半径画弧交EG于点D;(3)以点D为圆心,* 长为半径画弧交前弧于点F;(4)作⊕,则∠DEF即为所求作的角.A.△表示点EB.○表示PQC.*表示EDD.⊕表示射线EF10. 如图,在△ABC和△ADE中,∠CAB=∠DAE=36°,AB=AC,AD=AE.连结CD,连结BE并延长交AC,AD于点F,G.若BE恰好平分∠ABC,则下列结论错误的是( )A.∠ADC=∠AEBB.CD∥ABC.DE=GED.BF2=CF·AC二.填空题(本大题共6道小题)11. 如图,点B 、F 、C 、E 在一条直线上,已知FB=CE,AC ∥DF,请你添加一个适当的条件 使得△ABC ≌△DEF.12. 如图,四边形ABCD 中,∠BAC =∠DAC,请补充一个条件 ,使得△ABC ≌△ADC.13. 如图,AC =AD,∠1=∠2,要使△ABC ≌△AED,应添加的条件是 .(只需写出一个条件即可)14. 如图,AC=AD,∠1=∠2,要使ABC AED ≌△△,应添加的条件是______(只需写出一个条件即可)15. 如图,点P 为定角∠AOB 的平分线上的一个定点,点M,N 分别在射线OA,OB 上(都不与点O 重合),且∠MPN 与∠AOB 互补.若∠MPN 绕着点P 转动,那么以下四个结论:①P M =PN 恒成立;②MN 的长不变;③OM+ON 的值不变;④四边形PMON 的面积不变.其中正确的为_____.(填番号)16. 如图,在△ABC 中,AB =AC,点D 在BC 上(不与点B,C 重合).只需添加一个条件即可证明△ABD ≌△ACD,这个条件可以是 (写出一个即可).三.解答题(本大题共6道小题)17. 如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE.18. 如图,∠B=∠E,BF=EC,AC∥DF.求证:△ABC≌△DEF.19. 如图,△ACF≌△DBE,其中点A、B、C、D在同一条直线上.(1)若BE⊥AD,∠F=63°,求∠A的大小.(2)若AD=11cm,BC=5cm,求AB的长.20. 如图,点E在AB上,AC与DE相交于点F,△ABC≌△DEC,∠B=65°.(1)求∠DCA的度数;(2)若∠A=20°,求∠DFA的度数.21. 在Rt△ABC中,∠ACB=90°,CB=CA=22,点D是射线AB上一点,连接CD,在CD右侧作∠DCE =90°,且CE=CD,连接AE,已知AE=1.(1)如图,当点D在线段AB上时,①求∠CAE的度数;②求CD的长;(2)当点D在线段AB的延长线上时,请直接写出∠CAE的度数和CD的长.22. 如图,D是△ABC的边AB上一点,CF∥AB,DF交AC于E点,DE=EF.(1)求证:△ADE≌△CFE;(2)若AB=5,CF=4,求BD的长.。
2023年中考语文专题复习-九年级上下册名著复习课件

朋友圈事件选择参考
简·爱:
1.被舅母关进小房子时 2.在福利院受到侮辱站在耻辱台上时 3.好友海伦去世时 4.罗切斯特向她告白时 5.结婚时得知真相决心离开时 6.得知自己继承了巨额遗产时 。。。。。
九年级名著复习 专题
九上 九下
01 《 艾 青 诗 选 》 02 《 水 浒 传 》 03 《 儒 林 外 史 》 04 《 简 · 爱 》
定位和方法
定位:诗歌名著,重 在考查诗歌的意象应 用,主题理解,诗人 的情感。
方法:以点带面,选 读精读。
主要内容
主要内容:重点在于作者 在中国苦难时期写下的一 些诗歌,我们可以感受诗 人诚挚而伟大的爱国热情。 在诗歌中,我们看到了诗 人对理想和美好生活的向 往与热烈的追求,对黑暗 的憎恶,对光明的讴歌和 向往。
简·爱买了新手机,注册了一个微信,用自己的原名Jane Eyre 取名,在设置“个性签名”时,你觉得他们会写什么话语? 简·爱的好友列表有哪些人?好友备注分别是什么?
预设: 简·爱:我和你的灵魂,在上帝面前是平等的
第一课时——假如ta有微信朋友圈
有感而发: 遇到一些事情时,我们会发朋友圈;
心情特别好或者不好时,我们会发朋 友圈,简·爱也想试试发朋友圈。
定位和方法
定位:重在考查情节 和人物形象,以及讽 刺手法的应用。
方法:精读,把握主 要人物形象特点和情 节。做容
主要内容:儒林外史一方面 真实的揭示人性被腐蚀的过 程和原因,从而对当时吏治 的腐败、科举的弊端、礼教 的虚伪等进行了深刻的批判 和嘲讽,如周进、范进、严 贡生、匡超人等。一方面热 情的歌颂了少数人物以坚持 自我的方式所做的对于人性 的保护,从而寄予了作者的 理想,如王冕、沈琼枝、杜 少卿。
九年级英语中考语法专题复习课件-比较级与最高级

她走得比我快。 _______________________________________ 地球和月亮,哪个更大?________________________________
我们城市正在变得越来越漂亮。_____________________________________
你学习越努力,你妈妈就越开心。 ________________you study, _______________your mum will be.
构成方式-不规则变化 good/well----better-----best bad/badly/ill---worse---worst many/much-----more----most little-----less----least farther---farthest 表距离 further---furthest 表程度
2.John is much shorter than his sister, but he jumps
A. as good as
B. as best as
C. as high as
D. as higher as
3. This horse is as
(strong) as that one.
4. Mary writes as
3.Canada is larger than____ country in North America. A.any B.any other C.other D.other any
4.I think my hometown is becoming____.
A.more beautiful and more beautiful B.more and more cleaner
九年级数学中考复习专题:四边形综合(考察全等证明、长度与面积计算等)

九年级数学中考复习专题:四边形综合(考察全等证明、长度与面积计算等)(一)1.综合与实践问题情境在数学活动课上,老师提出了这样一个问题:如图①,已知正方形ABCD,点E是边上一点,连接AE,以AE为边在BC的上方作正方形AEFG.数学思考(1)连接GD,求证:△ABE≌△ADG;(2)连接FC,求∠FCD的度数;实践探究(3)如图②,当点E在BC的延长线上时,连接AE,以AE为边在BC的上方作正方形AEFG,连接FC,若正方形ABCD的边长为4,CE=2,则CF的长是.2.如图,正方形ABCD的边长是2厘米,E为CD的中点,Q为正方形ABCD边上的一个动点,动点Q以每秒1厘米的速度从A出发沿A→B→C→D运动,最终到达点D,若点Q运动时间为x秒.(1)当x=1时,S△AQE=平方厘米;当x=时,S△AQE=平方厘米.(2)在点Q的运动路线上,当点Q与点E相距的路程不超过厘米时,求x的取值范围.(3)若△AQE的面积为平方厘米,直接写出x值.3.如图,在平行四边形ABCD中,∠BAD的平分线交C于点E,交DC的延长线于F,以EC、CF为邻边作平行四边形ECFG.(1)求证:四边形ECFG是菱形;(2)连结BD、CG,若∠ABC=120°,则△BDG是等边三角形吗?为什么?(3)若∠ABC=90°,AB=10,AD=24,M是EF的中点,求DM的长.4.如图1,正方形ABCD沿GF折叠,使B落在CD边上点E处,连接BE,BH.(1)求∠HBE的度數;(2)若BH与GF交于点O,连接OE,判断△BOE的形状,说明理由;(3)在(2)的条件下,作EQ⊥AB于点Q,连接OQ,若AG=2,CE=3,求△OQR 的面积.5.已知:如图所示,在平行四边形ABCD中,DE、BF分别是∠ADC和∠ABC的角平分线,交AB、CD于点E、F,连接BD、EF.(1)求证:BD、EF互相平分;(2)若∠A=60°,AE=2EB,AD=4,求线段BD的长.6.如图,已知正方形ABCD的面积是8,连接AC、BD交于点O,CM平分∠ACD交BD于点M,MN⊥CM,交AB于点N,(1)求∠BMN的度数;(2)求BN的长.7.如图,四边形OABC为矩形,其中O为原点,A、C两点分别在x轴和y轴上,B点的坐标是(4,6),将矩形沿直线DE折叠,使点C落在AB边上点F处,折痕分别交OC,BC于点E、D,且D点坐标是(,6).(1)求F点的坐标;(2)如图2,P点在第二象限,且△PDE≌△CED,求P点的坐标;(3)若M点为x轴上一动点,N点为直线DE上一动点,△FMN为以FN为底边的等腰直角三角形,求N点的坐标.8.已知,在平行四边形ABCD中,点F是AB上一点,连接DF交对角线AC于E,连接BE.(1)如图1,若∠EBC=∠EFA,EC平分∠DEB,求证:平行四边形ABCD是菱形;(2)如图2,对角线AC与BD相交于点O,当点F是AB的中点时,直接写出与△ADF 面积相等的三角形(不包括以AD为边的三角形).9.如图,四边形ABCD是平行四边形,∠BAC=90°,AB=AC,点H为边AB的中点,点E在CH的延长线上,且AE⊥BE.点F在线段AE上,且BF⊥CE,垂足为G.(1)若BF=AF,且EF=3,BE=4,求AD的长;(2)求证:BF+2EH=CE.10.在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图1,当点E在边DC上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF交于点P,则线段AE与DF的关系是;(2)如图2,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?请说明理由;(3)如图2,连接AC,当△ACE为等腰三角形时,请你求出CE:CD的值.参考答案1.(1)证明:∵四边形ABCD和四边形AEFG是正方形,∴AB=AD,AE=AG,∠ABE=∠ADG=90°,∴∠BAE+∠EAD=∠DAG+∠EAD,∴∠BAE=∠DAG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS);(2)解:如图①,过点F作FH⊥BC,交BC的延长线于点H,∵∠AEF=∠ABE=90°,∴∠BAE+∠AEB=90°,∠FEH+∠AEB=90°,∴∠FEH=∠BAE,又∵AE=EF,∠EHF=∠ABE=90°,∴△EHF≌△ABE(SAS),∴FH=EB,EH=AB=BC,∴CH=BE,∴CH=FH,∴∠FCH=45°,∴∠FCD=45°;(3)解:过点F作FH⊥BC,交BC的延长线于点H,如图②,由(2)知△EHF≌△ABE,∴EH=AB,FH=BE,∵AB=BC=4,CE=2,∴BE=FH=6,CH=CE+EH=6,∴CF==6.故答案为:6.2.解:(1)①∵E为CD的中点,∴DE=1,∵动点Q以每秒1厘米的速度从A出发沿A→B→C→D运动,∴当x=1时,AQ=1,∴S△AQE=×AQ×AD=×1×2=1,②∵AQ=,∴点Q在AB上,∴S△AQE=×AQ×AD=;故答案为:①1;②.(2)根据题意,得,解得:.∴x的取值范围是.(3)①当点Q在AB上,∵S△AQE=×x×2=,∴x=,②当点Q在BC上时,∵S△AQE=S梯形ABCE﹣S△ABQ﹣S△CQE=×2×(x﹣2)﹣×1×(4﹣x)=.∴x=,③当点Q在CD上时,∵S△AQE=,∴x=.综合以上可得x=或或.3.证明:(1)∵AF平分∠BAD,∴∠BAF=∠DAF,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAF=∠CEF,∠BAF=∠CFE,∴∠CEF=∠CFE,∴CE=CF,又∵四边形ECFG是平行四边形,∴四边形ECFG为菱形;(2)△BDG是等边三角形,理由如下:∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,AD∥BC,∵∠ABC=120°,∴∠BCD=60°,∠BCF=120°,由(1)知,四边形CEGF是菱形,∴CE=GE,∠BCG=∠BCF=60°,∴CG=GE=CE,∠DCG=120°,∵EG∥DF,∴∠BEG=120°=∠DCG,∵AE是∠BAD的平分线,∴∠DAE=∠BAE,∵AD∥BC,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD,∴△BEG≌△DCG(SAS),∴BG=DG,∠BGE=∠DGC,∴∠BGD=∠CGE,∵CG=GE=CE,∴△CEG是等边三角形,∴∠CGE=60°,∴∠BGD=60°,∵BG=DG,∴△BDG是等边三角形;(3)如图2中,连接BM,MC,∵∠ABC=90°,四边形ABCD是平行四边形,∴四边形ABCD是矩形,又由(1)可知四边形ECFG为菱形,∠ECF=90°,∴四边形ECFG为正方形.∵∠BAF=∠DAF,∴BE=AB=DC,∵M为EF中点,∴∠CEM=∠ECM=45°,∴∠BEM=∠DCM=135°,在△BME和△DMC中,∵,∴△BME≌△DMC(SAS),∴MB=MD,∠DMC=∠BME.∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,∴△BMD是等腰直角三角形.∵AB=10,AD=24,∴BD===26,∴DM=BD=13.4.解:(1)如图1中,过点E作EN⊥AB于N,过点B作BM⊥EA′于M.由翻折可知,∠ABF=∠FEA′=90°,FB=FE,∴∠FBE=∠FEB,∴∠EBN=∠BEM,∵∠ENB=∠BME=90°,BE=EB,∴△ENB≌△BME(AAS),∴EN=BM,∵四边形ABCD是正方形,∴∠NBC=∠C=∠A=∠ENB=90°,AB=BC,∴AB=BM=BC,∵BH=BH,BE=BE,∴Rt△BAH≌Rt△BMH(HL),Rt△BME≌Rt△BCE,∴∠ABH=∠MBH,∠EBM=∠EBC,∴∠HBE=∠MBH+∠EBM=∠ABC=45°.(2)结论:△BOE是等腰直角三角形.理由:如图2中,由翻折的旋转可知,FG垂直平分线段BE,∴∠OBE=∠OEB=45°,∴OB=OE,∠BOE=90°,∴△BOE是等腰直角三角形.(3)如图3中,过点O作OM⊥EQ于M,ON⊥AB于N,过点G作GJ⊥BC于J.∵∠A=∠ABJ=∠BJG=90°,∴四边形ABJG是矩形,∴AG=BJ=2,AB=GJ=BC,∵FG⊥BE,∴∠EBC+∠BFG=90°,∠BFG+∠JGF=90°,∴∠CBE=∠JGF,∵∠C=∠GJF=90°,BC=GJ,∴△GJF≌△BCE(AAS),∴FJ=CE=3,∴BF=EF=5,CF==4,∴BC=BF+CF=9,∴BE===3,∴OB=OE=3,∵EQ⊥AB,∴∠ONB=∠OME=∠OMQ=∠MQN=90°,∴四边形MQNO是矩形,∴∠MON=∠BOE=90°,∴∠BON=∠EOM,∴△ONB≌△OME(AAS),∴ON=OM,∴四边形MQNO是正方形,设OM=OM=NQ=MQ=x,∵∠C=∠CBQ=∠BQE=90°,∴四边形BCEQ是矩形,∴BQ=EC=3,EQ=BC=9,在Rt△BON中,则有x2+(x+3)2=(3)2,解得x=3或﹣6(舍弃),∴OM=QM=3,EM=BN=6,∵∠BQR=∠OMR=90°,∠BRQ=∠ORM,BQ=OM=3,∴△BQR≌△OMR(AAS),∴QR=MR=∴S△OQR=•QR•OM=××3=.5.(1)证明:∵四边形ABCD是平行四边形,∴CD∥AB,CD=AB,AD=BC,∵DE、BF分别是∠ADC和∠ABC的角平分线,∴∠ADE=∠CDE,∠CBF=∠ABF,∵CD∥AB,∴∠AED=∠CDE,∠CFB=∠ABF,∴∠AED=∠ADE,∠CFB=∠CBF,∴AE=AD,CF=CB,∴AE=CF,∴AB﹣AE=CD﹣CF即BE=DF,∵DF∥BE,∴四边形DEBF是平行四边形.∴BD、EF互相平分;(2)∵∠A=60°,AE=AD,∴△ADE是等边三角形,∵AD=4,∴DE=AE=4,∵AE=2EB,∴BE=GE=2,∴BG=4,过D点作DG⊥AB于点G,在Rt△ADG中,AD=4,∠A=60°,∴DG=AD cos∠A=4×=2,∴BD===2.6.解:(1)∵正方形ABCD的面积是8,∴BC=CD==2,∴BD=×2=4.∵四边形ABCD为正方形,∴∠DCO=∠BCO=∠CDO=∠MBN=45°,∵CM平分∠ACD,∴∠DCM=∠MCO=22.5°,∴∠BMC=∠CDO+∠DCM=45°+22.5°=67.5°.∵MN⊥CM,∴∠CMN=90°,∴∠BMN=90°﹣67.5°=22.5°,∴∠BMN的度数为22..5°.(2)∵∠MCO=22.5°,∠BCO=45°,∴∠BCM=∠BCO+∠MCO=67.5°,又∵∠BMC=67.5°,∴∠BCM=∠BMC,∴BM=BC=CD=2,∴DM=BD﹣BM=4﹣2.∵∠DCM=22.5°,∠BMN=22.5°,∴∠DCM=∠BMN.∴在△DCM和△BMN中,,∴△DCM≌△BMN(ASA),∴BN=DM=4﹣2,∴BN的长为4﹣2.7.解:(1)∵点D坐标是(,6),B点的坐标是(4,6),四边形OABC为矩形,∴BC=AO=4,OC=AB=6,CD=,BD=BC﹣CD=,∵将矩形沿直线DE折叠,∴DF=CD=,∴BF===2,∴AF=6﹣2=4,∴点F(4,4).(2)如图2中,连接PF交DE于J.当四边形EFDP是矩形时,△PDE≌△FED≌△CED,∵C(0,6),F(4,4),∴直线CF的解析式为y=﹣x+6,∵DE垂直平分线段CF,∴直线DE的解析式为y=2x+1,∴E(0,1),D(,6),∵DJ=JE,∴J(,),∵PJ=JF,∴P(﹣,3).(3)如图3中,连接FN,以FN为对角线构造正方形NMFM′,连接MM′交FN于K.设N(m,2m+1),则K(,),M(,),M′(,),当点M落在x轴上时,=0,解得m=﹣,当点M′落在X轴上时,=0,解得m=﹣9,∴满足条件的点N的坐标为(﹣,)或(﹣9,﹣17).8.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EDC=∠EFA,∵∠EBC=∠EFA,∴∠EBC=∠EDC,∵EC平分∠DEB,∴∠DCE=∠BCE,在△CED和△CEB中,,∴△CED≌△CEB(AAS),∴CD=CB,∵四边形ABCD为平行四边形,∴平行四边形ABCD为菱形;(2)解:与△ADF面积相等的三角形(不包括以AD为边的三角形)为△AOB、△BOC、△COD、△DFB;理由如下:∵四边形ABCD是平行四边形,∴OA=OB,OC=OD,∴△AOB的面积=△BOC的面积=△COD的面积=△ABD的面积,∵点F是AB的中点,∴△ADF的面积=△DFB的面积=△ABD的面积,∴△AOB的面积=△BOC的面积=△COD的面积=△DFB的面积=△ADF的面积.9.解:(1)∵AE⊥BE.EF=3,BE=4,∴BF=,∵BF=AF,∴AF=5,∴AE=3+5=8,∴AB,∵∠BAC=90°,AB=AC,∴BC=,∵四边形ABCD是平行四边形,∴AD=BC=4;(2)在CH上截取HM=HE,连接BM和AM,如图,∵BE⊥AE,∴∠AEB=90°,∵点H为边AB的中点,∴EH=AH=BH=MH,∴四边形AEBM是矩形,∴∠EAM=90°,∵∠BAC=90°,∴∠BAF=∠CAM,∵BF⊥CE,∴∠EGB=90°,∴∠EBG+∠BEG=90°,∵∠EBG+∠BFE=90°,∴∠BEG=∠BFE,∵矩形AEBM中,BE∥AM,∴∠BEG=∠AMH,∴∠BFE=∠AMH,∴∠AFB=∠AMC,∵AB=AC,∴△ABF≌△ACM(AAS),∴BF=CM,∵CM+EM=CE,EM=EH+MH=2EH,∴BF+2EH=CE.10.解:(1)结论:AE=DF,AE⊥DF,理由:如图1中,∵四边形ABCD是正方形,∴AD=DC,∠ADE=∠DCF=90°,∵动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动,∴DE=CF,在△ADE和△DCF中,,∴△ADE≌△DCF(SAS),∴AE=DF,∠DAE=∠FDC,∵∠ADE=90°,∴∠ADP+∠CDF=90°,∴∠ADP+∠DAE=90°,∴∠APD=180°﹣90°=90°,∴AE⊥DF;故答案为:AE=DF,AE⊥DF.(2)成立.理由如下:如图2中,∵四边形ABCD是正方形,∴AD=DC,∠ADC=∠DCF=90°,∵动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动,∴DE=CF,在△ADE和△DCF中,,∴△ADE≌△DCF(SAS),∴AE=DF,∠DAE=∠CDF,由于∠CDF+∠ADF=90°,∴∠DAE+∠ADF=90°,∴AE⊥DF.(3)有两种情况:①如图3﹣1中,当AC=CE时,设正方形ABCD的边长为a,由勾股定理得:AC=CE==a,则CE:CD=a:a=.②如图3﹣2中,当AE=AC时,设正方形ABCD的边长为a,由勾股定理得:AC=AE==a,∵四边形ABCD是正方形,∴∠ADC=90°,即AD⊥CE,∴DE=CD=a,∴CE:CD=2a:a=2,即CE:CD=或2.。
九年级化学中考复习专题1 空气 氧气

药品 能否代替红磷
原因分析
铁丝 ①__不__能____
②___在__空__气__中__不__能__燃__烧___
镁
不能
木炭 ③__不__能____
硫粉
能
与氧气、二氧化碳、氮气均能发生反应
④_不__充__分__燃__烧__时__生__成__的__一__氧__化__碳__不__能__被__吸__收_
(2017.14B,2013.15D)
比空气小)
装置
检验、干燥、除杂
进出口方向 ②__a进__b_出___ ③__d_进__c出___ ④__b_进__a出___ ⑤__c进__d_出___
⑥__a_进__b_出__
6.注意事项 (1)用 KMnO4制氧气时,试管口要放一小团棉花,目的是 _防__止__加__热__时__高__锰__酸__钾__粉__末__随__气__流__进__入__导__管__,__堵__塞__导__管___。 (2)用固体加热型发生装置制氧气时,点燃酒精灯后应先给试管预热,然后 再对准药品部位集中加热,目的是__防__止__受__热__不__均__,__使__试__管__炸__裂__。 (3)用排水法收集氧气时集气瓶中应事先装满水,不能留有气泡,防止收集 到的气体不纯,收集时待导管口有__连__续__均__匀__的__气__泡__冒__出__时再收集,防止 收集到的气体中混有空气。
2.操作步骤 (1)固体加热型发生装置 查:连接好仪器之后应先检__查__装__置__气__密__性__; 装:装入药品; 定:固定实验装置; 点:点燃酒精灯; 收:收集氧气; 离:撤离导管; 熄:熄灭酒精灯。
(2)固液常温型发生装置 查:连接仪器,检查装置气密性; 装:向锥形瓶中装入二氧化锰固体; 定:固定好装置; 加:向长颈漏斗中加入过氧化氢溶液; 收:收集氧气。 3.检验方法 将带火星的木条伸入集气瓶中,若木条复燃,则为氧气,否则不是氧气。
九年级语文中考总复习-专题强化训练-专题五句子的选用和仿用、句式变换(含修辞)

专题五句子的选用和仿用、句式变换(含修辞)(必考,2分)(一)句子的选用(10年5考)1.给空缺处选填语句,最恰当的一项是()学校举办运动会,擅长跳高的李阳却不愿意参加比赛,你作为体育委员劝说他参加跳高项目,你应该这样说:__________A. “让你参加一个项目,你都不愿意,真是没有一点集体荣誉感!”B. “跳高是你的强项,你应该把握住这次机会,好好展现自己,我相信你一定能够取得好成绩。
”C. “你看你架子多大,还得我专门叫你,所以给我个面子,参与一下嘛!”D. “跳高项目你必须得参加,我是体育委员,你要服从我的安排!”2.给空缺处选填语句,最恰当的一项是()九年级准备开展“身边的文化遗产”综合性学习活动,你打算和同学小妍报名组成“最美乡音组”进行赣剧演出,于是去征求妈妈的意见。
妈妈说:“赣剧演出重要还是学习重要?演出得奖能给你中考加分吗?你还是老老实实在家多做几道题吧!”你争辩道:“妈妈,_____________________________________________________”听完你的话,妈妈点了点头。
A. 赣剧是优秀的非物质文化遗产,我们应该继承和发扬它,参与演出也利于我的全面发展,您说对吗?B. 您不是说赣剧是优秀的非物质文化遗产,我们应该继承和发扬它吗?您怎么能不让我去呢?C. 学习重要,赣剧演出也重要啊,再说演唱赣剧也是在体验传统文化中学习,您不能不让我去!D. 学习重要,赣剧也重要,演唱赣剧也是我的兴趣所在,您不能这样霸道,阻碍我的兴趣发展!3.给空缺处选填语句,最恰当的一项是()九(1)班美术老师通知大家:明天下午,班级在美术专用教室举行树叶贴画比赛,要求同学带齐彩笔、胶水、剪刀、白纸和采集来的树叶。
陈芬请假了,没有到校。
老师请你把通知的内容转达给她,你见到她后,说:____________A. “我们班级将要举行树叶贴画比赛,美术老师要求同学们带齐彩笔、胶水、剪刀、白纸和采集来的树叶。
人教版九年级化学中考总复习 专题4 物质的检验、提纯和推断 含答案及解析

专题四物质的检验、提纯和推断专题提升演练1.某气体由氢气、一氧化碳、甲烷中的一种或几种组成,点燃该气体后,依次通过下图所示的装置,测得两装置的质量均增加,则下列对气体组成的推断不正确的是()A.可能只有甲烷B.可能只有氢气C.可能是甲烷和一氧化碳D.可能三种气体都存在解析:氢气燃烧生成水,只有盛浓硫酸的装置质量增加,与题意不符。
答案:B2.银铜合金广泛用于航空工业,从切割废料中回收银并制备铜化工产品的工艺流程如图所示:[已知Al(OH)3和Cu(OH)2开始分解的温度分别为450 ℃和80 ℃]下列关于该流程的说法不正确的是()A.操作Ⅰ和操作Ⅱ都是过滤B.溶液C的主要成分是Na2SO4C.固体B的主要成分是Al(OH)3和Cu(OH)2D.该生产流程所得的主要产品是Ag和CuAlO2解析:由题意可知,银铜合金废料在空气中熔炼时,铜与氧气反应生成了氧化铜,氧化铜与硫酸反应生成了硫酸铜,硫酸铜、硫酸铝与加入的氢氧化钠反应分别生成了氢氧化铜、氢氧化铝沉淀和硫酸钠,在煮沸时,氢氧化铜分解生成了氧化铜和水,所以过滤时得到的溶液C的主要成分是硫酸钠,固体B的主要成分是Al(OH)3和CuO,固体B在惰性气体中煅烧得到了CuAlO2。
所以:A.由工艺流程图可知,操作Ⅰ和操作Ⅱ都是固液分离的过程,操作名称是过滤,故正确;B.由上述分析可知,溶液C的主要成分是Na2SO4,故正确;C.由上述分析可知,固体B的主要成分是Al(OH)3和CuO,故错误;D.由工艺流程图可知,该生产流程所得的主要产品是Ag和CuAlO2,故正确。
答案:C3.(双选)下表中各组物质的鉴别方法正确的是()答案:AD4.(2022云南昆明中考)甲、乙、丙、丁是初中常见的物质,转化关系如图(所涉及反应均为初中常见化学反应,部分反应物、生成物及反应条件已略去,“”表示某种物质经一步反应可转化为另一种物质)。
下列说法错误的是()A.若甲为H2,则丁可以是Fe或H2OB.若甲为NaOH,则丙可以是H2O或Fe(NO3)3C.若甲为CuO,则乙、丙、丁可以是含有相同金属元素的化合物D.若甲为Al2(SO4)3,则如图所示转化关系均可以通过复分解反应实现答案:B5.某含一种或几种物质的水溶液中,可能含有以下几种离子:Na+、Cl-、Ca2+、Ba2+、S O42-、C O32-,现取两份100 mL溶液进行如下实验:(1)第一份加AgNO3溶液有沉淀产生。
九年级语文中考总复习资料(完整版)--

中考语文复习资料专题一:现代文阅读解题方法归类【知识点储备】一、表达方式:记叙、描写、抒情、说明、议论二、表现手法:象征、对比、烘托、设置悬念、前后呼应、扬抑、托物言志、借物抒情、联想、想象、衬托(正衬、反衬)三、修辞手法:比喻、拟人、夸张、排比、对偶、设问、反问、反复、四、记叙文六要素:时间、地点、人物、事情的起因、经过、结果五、记叙顺序:顺叙、倒叙、插叙六、描写角度:正面描写、侧面描写七、描写人物的方法:语言、动作、神态、心理、外貌八、描写景物的角度:视觉、听觉、味觉、触觉九、描写景物的方法:动静结合(以动写静)、概括与具体相结合、由远到近(或由近到远)十、描写(或抒情)方式:正面(又叫直接)、反面(又叫间接)十一、说明顺序:时间顺序、空间顺序、逻辑顺序十二、说明方法:举例子、列数字、打比方、作比较、下定义、分类别、作诠释、摹状貌、引用十三、小说情节四部分:开端、发展、高潮、结局十四、小说三要素:人物、情节、环境十五、环境描写分为:自然环境、社会环境,十六、议论文三要素:论点、论据、论证十七、论据分类为:事实论据、道理论据十八、论证方法:举例论证、道理论证、对比论证、比喻论证【答题技巧】一、某句话在文中的作用:1、文首:开篇点题;渲染气氛(记叙文、小说),埋下伏笔(记叙文、小说),设置悬念(小说作铺垫;总领下文;2、文中:承上启下;总领下文;总结上文;3、文末:点明中心(记叙文、小说);深化主题(记叙文、小说);照应开头(议论文、记叙文)二、修辞手法的作用:1、比喻、拟人:生动形象;答题格式:生动形象地写出了+对象+特性。
2、排比:有气势、加强语气、一气呵成等;答题格式:强调了+对象+特性3、设问:引起读者注意和思考;答题格式:引起读者对+对象+特性的注意和思考反问:强调,加强语气等;4、对比:强调了……突出了……5、反复:强调了……加强语气6、夸张--为突出某一事物或强调某一感受。
三、句子在文中的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、时事 3:10 月 15 日至 16 日,我国自主研制的 “神舟 “五号载人飞船将我国航天员 杨利伟顺利送上太空并安全返回。我国成为继俄.美之后世界上第三个依靠自己的 力量将航天员送入太空的国家。
2.时政报:对我国首次载人航天飞行获得圆满成功的思考( 2003 年 11 月 23 日.11 月 30 日第四版) 3.时政报:大力弘扬载人航天精神( 2003 年 12 月 14 日第四版) (三)练习: 1、“神舟五号 ”发射成功系列问题: ⑴材料时政报 11 月 23 日、 11 月 30 日 结合材料,运用所学知识,至少从四个角度谈谈对我国首次载人航天飞行获得圆满 成功的认识。要点 2、3、4、6 ⑵ 2 月 22 日/4 每周一题 ①我国 “神舟 ”五号载人飞船发射升空的地点 甘肃酒泉卫星发射中心 ;成功着陆的 地点是内蒙古 ②我国神舟五号载人飞船发射成功属于哪一次科技革命的内容?这次科技革命的主 要标志是什么?请举例说明这次科技革命成果在现实生活中的应用。 ③请谈谈我国首次载人航天飞行获得圆满成功的重大意义? ④我们青少年应怎样向航天科技工作者学习? ⑶时政报 11 月 9 日/4 每周一题 ①我国首位进入太空的航天员是杨利伟 ②我国成为当今世界上继俄罗斯和美国之后,第 三 个掌握载人航天技术的国家。 ③我国有三大卫星发射中心,除甘肃酒泉外其他两个发射中心是西昌、太原 ④结合所学知识,谈谈我国首次载人航天飞行获得圆满成功对我们的启示。 ⑷大力弘扬载人航天精神:时政报 12 月 14 日 /4 ①载人航天精神:特别能吃苦、特别能战斗、特别能攻关、特别能奉献 ②结合所学知识,至少从三个角度谈谈你对大力弘扬载人航天精神重要性的认识。 要点 1、3、5 ③我们青少年应如何弘扬载人航天精神?要点 5 ⑸时政报 3 月 7 日/3 好题传真: ①内蒙古中部草原之所以被选为 “神舟 ”五号载人飞船着陆点,其重要原因是什么? ②中国是四大文明古国之一,曾经创造了古代辉煌的科技成就。除了四大发明外, 请再举两例。 你认为中国科技在近代落后于西方的主要原因是什么? ③ “神舟 ”五号载人飞船的发射成功属于哪一次科技革命的成果?它再一次表明了邓 小平提出的一个什么著名论断?请你结合此次科技革命说明这一论断。这一论断对 我国社会主义现代化建设有什么启示? ④当今世界各国都力争在高科技领域占有一席之地,然而高科技是一把双刃剑,如 果使用不当就会给人类带来危害。请你结合当今世界科技发展的现实,试列举两例 予以说明。 [6] .结合初二法律知识,谈谈法律对促进我国科技事业发展所起的作用。时事 3P39 ⑺时政报 3 月 28 日 /4 每周一题
初三中考专题复习教案 复习专题:科教兴国(一) 复习目的: 通过对 复习重点: 归纳.理解与课本相关的观点 复习难点: 指导学生全面收集资料 复习方法: 归纳法.指导自主学习法 复习过程: (一).检查学生资料收集完成情况。 (二).结合教材,归纳有关观点:包括 初二(上) 1、我国宪法和法律规定的建设精神文明的基本措施,大体可以分为两类,即指引性 措施和鼓励性措施。相关的法律规定 P53:宪法、科学技术进步法、教学成果奖励条 例。 初二(下)
2、受教育既是公民的基本权利又是公民的基本义务 P31;青少年学生要自觉履行受 教育的义务。 P42 初三部分 3、独领风骚的中国古代科技文化:中国封建社会的科技文化成就,代表了全人类在 封建时代所达到的水平,是世界科技文化发展史是辉煌灿烂的一页。 P17
4、从 18 世纪中叶开始,世界先后爆发了三次科技革命,社会生产力得到迅速发展。 P20 三次科技革命的时间、标志、对生产力的影响、对生产关系的影响、说明了什么? (见学习手册 P166) 5、先进文化的前进方向:发展教育和科学,是文化建设的基础工程。 P106 营造美好的文化环境 P111。 6、科学技术是人类文明进步的阶梯和标志。 P124 7、国际竞争表现在许多方面,其实质是以经济和科技实力为基础的综合国力的较量 P125 8、科技进步是经济发展的决定性因素。国家要实施科教兴国战略,把加速科技进步 放在经济社会发展的关键地位,使经济建设真正转到依靠科技进步和提高劳动者素 质的轨道上来。 P128
办一次 “中4、人类科技文化的发展对社会进步的影响: 1 月 25 日/3 点拔台
中国古代科技文化成就的地位、作用、内容 三次科技革命的深刻影响对我国的社会主义现代化建设有什么启示?
5、请你围绕中国古代科技文化成就设计一个主题班会方案。 2 月 1 日/3 自我检测
举例第三次科技革命的成果在现实生活中得到广泛运用。手册 (四).学生补充相关问题或自创的新颖题型
P169
(五).小结
(六).作业布置: 完成以上练习,及时复习相关内容。
复习专题:科教兴国(二) 复习目的: 通过对 复习重点: 归纳.理解与课本相关的观点 复习难点: 指导学生全面收集资料 复习方法: 归纳法.指导自主学习法 复习过程: (一).检查学生资料收集完成情况。 (二).结合时政热点,归纳有关观点:包括
6、列举 4 项表明古代中国为世界文明发展作出突出贡献的成果。 答:印刷术、指南针、火药、造纸术等。
7、谈谈你了解中国古代科技文化成就后的感想。 8 月 17 日/4 答:①我们要弘扬民族精神,树立民族自尊心和自信心,勇于担负起
“实现现代化,
实现中华民族伟大复兴 ”的历史重任;②创新是一个民族进步的灵魂,是一个国家兴
9、创新是一个民族进步的灵魂,是一个国家兴旺发达的不竭动力。 P133 当今时代,国际竞争日趋激烈。各国之间的竞争,说到底,是人才的竞争,是民族 创新能力的竞争。 P134 科技创新越来越成为当今社会生产力解放和发展的重要基础和标志,越来越决定一 个民族和国家的发展进程。 P134 新一代青年要敢于创新,善于创新,把创新热情与、科学求实态度结合起来,努力
旺发达的不竭动力,我们要不断创新、永不自满、懈怠;③我国应与时俱进,坚持
对外开放基本国策,实施科教兴国战略,贯彻 “三个代表 ”重要思想等。
8、三次科技革命对我国现代化建设的启示? 8 月 10 日/4 比较三次科技革命。手册 P166
请收一些能反映第三次科技革命的精彩图片(可用文字表述)手册 P169
使自己成为具有丰富创新能力的高素质人才。 P134
(三).练习:
1.中国封建时代的科技文化为什么能长期领先于世界? 8 月 3/3
2、举例说明封建中国为世界文明的发展、人类社会进步作出的贡献。并结合当前实 际说说它对我们青少年的启示?初三练习册 P15
3、请从社会发展史角度指出中国古代文明呈现出前所未有的兴盛局面的根本原因?