555定时器的原理及三种应用电路
555定时器的原理及三种应用电路

试验十 555定时器的原理及三种应用实验内容1.连接施密特触发器电路,分别输入正弦波、锯齿波信号,观察并记录输入输出波形。
电路如下图:输入正弦波时的波形:输入三角波时的波形:2.设计一个驱动发光二级管的定时器电路,要求每接收到负脉冲时,发光管持续点亮二秒后熄灭。
由电路要求知要用单稳态触发器电路,脉冲宽度为Tw=1.1RC,选取R=2KΩ,C=1.1μF,电路如下所示:波形图如下:3.连接多放谐振荡电路电路,取R1=1KΩ,R2=10KΩ,C1=0.1μF,C2=0.2μF观察、记录VCr、Vo的同步波形,测出Vo的周期并与估算值进行比较。
改变参数R1=15KΩ,R2=5KΩ,C1=0.033μF,C2=0.1μF用示波器观察并测量输出波形的频率。
与理论值比较,算出频率的相对误差值。
电路如图所示:R1=1KΩ,R2=10KΩ,C1=0.1μF,C2=0.2μF时的波形图:实验模拟结果:Vo周期To=1.5ms,VCr周期Tc=1.5ms,F=1/T=0.67KHz 理论计算值为:T=0.7*(R1+2R2)*C1=1.47ms,频率f=1/T=0.68KHz频率的相对误差为:ІF-fІ/f=1.47%R1=15KΩ,R2=5KΩ,C1=0.033μF,C2=0.1μF时的波形图:实验模拟结果:Vo周期To=0.6ms期Tc=0.6ms,频率F=1/T=1.67KHz理论计算值为:T=0.7*(R1+2R2)*C1=0.5775频率f=1/T=1.73KHz频率的相对误差为:ІF-fІ/f=3.47%4.用NE556时基电路功能实现救护车警铃电路,用555的两个时基电路构成低频对高频调制的救护车警铃电路。
555定时器应用电路的设计与调试

555定时器应用电路的设计与调试1.555定时器的原理概述2.555定时器的基本工作原理555定时器的基本工作原理是通过外部RC电路产生的时间常数来控制输出的时间周期。
具体来说,当电源正常通电后,555定时器的电源引脚将被高电平激活,通过内部比较器将电压与阀值进行比较,并将结果传递给RS触发器。
RS触发器的输出信号会控制放电开关,根据输入信号的变化来控制电容的放电与充电,从而实现定时和脉冲控制功能。
3.555定时器的应用电路设计(1)单稳态触发器电路单稳态触发器电路常用于产生固定宽度的脉冲信号。
通过一个电容和一个电阻连接到555定时器的触发脚,当电源通电或接收到外部触发脉冲信号时,555定时器会产生一个固定宽度的脉冲信号输出。
(2)Astable多谐振荡器电路Astable多谐振荡器电路常用于产生固定频率和变量占空比的方波信号。
通过一个电容和两个电阻连接到555定时器的控制脚与放电脚,当电源通电后,555定时器会自动产生方波信号输出。
4.实验步骤与调试方法(1)准备实验所需材料,包括555定时器芯片、电容、电阻、开关和示波器等。
(2)按照设计电路图连接实验电路,注意正确连接每个元件的引脚。
(3)接通电源,通过示波器观察输出信号,并根据需要调整电容和电阻的数值以达到所需的定时和脉冲控制效果。
(4)通过实验数据和示波器观察结果,对实验电路进行调试和优化,直至达到预期的结果。
5.实验注意事项(1)实验时要注意正确连接元件的引脚,避免引脚连接错误导致电路无法正常工作。
(2)实验中可以选择合适的电阻和电容数值以达到所需的定时和脉冲控制效果。
(3)在实验过程中可以适当添加一些调试电路,如LED灯、蜂鸣器等,以便更直观地观察电路的工作情况和调试结果。
6.本文总结本文对555定时器应用电路进行了设计与调试的详细解析,介绍了555定时器的基本工作原理和应用电路设计,以及相关的实验步骤和调试方法。
通过合理的设计和调试,可以实现各种定时和脉冲控制功能,满足不同场合的需求。
555时基电路工作原理

555时基电路工作原理1. 介绍555时基电路是一种经典的集成电路,常用于产生各种精确的定时信号。
本文将详细介绍555时基电路的工作原理,包括内部结构、工作模式和应用领域。
2. 内部结构555时基电路由比较器、RS触发器、电压比较器、输出级和电源电压稳定器等组成。
比较器用于比较输入电压与参考电压,RS触发器用于存储输出状态,电压比较器用于判断电源电压,输出级用于驱动外部负载,电源电压稳定器用于稳定电源电压。
3. 工作模式555时基电路有三种主要的工作模式:单稳态、连续振荡和Astable多谐振荡。
3.1 单稳态模式在单稳态模式下,555时基电路产生一个脉冲输出。
当触发引脚(TRIG)接收到一个低电平信号时,输出引脚(OUT)会产生一个高电平脉冲,持续时间由外部电容和电阻决定。
在脉冲结束后,输出引脚返回低电平。
3.2 连续振荡模式在连续振荡模式下,555时基电路产生一个稳定的方波输出。
通过调整外部电容和电阻的数值,可以控制方波的频率和占空比。
当触发引脚接收到一个低电平信号时,输出引脚会产生一个方波信号,频率和占空比由外部元件决定。
3.3 Astable多谐振荡模式在Astable多谐振荡模式下,555时基电路产生一个连续变化的方波输出。
与连续振荡模式类似,通过调整外部电容和电阻的数值,可以控制方波的频率和占空比。
不同的是,在Astable多谐振荡模式下,触发引脚和复位引脚都需要连接外部元件。
4. 应用领域555时基电路广泛应用于各种电子设备和电路中,以下是一些常见的应用领域:4.1 定时器和延时器由于555时基电路可以精确地产生各种定时信号,因此常被用作定时器和延时器。
例如,可以将555时基电路用于控制设备的开关时间,或者用于产生精确的脉冲信号。
4.2 脉冲宽度调制(PWM)555时基电路可以用于产生PWM信号,用于控制电机速度、调光灯光亮度等。
通过调整电容和电阻的数值,可以改变PWM信号的频率和占空比。
555定时器工作原理及应用引脚图

555定时器工作原理及应用引脚图什么是555定时器?555定时器是一种集成电路,也称为timer IC,它可用于产生稳定的方波脉冲。
它由三个电阻和两个电容构成,因此非常容易组装和使用。
由于555定时器的普及性和可靠性,它是电子锁、警报系统、LED闪烁器、计时器等电路中最常用的部件之一。
555定时器的工作原理555定时器的工作原理与RC振荡器相同,它基于电容器放电的时间特性。
当555定时器工作时,输出端会以稳定的频率发生高电平和低电平的交替变化。
这个频率由两个电容器和一个电阻器组成的时间常量来决定。
在555定时器内部,有两个比较器、一个放大器和一个RS触发器。
当输入引脚上的电压高于2/3的电源电压时,输出为高电平。
当输入引脚上的电压低于1/3的电源电压时,输出为低电平。
根据555定时器的工作模式,输入引脚的电压可以手动改变,但通常是另一个线路元件或电路控制器确定的,例如电位器或压力开关。
555定时器的应用场景555定时器被广泛用于各种类型的电子电路,以下是它在各种应用场景中最常用的特定模式:1.单稳态模式555定时器可以被设置为单稳态触发器,这意味着它只会在一个状态下保持一段时间,直到收到另一个输入信号才改变状态。
单稳态模式在许多应用中非常有用,例如计时器、触发器和脉冲发生器。
2. A稳态模式在A稳态模式下,555定时器的输出一直保持高电平,直到收到一个触发信号,此时输出变为低电平,并维持一段时间后再变回高电平。
A稳态模式通常用于周期性脉冲应用,例如摄像机切换器和计时器。
3. B稳态模式在B稳态模式下,555定时器的输出一直保持低电平,直到收到一个触发信号,此时输出变为高电平,并维持一段时间后再变回低电平。
B稳态模式通常是用于周期性脉冲应用,例如闪电灯和蜂鸣器。
555定时器的引脚图下面是555定时器的引脚图:Pin Number Pin Name Function1 GND 电源地2 TRIG 触发器输入3 OUT 输出端4 RESET 重置输入5 CTRL 电压控制输入6 THR 闸门控制器7 DIS 开关电路控制输入8 VCC 电源供应引脚555定时器是一种使用方便的电路元件,由于其高度可靠性和广泛适用性,它是各种电子电路的理想选择,例如计时器、脉冲发生器和控制器。
555定时器及其应用

施密特触发器的输出波形如下:
ui
VCC2
VCC1
2VCC/3
R
uo2
48 7
555 3
uo1 0
1VCC/3 t
ui
6 2
1
5
uO
C5
0
t
图5-2-13 施密特触发器电路图
图5-2-14 施密特触发器的波形图
施密特触发器的主要用于对输入波形的整形。图5-2-14 表示的是将三角波整形为方波,其它形状的输入波形也可以 整形为方波。
态的翻转,而施密特触发器是靠外加电
压信号去控制电路状态的翻转。所以,
在施密特触发器中,外加信号的高电平
必须大于
2 3
VCC
,低电平必须小于1 3
VCC
,否
则电路不能翻转。
图5-2-13 施密特触发器电路图
由于施密特触发器无须放电端,所以利用放电端与输出端状态相
一致的特点,从放电端加一上拉电阻后,可以获得与3脚相同的输出。 但上拉电阻可以单独接另外一组电源,以获得与3脚输出不同的逻辑电 平。
+UCC R1
1
ui uc
>2/3 UCC
UCC 8
5KΩ 5 6 VA
5KΩ 2
VB
7 5KΩ
T
截止 (地)1
+C1+
01
01
+C2+
4 (复位端)
暂稳稳定状态
01 RD Q
SD Q 10
3u0
Q=1
Q=0
接通电源 +UCC ui (>1/3UCC)
R
. 0.01μ F . ui
uc
58 4
NE555内部结构及应用电路

555定时器及其应用555定时器是一种中规模的集成定时器,应用非常广泛。
通常只需外接几个阻容元件,就可以构成各种不同用途的脉冲电路,如多谐振荡器、单稳态触发器以及施密特触发器等。
555定时器有TTL集成定时器和CMOS集成定时器,它们的逻辑功能与外引线排列都完全相同。
TTL型号最后数码为555,CMOS 型号最后数码为7555。
一、555的结构组成和工作原理555定时器是一种模拟电路和数字电路相结合的器件,下图为其内部组成和引脚图。
内部电路原理图等效逻辑图引脚图由图知,电路由一个分压器,两个电压比较器,一个R-S触发器,一个功率输出级和一个放电晶体管组成。
比较器A1为上比较器,由BG1~BG8组成,它是由一个NPN管的复合结构做输出级的两级差分放大器。
上比较器的反相输入端固定设置在2/3V CC上,它的同相输入端⑥脚称作阈值端(或高触发端),常用来测外部时间常数回路电容上的电压。
比较器A2为下比较器,由BG9~BG13组成,它是由一个PNP管组成的复合输出级的差分放大器。
上比较器的同相输入端固定设置在1/3V CC上,反向入端②脚称作触发输入端,用来启动电路。
电路中的比较器的主要功能是对输入电压和分压器形成的基准电压进行比较,把比较的结果用高电平"1 "或低电平"0" 两种状态在其输出端表现出来。
555 电路中的R-S触发器是由两个与非门交叉连接,上图中是由BG14~BG18构成。
其中BG15和B G14的基极分别受上比较器和下比较器的输出端控制。
A1控制R端,A2控制S端。
为了使R-S 触发器直接置零,触发器还引出一个④端,只要在④端置入低电平"0",不管触发器原来处于什么状态,也不管它输入端加的是什么信号,触发器会立即置零,即Q=O=Uo所以④端也称为总复位端。
BG18~BG21构成功率输出级,③脚为输出端,能输出最大为200mA的电流,故课直接驱动小型电机、继电器、地租扬声器等功率负荷。
555定时器芯片手册

555定时器芯片手册【原创版】目录1.555 定时器芯片概述2.555 定时器的基本原理3.555 定时器的引脚功能及应用4.555 定时器的典型应用电路5.555 定时器的使用注意事项正文【555 定时器芯片概述】555 定时器芯片是一种常用的模拟集成电路,广泛应用于各种定时、延时和触发电路中。
它的主要特点是功能简单、价格低廉、工作稳定可靠,因此深受电子工程师的喜爱。
555 定时器芯片由美国 Signetics 公司发明,现已成为全球通用的标准定时器电路。
【555 定时器的基本原理】555 定时器的基本原理是利用三个电阻器、两个 NAND 门和两个触发器构成一个简单的正反馈电路。
当输入端施加正电压时,触发器被激活,输出端产生一个矩形脉冲信号。
通过调整电阻值可以改变脉冲的宽度和延时时间。
【555 定时器的引脚功能及应用】555 定时器芯片共有 8 个引脚,分别为:1.引脚 1(GND):地引脚2.引脚 2(VCC):电源正极3.引脚 3(RESET):复位引脚,低电平有效4.引脚 4(TRIGGER):触发器引脚,施加正电压触发器动作5.引脚 5(CONTROL VOLTAGE):控制电压引脚,决定输出电压的高低6.引脚 6(A):输出信号 A,矩形脉冲信号7.引脚 7(B):输出信号 B,矩形脉冲信号的反相信号8.引脚 8(D):放电引脚,使触发器放电555 定时器芯片可以应用于各种定时、延时和触发电路,如简单的定时器、多功能计时器、电子开关、自动控制等。
【555 定时器的典型应用电路】555 定时器的典型应用电路有:1.简单的延时电路2.触摸式延时开关3.多功能定时器4.电子计数器5.定时闹钟等【555 定时器的使用注意事项】在使用 555 定时器芯片时,需要注意以下几点:1.电源电压范围应为 2V 至 16V,否则可能导致工作不稳定或损坏芯片。
2.负电源引脚(GND)应接在电路的地线上,以保证电路的稳定性。
555 计时器 计时工作原理

555 计时器计时工作原理555计时器是一种常用的定时器芯片,它可以在电子电路中实现精确的计时功能。
在本文中,我们将详细介绍555计时器的工作原理及其应用。
一、555计时器的基本结构和原理555计时器由比较器、RS触发器和输出驱动器组成,它可以通过外部元件的连接和设置来实现不同的计时功能。
555计时器有8个引脚,分别是VCC、GND、TRIG、THRES、OUT、RESET、CTRL和DIS。
555计时器的工作原理如下:1. 当RESET引脚为低电平时,计时器被复位,输出为低电平。
2. 当RESET引脚为高电平时,计时器开始工作。
3. 当TRIG引脚为低电平时,RS触发器的S端置高,Q端置低,输出为高电平。
4. 当TRIG引脚为高电平时,RS触发器的R端置高,Q端置高,输出为低电平。
5. 当THRES引脚为低电平时,比较器的输出为高电平。
6. 当THRES引脚为高电平时,比较器的输出为低电平。
7. 当比较器的输出为高电平时,输出驱动器输出为低电平;当比较器的输出为低电平时,输出驱动器输出为高电平。
二、555计时器的工作模式555计时器有三种基本工作模式,分别是单稳态、自由运行和触发模式。
1. 单稳态模式:在这种模式下,计时器在接收到一个触发脉冲后产生一个固定的时间延迟,然后恢复到初始状态。
这种模式常用于产生单脉冲信号和延时触发。
2. 自由运行模式:在这种模式下,计时器的输出信号以一定的频率周期性地变化。
这种模式常用于产生方波信号和频率分频。
3. 触发模式:在这种模式下,计时器的输出信号在接收到一个触发脉冲后翻转一次,然后保持翻转状态直到下一个触发脉冲到来。
这种模式常用于产生周期性的脉冲信号和频率锁定。
三、555计时器的应用领域555计时器广泛应用于各种电子电路中,如定时器、频率计、脉冲生成器、电子钟、蜂鸣器驱动器等。
1. 定时器:通过设置555计时器的参数,可以实现各种精确的定时功能。
例如,可以将555计时器配置为一个秒表,用于测量时间间隔。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验10 555定时器的原理及三种应用电路
「、实验目的
(1) 掌握555定时器的电路结构、工作原理。
(2) 熟悉555定时器的功能及应用。
:■、实验箱一个;双踪示波器一台;稳压电源一台;函数发生器一台。
CB555定时器;100Q ~100k Q电阻;0.01~100卩F电容;1k Q和5k Q电位器; 发光二极管或蜂鸣器。
三、实验内容
(1)按图2-10-3连接施密特触发器电路,分别输入正弦波、锯齿波信号,观察并记录输出输入波形。
1•实验原理
当输入电压《::」V cc时,=V TR:::'CC V。
为高电平
3 3
1 2
当-V cc : V i:-时,乂保持高电平。
3 3
2 2
当V i •—V CC,V TH -V TR -V cc 时,V o 为低电平。
3 3
1 2
V由大变小时,即-v cc : V :-时,V)保持低电平。
3 3
一旦V「:-V cc,则V o又回到高电平。
3
2•仿真电路如图:
3•实验结果:
输入正弦波:
输入锯齿波:
(2)设计一个驱动发光二极管的定时器电路,要求每接收到负脉冲时,发光管持续点亮秒后熄灭。
2 1•实验原理:
由555定时器构成单稳态触发器,由单稳态触发器的功能可知,当输入为一个负脉冲
时,可以输出一个单稳态脉宽T W,且T W=1.1RC。
所以想要使发光二极管接收到负脉冲时,
持续点亮2S,即要使T W=2S所以,需选定合适的R、C值。
选定R、C时,先选定C的值
为100uF,然后确定R的值为18.2k Q。
2.仿真电路如图:
波形图为:
若是1秒或者是5秒。
只需改变R 与C 的大小,使得脉冲宽度 T=1.1RC 分别为1或是5 即可。
1 秒时:
C=1OOuF, R=9.1k Q 5 秒时:C=1OOuF , R=45.5k Q 。
(3) 按图 2-10-7连接电路,取 R 仁1k Q , R2=10k Q ,C 仁0.1卩F,C2=0.01卩F ,观察、记录
V Cr
、V
O
的同步波形,测出 V 。
的周期并与估算值进行比较。
改变参数 R1=15k Q , R2=10k
Q ,C1=0.033卩F,C2=0.1卩F ,用示波器观察并测量输出端波形的频率。
经与理论估算值比较,
算出频率的相对误差值。
1•实验原理
555定时器构成多谐振荡器。
1
当加电后,V cc 通过R |,R 2
对R 充电,充电开始时V
Cr
=V TH =V TR £-V cc ,所以
V O =1。
3
1 2
当V Cr
上升到-V cc <V Cr
:-V CC
时,V O
保持高电平。
3 3
一旦V er =V TH 二V TR _lV cc ,则V O 转换为低电平,T D 导通,G 通过R 2放电。
3
1 2
当再次"cc ::V Cr
::?Vcc 时,V O
保持低电平。
3 3
一旦V Cr
=V
TH
=VrR £丄
V CC
,V O
又翻转到高电平,T D 截止,电源V cc 又通过R,R 2
对R 充电。
3
如此循环往复形成多谐振荡器。
电路输出脉冲的振荡周期TZ.7 ( R+2FQ C
2•仿真电路如图:
R 仁 1k Q ,R2=10k Q ,6= 0.1 卩 F,C2=0.01 卩 F 时:
-'GKD
555 VIRTUAL
2
c
--VCC ^ST • - • DIS ■ ■ ■ THR - TRI • CON '-'
* R
1
-I
R 1()
L
<S 1
G1
:xrioonF
C2 = 1UF
'I '
R1=15k Q , R2=10k Q ,6=0.033 卩F,C2=0.1 卩F
时:
......... v cc
L
<
«R1
15kQ
土33nF
XSG1
3.实验结果及分析
波形图如下:
R1=1k Q , R2=10k Q ,6= 0.1 卩F,C2=0.01 卩F
时:
理论值:T=0.7(R 2R 2)G =0.7 (1 10) 103 0.1 10—7.7 10“S
8 1—77
实际值:T=81. 054ms,相对误差:a
0.05%
7.7
理论值:T =0.7(R 2R 2)G =0.7 (15 5) 103 0.033 10》=4.62 10*S
(4)
用NE556时基电路功
能实现救护车警铃电路, 应用电路参考图如 定时器的两个时基电路构成低频对高频调制的救护车警铃电路。
设计电路如图:
R2
IQkn
C1 ItHluF
22kG
K&y=A
R3 pc
Mk(b -JWV
LM556CM
C3
ina ini* ■ ■ tcosr •-
SOED
1RST- • 1OTT -
C2
伽
腎•--
__
5V
“ U2A
VEC
1BL?T- • 1DI3T - t 口 I
却
ins
i mi
04
WOuF
9
・
ZZE 0U ■ 50 H z …
1 R5 : 1COE
GXD ..............................................
h ■■- 'L
:
M556CM
实际值:T=99.086ms,相对误差:
9.9-4.62 4.62
= 114%
2-10-10 所示。
用 555
R1=15k Q , R2=10k Q ,6=0.033 卩 F,C2=0.1 卩 F
时:。