数论入门
数论基础知识

• 合数是指除1和它本身之外还有其他因数的整数
• 最大公约数是指两个或多个整数的最大公共因数
• 最小公倍数是指两个或多个整数的最小公共倍数
• 数论的应用领域广泛,包括密码学、计算机科学、组合数学等
数论的发展历程及重要成果
数论的发展历程可以追溯到古代希腊和古代印度
数论在古典密码学中的应用包括凯撒密
码、维吉尼亚密码等
• 替换密码:通过替换字符或字母来加
• 凯撒密码:通过将字母向右或向左移
密和解密信息
动固定的位数来进行加密和解密
• 换位密码:通过改变字符或字母的顺
• 维吉尼亚密码:通过将字母替换为其
序来加密和解密信息
他字母来进行加密和解密
• 简单密码:通过简单的数学运算来加
04
最大公约数与最小公倍数的计
算
最大公约数与最小公倍数的定义与性质
最大公约数(GCD)是指两个或多个整数的最大公共因数
• 最大公约数的性质:GCD(a, b) = GCD(b, a % b)
最小公倍数(LCM)是指两个或多个整数的最小公共倍数
• 最小公倍数的性质:LCM(a, b) = |a × b| / GCD(a, b)
题中具有重要
应用
最大公约数与
最小公倍数在
计算机科学和
密码学领域也
有应用
01
02
• 可以用于求解分数和比例问
• 可以用于数据压缩和文件加
题
密
• 可以用于求解最简分数和最
• 可以用于算法设计和密码破
大公因数问题
解
05
同余与模运算的性质及应用
同余的定义与性质
同余是指两个整数除以同一个数所得的余数相等
小学数论基础知识

数论基础知识一质数和合数(1)一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数)。
一个数除了1和它本身,还有别的约数,这个数叫做合数.(2)自然数除0和1外,按约数的个数分为质数和合数两类。
任何一个合数都可以写成几个质数相乘的形式。
要特别记住:0和1不是质数,也不是合数.(3)最小的质数是2 ,2是唯一的偶质数,其他质数都为奇数;最小的合数是4。
(4)质数是一个数,是含有两个约数的自然数.互质数是指两个数,是公约数只有一的两个数,组成互质数的两个数可能是两个质数(3和5),可能是一个质数和一个合数(3和4),可能是两个合数(4和9)或1与另一个自然数。
(5)如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数。
把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
(6)100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97二整除性(1)概念一般地,如a、b、c为整数,b≠0,且a÷b=c,即整数a除以整除b(b不等于0),除得的商c正好是整数而没有余数(或者说余数是0),我们就说,a能被b 整除(或者说b能整除a)。
记作b|a.否则,称为a不能被b整除,(或b不能整除a),记作b a.如果整数a能被整数b整除,a就叫做b的倍数,b就叫做a的约数.(2)性质性质1:(整除的加减性)如果a、b都能被c整除,那么它们的和与差也能被c整除。
即:如果c|a,c|b,那么c|(a±b).例如:如果2|10,2|6,那么2|(10+6),并且2|(10—6)。
也就是说,被除数加上或减去一些除数的倍数不影响除数对它的整除性。
性质2:如果b与c的积能整除a,那么b与c都能整除a.即:如果bc|a,那么b|a,c|a。
性质3:(整除的互质可积性)如果b、c都能整除a,且b和c互质,那么b与c的积能整除a。
数论入门

2.3.2 算法2
给出两个正整数 和 ,求最大的 满足 能同时被 和 整除。 (即求 和 的最大公因数)
分别对 和 分分解质因数。
假设 = × × ⋯ × , y= × × ⋯ ×
其中 表示不同质数, 和 是自然数且∀ , + >0。
2.3.2 算法2
给出两个正整数 和 ,求最大的 满足 能同时被 和 整除。 (即求 和 的最大公因数)
2.3.1 算法1
给出两个正整数 和 ,求最大的 满足 能同时被 和 整除。 (即求 和 的最大公因数)
开桶或哈希表记录 的所有因数,枚举 的所有因数,取其中在桶 里出现过的最大的即可。
时间复杂度 ( 的因数个数)。
2.3.2 算法2
给出两个正整数 和 ,求最大的 满足 能同时被 和 整除。 (即求 和 的最大公因数) 分别对 和 分分解质因数。
时间复杂度 (
)。
1.2.3 算法3(埃拉托斯特尼筛法)
给出一个正整数 ,求2~ 的所有质数。
对于2~ 的所有质数,枚举它不超过 的所有倍数。 这些倍数显然都不是质数,把它们排除。 未被排除的数都是质数。
时间复杂度 (
)。
1.2.2 算法2
给出一个正整数 ,求2~ 的所有质数。
分别对 和 分分解质因数。
假设 = × × ⋯ × , y= × × ⋯ ×
其中 表示不同质数, 和 是自然数且∀ , + >0。
则有 =
( , )×
( , )×⋯×
其中
(<) ,=
(≥)
( , )。
使用2.1的算法1分解质因数。 时间复杂度 ( + )。
2.3.3 算法3
数论基础

M mi
i 1
对模M有唯一解
M M M x ( e1a1 e2 a2 ek ak ) mod M m1 m2 mk M ei 满足 ei 1 mod mi mi
费尔玛定理
• 费尔玛定理 若p是素数,a是正整数且gcd(a,p)=1,则ap-1≡1 mod p 证明: gcd(a,p)=1,则a×Zp=Zp, a×(Zp-{0})=Zp-{0} {a mod p,2a mod p,…,(p-1)a mod p} ={0,1,…,p-1} (a mod p) ×(2a mod p) ×…×(p-1)a mod p=(p-1)! mod p (p-1)! ×ap-1=(p-1)! mod p (p-1)!与p互素,所以乘法可约律,ap-1=1 mod p
+ 0 1 2 3 4 5 6 7 × 0 1 2 3 4 5 6 7 0 0 0 0 0 0 0 0 0 1 0 1 2 3 4 5 6 7 2 0 2 4 6 0 2 4 6 3 0 3 6 1 4 7 2 5 4 0 4 0 4 0 4 0 4
0 0 1 2 3 4 5 6 7
1 1 2 3 4 5 6 7 0 2 2 3 4 5 6 7 0 1
离散对数
• 指标的性质
1. inda,p(1)=0 2. inda,p(a)=1 3. inda,p(xy)=[inda,p(x)+ inda,p(y)] mod j(p) 4. inda,p(yr)=[r×inda,p(y)] mod j(p)
后两个性质基于下列结论
若az≡aq mod p ,a和p互素,则z ≡q mod j (p)
数论基础(六讲)

数论基础(六讲)第一讲:数的概念数论是数学的一个分支,主要研究整数的性质和结构。
在数论中,我们需要理解一些基本概念。
整数:整数是数学中最基本的概念之一,包括正整数、负整数和零。
正整数是自然数,可以用来表示数量;负整数是自然数的相反数,用来表示缺少或债务;零是整数中的中性元素。
自然数:自然数是正整数的集合,通常用0, 1, 2, 3, 表示。
自然数是数论研究的核心,许多数论问题都与自然数有关。
有理数:有理数是可以表示为两个整数的比值的数,包括整数和分数。
有理数在数论中也有重要应用,例如研究整数分解和数论函数。
素数:素数是大于1的自然数,除了1和它本身以外,没有其他因数。
素数在数论中有着重要的地位,许多数论问题都与素数有关。
整除:如果一个整数a能够被另一个整数b整除,即a/b是一个整数,我们说a被b整除。
整除是数论中的基本概念,许多数论问题都涉及到整除关系。
同余:两个整数a和b,如果它们除以同一个整数m的余数相同,即a%m = b%m,我们说a和b同余。
同余是数论中的基本概念,许多数论问题都涉及到同余关系。
在数论中,我们还需要了解一些基本的运算规则,如加法、减法、乘法和除法。
这些运算规则是数论研究的基础,我们需要熟练掌握它们。
第二讲:数的分解数的分解是数论中的一个重要问题,涉及到将一个整数分解为素数的乘积。
这个问题在密码学、计算机科学和数学的其他领域中都有广泛的应用。
素数分解:素数分解是将一个整数分解为素数的乘积的过程。
例如,将60分解为2×2×3×5。
素数分解是数论中的基本问题,也是密码学中 RSA 算法的基础。
最大公约数:最大公约数(GCD)是两个或多个整数共有的最大的因数。
例如,12和18的最大公约数是6。
最大公约数在数论中有着重要的应用,例如求解线性丢番图方程。
最小公倍数:最小公倍数(LCM)是两个或多个整数共有的最小的倍数。
例如,12和18的最小公倍数是36。
数论基础知识

数论基础知识数论是数学的一个分支,主要研究整数的性质和整数之间的相互关系。
数论的基础知识包括但不限于以下几个方面:1. 整数和自然数整数包括正整数、负整数和零,而自然数通常指的是从1开始的正整数。
在数论中,整数的性质和它们之间的运算是研究的重点。
2. 素数和合数素数是指只能被1和它本身整除的大于1的自然数,例如2、3、5、7等。
合数则是除了1和它本身之外,还能被其他自然数整除的数。
例如,4是合数因为它可以被2整除。
3. 因数和倍数一个数的因数是可以整除它的数,而倍数则是这个数的整数倍。
例如,6的因数有1、2、3和6,而6的倍数包括6、12、18等。
4. 最大公约数和最小公倍数两个或多个整数的最大公约数(GCD)是它们共有的最大的因数。
最小公倍数(LCM)是能被这些数整除的最小的正整数。
例如,8和12的最大公约数是4,最小公倍数是24。
5. 算术基本定理算术基本定理指出,每个大于1的自然数都可以唯一地分解为素数的乘积,不考虑因数的顺序。
例如,60可以分解为2^2 * 3 * 5。
6. 同余和模运算同余是指两个整数在除以某个数后余数相同。
模运算是数论中的一个重要概念,它涉及到整数除法的余数。
例如,5和10在模3的意义下是同余的,因为5除以3余2,10除以3也余2。
7. 二次剩余和勒让德符号二次剩余是指在模p(p为素数)的意义下,某个数的平方根存在的情况。
勒让德符号是一个用于判断一个数是否是某个素数模的二次剩余的符号。
8. 费马小定理费马小定理是数论中的一个基本定理,它指出如果p是一个素数,那么对于任何整数a,a^p - a是p的倍数。
特别地,当a不是p的倍数时,a^(p-1) ≡ 1 (mod p)。
9. 欧几里得算法欧几里得算法是一种用于计算两个整数最大公约数的算法。
它基于这样的事实:两个整数的最大公约数与它们的差的最大公约数相同。
10. 丢番图方程丢番图方程是一类特殊的多项式方程,它们通常涉及到整数解。
小学数学数论基础知识

小学数学数论基础知识1. 什么是数论?数论是研究整数的性质和关系的数学分支,也是数学的一个重要分支之一。
它主要涉及整数、质数、因数分解、最大公约数、最小公倍数等概念与性质的研究。
数论在解决实际问题中有着广泛的应用,例如在密码学、计算机科学和通信技术中起着重要的作用。
2. 整数整数是数论中最基本的概念之一。
整数是由自然数和它们的负数构成的集合。
整数可以进行加、减、乘运算,但除法需要注意被除数不能为0。
整数有以下性质:•整数可以分为正整数、负整数和0三种。
•对于任意的整数a,都存在唯一的整数-b,使得a + b = 0。
•整数具有封闭性,即两个整数相加、相减或相乘的结果仍然是一个整数。
3. 质数和合数质数是指大于1且只能被1和自身整除的整数。
例如,2、3、5、7都是质数。
合数是指除了1和自身之外,还能被其他数整除的整数。
例如,4、6、8、9都是合数。
质数和合数在解决实际问题中起着重要的作用,例如在分解因式、素数筛选等方面。
4. 因数和倍数因数是能够整除给定正整数的整数。
例如,12的因数有1、2、3、4、6和12。
倍数是给定正整数的整数倍数。
例如,5的倍数有5、10、15、20等。
最大公约数是指两个或多个整数共有的最大因数,而最小公倍数是指两个或多个整数的公共倍数中最小的一个。
5. 互质与公因数互质,又称互素,是指两个或多个整数的最大公约数为1的关系。
例如,2和3是互质的,而4和6不是互质的。
公因数是指能够同时整除多个整数的因数。
例如,6和9的公因数有1、3,而5和6没有公因数。
互质和公因数在解决问题中有着重要的应用,例如在分数化简和求解线性方程中的应用。
6. 最大公约数和最小公倍数最大公约数和最小公倍数是数论中常见的概念。
最大公约数是指两个或多个数最大的公因数。
最小公倍数是指两个或多个数的公倍数中最小的一个。
最大公约数和最小公倍数在解决实际问题中有着广泛的应用,例如在分数比较、分数化简和倍数计算中。
数论基础知识

数论基础知识数论是研究整数性质和整数运算规律的分支学科,是纯粹数学的一部分。
它是数学中最古老,最基础,最重要的学科之一,对数学发展和应用具有重要的意义。
本文将介绍数论的基础知识,包括整除性质、素数与合数、同余关系等内容。
整除性质整除是数论中的重要概念,用来描述一个整数能被另一个整数整除的关系。
如果一个整数a能够被另一个整数b整除,我们称a为b的倍数,b为a的约数。
如果一个整数a能被另一个整数b整除且除以b后余数为0,我们称a被b整除。
可以表示为a = b * c,其中c为整数。
整除的性质有以下几个重要定理:1. 任意整数a都能被1和它自身整除,即1和a是a的约数。
2. 如果a能被b整除且b能被c整除,则a能被c整除。
3. 如果a能被b整除且b能被a整除,则a与b相等或者互为相反数。
素数与合数素数是只能被1和自身整除的正整数,例如2、3、5、7、11等。
合数是除了1和自身外还有其他约数的正整数,例如4、6、8、9等。
素数和合数是数论中的两个重要概念。
素数有以下重要性质:1. 每个大于1的整数,都可以被表示为若干个素数的乘积。
2. 若一个整数n不是素数,则它一定可以被表示为两个整数的乘积。
对于一个数字n,判断其是否为素数的一种有效方法是试除法。
我们只需要从2到√n的范围内尝试将n进行整除,如果都无法整除,则n为素数。
例如判断17是否为素数,只需要从2到4的整数范围内进行试除即可。
同余关系同余是数论中研究整数之间的等价关系。
如果两个整数a和b满足除以某个正整数m后的余数相等,即(a - b)能被m整除,我们称a与b关于模m同余,记作a ≡ b (mod m)。
同余关系有以下性质:1. 若a ≡ b (mod m),则对于任意整数c,a + c ≡ b + c (mod m)。
2. 若a ≡ b (mod m),则对于任意整数c,a * c ≡ b * c (mod m)。
同余关系在密码学、编码理论等领域都有广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因此(a,b)和(b,a mod b)的公约数是一样的,其最大公约数也必然相等,得证
欧几里得算法模板
int gcd(int n,int m)
{
int t,r;
if(n<m)
{
t=n; n=m; m=t;
}
while((r=n%m)>0)
{
n=m;
m=r;
}
return m;
推论1:
对于a=ai (mod ni)的同余方程,有唯一解
下面说说由(a1, a2, ..., ak)求a的方法:
定义mi = n1*n2*...nk / ni; ci = mi(mf mod ni);其中mi*mf mod ni = 1;
则a = (a1*c1+a2*c2+...+ak*ck) (mod n) (注:由此等式可求a%n,当n很大时)
这样我们就得到了求解x1,y1的方法:x1,y1的值基于x2,y2.
上面的思想是以递归定义的,因为gcd不断的递归求解一定会有个时候b=0,所以递归可以
扩展欧几里得代码
int ext_gcd( int a, int b, int& x, int& y )
{
int t, ret;
if( b==0 )
{
//要求m[i]>0,m[i]与m[j]互质,解的范围1..n,n=m[0]*m[1]*...*m[k-1]
int modular_linear_system( int b[], int m[], int k )
{
int d, x, y, a=0, M, n=1, i;
for( i=0; i<k; i++ )
中国剩余定理关键是mf的求法,如果理解了扩展欧几里得ax+by=d,就可以想到:
mi*mf mod ni = 1 => mi*mf+ni*y=1;
代码
/求解模线性方程组(中国剩余定理)
// x ≡ b[0] (mod m[0])
// x ≡ b[1] (mod m[1])
// ...
// x ≡ b[k-1] (mod m[k-1])
bx2+(a mod b)y2=gcd(b,a mod b);
根据朴素的欧几里德原理有gcd(a,b)=gcd(b,a mod b);
则:ax1+by1=bx2+(a mod b)y2;
即:ax1+by1=bx2+(a-[a/b]*b)y2=ay2+bx2-(a/b)*by2;
根据恒等定理得:x1=y2; y1=x2-[a/b]*y2;
}
题目:HDU 1108HDU 1576
扩展负整数a,b,gcd(a,b)表示a,b的最大公约数,必然存在整
数对x,y,使得gcd(a,b)=ax+by。
求解x,y的方法的理解
设a>b。
1,显然当b=0,gcd(a,b)=a。此时x=1,y=0;
2,ab!=0时
设ax1+by1=gcd(a,b);
x = 1, y = 0;
return a;
}
ret = ext_gcd( b, a%b, x, y );
t = x, x = y, y = t-a/b*y;
return ret;
}
中国剩余定理
中国古代求解一次同余式组(见同余)的方法。是数论中一个重要定理。又称中国剩余定理。
简介
数学公式
(中国剩余定理CRT)设m1,m2,...,mk是两两互素的正整数,即gcd(mi,mj) =1,i≠j,i,j = 1,2,...,k
n *= m[i];
for( i=0; i<k; i++ )
{
M = n/m[i];
d = ext_gcd( m[i], M, x, y );
a = (a+y*M*b[i])%n;
}
return (a+n)%n;
}
•题目:HDU 3579HDU 1573
则同余方程组:
x≡b1(mod m1)
x≡b2(mod m2)
...
x≡bk(mod mk)
模[m1,m2,...,mk]有唯一解,即在[m1,m2,...,mk]的意义下,存在唯一的x,满足:
x≡bi mod [m1,m2,...,mk],i = 1,2,...,k
结论
设m1,…, mk是两两既约的正整数。那么,对任意整数a1,…, ak,一次同余方程组:
欧几里得算法
欧几里德算法又称辗转相除法,用于计算两个正整数a,b的最大公约数。其计算原理依赖于下面的定理:
定理:gcd(a,b) = gcd(b,a mod b) (a>b且a mod b不为0)
证明:a可以表示成a = kb + r,则r = a mod b
假设d是a,b的一个公约数,则有
d|a,d|b,而r = a - kb,因此d|r
的一个整数(即Mj是对模mj的逆)。
中国剩余定理(同余方程组)小结
中国余数定理:
设n=n1*n2...nk,其中因子两两互质.有: a-----(a1,a2,...,ak),其中ai = a mod ni,则a和(a1,a2,...,ak)关系是一一对应的.就是说可以由a求出(a1,a2,...,ak),也可以由(a1,a2,...,ak)求出a
x ≡ aj(mod mj),1≤j≤k (3)
必有解,且解数为1。事实上,同余方程组(3)的解是:
x ≡ M1M1-1a1 + … + MkMk-1ak(mod m),(4)
这里,m = m1…mk,m = mjMj(1≤j≤k),以及Mj-1是满足:
MjMj-1 ≡ 1(mod mj),1≤j≤k (5)