第七章傅里叶变化及其性质
傅里叶变换性质证明

傅里叶变换性质证明性质一:线性性质F[a*f(t)+b*g(t)]=a*F[f(t)]+b*F[g(t)]其中F表示傅里叶变换。
这个性质的证明非常简单,我们只需将傅里叶变换的定义代入到等式中即可。
性质二:时移性质时移性质指的是时域上的移动会导致频域上的相位变化。
设F[f(t)]表示函数f(t)的傅里叶变换,则有:F[f(t - a)] = e^(-2πiaω) * F[f(t)]其中a是常数,ω是角频率。
这个性质的证明可以通过将f(t-a)展开成泰勒级数,并代入傅里叶变换的定义进行推导得到。
性质三:频移性质频移性质指的是频域上的移动会导致时域上的相位变化。
设F[f(t)]表示函数f(t)的傅里叶变换,则有:F[e^(2πiaω0) * f(t)] = F[f(t - a)]其中a是常数,ω0是角频率。
这个性质的证明可以利用傅里叶变换的定义以及欧拉公式进行推导。
性质四:尺度变换性质尺度变换性质指的是时域上的信号缩放会导致频域上的信号压缩。
设F[f(t)]表示函数f(t)的傅里叶变换,则有:F[f(a*t)]=,a,^(-1)*F[f(t/a)]其中a是常数。
这个性质的证明可以通过将f(a*t)展开成泰勒级数,并代入傅里叶变换的定义进行推导得到。
性质五:卷积定理卷积定理是傅里叶变换中最重要的性质之一、它指出卷积在频域上等于两个函数的傅里叶变换的乘积。
设f(t)和g(t)是两个函数,f(t)*g(t)表示它们的卷积,F[f(t)]和F[g(t)]表示它们的傅里叶变换,则有:F[f(t)*g(t)]=F[f(t)]*F[g(t)]其中*表示卷积,乘法表示两个函数的傅里叶变换的乘积。
这个性质的证明可以通过将卷积展开成积分形式,然后利用傅里叶变换的定义进行推导得到。
以上是傅里叶变换的几个重要性质及其证明。
这些性质使得傅里叶变换具有很强的分析和应用能力,在信号处理、图像处理、通信等领域得到广泛应用。
这些性质的正确性和证明对于理解和应用傅里叶变换非常重要。
傅里叶变换的性质

由于 满足绝对可积条件,其傅里叶变换不含冲激函数,故
10) 频谱如图 5.4-8(d)所示。
(5.4-
(a)
(b)
(c) 图 5.4-8 三角脉冲信号及其频谱 若傅里叶变换式对 求导,可得频域微分性质:
(d) (5.4-11)
例 5.4-6 利用频域微分性质求斜变函数 解
的傅里叶变换。
根据频域微分性质,有
4 傅里叶变换的性质
傅里叶变换建立了信号的时域与频域间的一般关系。实际上, 通过数学运算求解一个信号的傅里叶变换不是最终的目的,重要的是在信号分 析的理论研究与实际设计中能够了解当信号在时域进行某种运算后在频域将 发生何种变化,或反过来从频域的运算推测时域信号的变动。如果采用傅里叶 变换的基本性质求解复杂信号变换,不仅计算过程简单,而且物理概念清楚。
一、线性 傅里叶变换的线性性质包含齐次性与可加性,若
,
则
(5.4-1)
式中 、 为任意常数。
上面的结论可以容易地由傅里叶变换的定义式证明。即傅里 叶变换是一种线性运算,相加信号的频谱等于各个信号的频谱之和。
二、对偶性 若
则
如图 5.4-1 所示,其中
,
。
图 5.4-1 对偶性说明 证明 由逆傅里叶变换公式
(5.4-8)
图 5.4-7 符号函数及其频谱 利用常数 1 和符号函数的傅里叶变换,可求得阶跃函数的变换。由于
故有
(5.4-9)
阶跃函数的傅里叶变换在 处为
,在 处为
。
例 5.4-5 利用时域微分性质求图 5.4-8(a)所示三角脉冲 信号的傅里叶变换。
解 三角脉冲信号可表示为
对 求两次导数,波形如图 5.4-8(b)和(c)所示。根据微分性质得
第七章 傅立叶变换

T 2
j nwt
j mwt *
pe
-
p 这是因为
j( n - m )
1 j( n - m ) d e j( n - m) -p 1 j( n - m )p - j( n - m )p [e -e ] j( n - m) 1 - j( n - m )p j 2 ( n - m )p e [e - 1] 0 j( n - m)
为求an, 计算[fT(t), cosnwt], 即 a
T 2 T 2
fT (t ) cos nwt d t T
-
T 2
0
2
2
cos nwt d t
am T cos mwt cos nwt d t
m 1 n
2
T 2
bm T sin mwt cos nwt d t
1复变函数与积分变换第七章傅立叶变换第七章傅立叶变换71傅立叶积分与傅立叶积分定理72傅氏变换与傅氏逆变换73单位脉冲函数75傅氏变换的性质一傅里叶fourier级数展开71傅立叶积分与傅立叶积分定理在工程计算中无论是电学还是力学经常要和随时间而变的周期函数ftt打交道
复变函数与积分变换
第七章 傅立叶变换
方波
4个正弦波的逼近
100个正弦波的逼近
研究周期函数实际上只须研究其中的一个周期 内的情况即可, 通常研究在闭区间[-T/2,T/2]内 函数变化的情况. 并非理论上的所有周期函数都 可以用傅里叶级数逼近, 而是要满足狄利克雷 (Dirichlet)条件, 即在区间[-T/2,T/2]上
信号分析与处理——傅里叶变换性质

信号分析与处理——傅里叶变换性质傅里叶变换是信号处理中常用的分析方法,通过将信号在频域上进行分解,可以获得信号的频谱信息,并对信号进行频谱分析,从而实现对信号的处理与改变。
傅里叶变换具有以下几个重要的性质,这些性质对于信号处理的理解和实际应用至关重要。
1.线性性质:傅里叶变换具有线性性质,即对于任意两个信号x(t)和y(t),以及对应的傅里叶变换X(f)和Y(f),有以下关系:a) 线性叠加:傅里叶变换对于信号的叠加是可线性的,即如果有h(t) = cx(t) + dy(t),则H(f) = cX(f) + dY(f)。
b) 变换的线性组合:如果有z(t) = ax(t) + by(t),则Z(f) =aX(f) + bY(f)。
这种线性性质为信号的分析和处理提供了很大的方便,可以通过分别对不同组成部分进行变换,再进行线性组合,得到最终的处理结果。
2. 平移性质:傅里叶变换具有平移性质,即如果一个信号x(t)的傅里叶变换为X(f),则x(t - t0)的傅里叶变换为e^(-j2πft0)X(f),其中t0为平移的时间。
这意味着信号在时域上的平移将对应于频域上的相位变化,而频域上的平移则对应于时域上的相位变化。
4.卷积定理:傅里叶变换还具有卷积定理,即信号的卷积在频域上等于信号的傅里叶变换之积。
具体来说,如果两个信号x(t)和h(t)的傅里叶变换分别为X(f)和H(f),则它们的卷积y(t)=x(t)*h(t)的傅里叶变换为Y(f)=X(f)×H(f)。
这个性质在实际的信号处理中有着重要的应用。
通过将两个信号在时域上的卷积转化为频域上的乘法操作,可以方便地进行信号处理的设计和实现。
5. Parseval定理:傅里叶变换还具有Parseval定理,即信号的能量在时域和频域上是相等的。
具体来说,如果信号x(t)的傅里叶变换为X(f),则有∫,x(t),^2dt = ∫,X(f),^2df。
这个性质意味着通过傅里叶变换可以实现信号的能量分析和功率谱估计,从而对信号的能量进行定量的测量。
傅里叶变换的基本性质和应用

傅里叶变换的基本性质和应用傅里叶变换,是20世纪初法国数学家傅里叶的发明,是将一个时间函数或空间函数的复杂波形分解成一系列简单的正弦波的工具。
它是信号处理和图像处理领域非常重要的一种数学变换,广泛应用于通信、图像、音频等领域。
一、傅里叶变换的基本概念傅里叶变换是一种将时域信号(即关于时间的函数)转换为频域信号(即关于频率的函数)的数学工具。
在时域中,信号可以表示为一个随着时间变化而变化的函数;在频域中,信号可以表示为它的频谱分布,即各个频率成分的大小。
傅里叶变换是互逆的,也就是说,将一样以频率表示的信号进过傅里叶逆变换,可以得到原始的时域信号。
傅里叶变换和傅里叶逆变换的基本公式分别如下:$$ F(\omega) = \int_{-\infty}^{\infty}f(t)e^{-i\omega t}dt $$$$ f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty}F(\omega)e^{i\omega t}d\omega $$其中,$f(t)$ 是时域信号,$F(\omega)$ 是频域信号,$\omega$ 是角频率。
傅里叶变换可以看作一种基变换,将时域信号换到频域进行分析,从而可以更好地理解信号的性质。
二、傅里叶变换的基本性质1. 线性性质傅里叶变换是线性的,即对于一个常数乘以一个时域信号进行傅里叶变换,等价于将该常数乘以该信号的傅里叶变换。
即:$$ F(cf(t)) = cF(f(t)) $$其中,$c$ 是常数。
此外,傅里叶变换具有加权叠加的特性,也就是说,将两个时域信号求和再进行傅里叶变换,等价于分别对这两个信号进行傅里叶变换后再相加。
即:$$ F(f(t) + g(t)) = F(f(t)) + F(g(t)) $$2. 时移性质傅里叶变换具有时移性质,也就是说,在时域中将一个信号向右或向左平移 $\tau$ 个单位,它的傅里叶变换相位也会相应发生$\tau$ 的变化。
复变函数与积分变换-第七章-傅里叶变换

2
1
2
2d
0 ejt d
ejt
0
ej0t
.
即ej0t 和2d 0 构成了一个傅氏变换对。
由上面两个函数的变换可得
e jt dt 2d
1
2
f ( )cos(t )d
j
f
(
) sin
(t
)d
d
因 f ( )sin(t )d 是ω的奇函数, f cos t d是 的偶函数,
定义
d
t
lim
0
d
t
0
t 0。 t 0
O
d t dt
lim 0
d t dt
lim 0
1 dt
0
1
(在极限与积分可交换意义下)
工程上将d-函数称为单位脉冲函数。
22
d -函数的筛选性质:
若f(t)为无限次可微的函数,则有
2 3
19
3.单位脉冲函数及其傅里叶积分变换
在物理和工程技术中, 常常会碰到单位脉冲函数. 因为有许多物理现象具有脉冲性质, 如在电学中, 要 研究线性电路受具有脉冲性质的电势作用后产生的电 流; 在力学中, 要研究机械系统受冲击力作用后的运 动情况等. 研究此类问题就会产生我们要介绍的单位 脉冲函数.
从 f t 1
2
f
函数的傅里叶变换和反变换的性质

函数的傅里叶变换和反变换的性质傅里叶变换和反变换是函数分析中非常重要的概念,它们在信号处理和通信领域等多个应用中都有广泛的应用。
在本文中,我们将讨论傅里叶变换和反变换的性质,以期对函数分析、信号处理以及数学等领域更深入的了解。
一、傅里叶变换的性质傅里叶变换的定义是:任何函数可以表示成以时间为自变量的正弦和余弦函数的无穷级数的形式。
也就是说,将任何函数分解成一系列的正弦和余弦函数后,我们就可以用傅里叶变换来进行函数的处理和操作。
傅里叶变换可以分为离散和连续两种形式,而它们都具有一些很重要的性质。
下面将分别介绍这些性质:1. 线性性傅里叶变换具有线性性,也就是说如果对于两个函数 f(t) 和g(t),它们的傅里叶变换分别是F(ω) 和G(ω),那么对于函数 a ×f(t) + b × g(t)(其中 a 和 b 是任意实数),它的傅里叶变换就是 a × F(ω) + b × G(ω)。
2. 卷积定理卷积定理说明了傅里叶变换中频域的卷积运算可以通过时域中的乘积运算来实现。
如果函数 f(t) 和 g(t) 的傅里叶变换分别是F(ω) 和G(ω),那么它们在时域的卷积 f(t) * g(t) 的傅里叶变换就是F(ω) × G(ω)。
3. 改变函数的时间和频率如果函数 f(t) 的傅里叶变换是F(ω),而f(t − τ) 表示 f(t) 向右平移τ 个单位,那么f(t − τ) 的傅里叶变换就是F(ω) × e^{- iωτ}。
同样的道理,如果 f(t) 的傅里叶变换是F(ω),而 f(at) 表示将 f(t) 的时间宽度缩小到原来的 a 倍,那么 f(at) 的傅里叶变换就是 (1/a) ×F(ω/a)。
二、傅里叶反变换的性质与傅里叶变换相对应的是傅里叶反变换,它可以将函数由频域转换到时域。
傅里叶反变换的定义是:如果一个函数的傅里叶变换为F(ω),那么它的傅里叶反变换就是:f(t) = (1/2π) × ∫_{-∞}^{∞} F(ω) e^{iωt} dω同样的,傅里叶反变换也有一些很重要的性质:1. 线性性傅里叶反变换与傅里叶变换一样具有线性性,也就是说,如果一个函数的傅里叶变换为F(ω),而另一个函数的傅里叶变换为G(ω),那么对于函数a × F(ω) +b × G(ω),它的傅里叶反变换就是a × f(t) + b × g(t)。
傅里叶变换的性质解析

3.微分性质
如果f(t)在(-, +)上连续或只有有限个可去
间断点, 且当|t|+时, f(t)0, 则
F [f '(t)]=jwF [f(t)].
(1.17)
• 推论
• F [f(n)(t)]=(jw)nF [f(t)].
(1.18)
5
同样, 我们还能得到象函数的导数公式, 设
F [f(t)]=F(w), 则
d
dw
F (w ) F
[- jtf (t)].
一般地, 有
dn
dw n
F (w )
(-
j) n F
[t n f (t)]
jn
dn
dwn
F (w) F
[t n f (t)]
6
4. 积分性质
如果当t 时, g(t) t f (t )d t 0 -
则
F
t -
f
(t
)d
t
1
jw F
[ f (t)].
2j
2j
则g(t) e j2t
G(w
-
2)
1
1
j(w
-
2)
g (t) e- j2t
G(w
2)
1
1
j(w
2)
F (w)
1 2j
1
1
j(w
-
2)
-
1
1
j(w
2)
15
F (w)
1 2j
1
1
j(w
-
2)
-
1
1
j(w
2)
-
j 2
1 j(w (1 jw
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例7 -1:用MATLAB符号运算求解法求单边指数信号 f (t) e-2tu(t)的傅里叶变换。
>> ft=sym('exp(-2*t)*Heaviside(t)'); >> Fw=fourier(ft)
Fw =
1/(2+i*w)
例7 - 2:用MATLAB 符号运算求解法求 F (w) 1 1 w2
0.2
-4
0
-0.5
0
0.5 -50 0 50
t
w
7.2 傅里叶变换的性质 7.1.2 尺度变换的性质
例7-5:设矩形信号f(t)=u(t+1/2)-u(t-1/2),用MATLAB 命令绘出该信号及其频谱。 当信号f(t)的时域波形扩展为原来的2倍,或压缩为原 来的1/2时,则分别得到f(t/2)和f(2t),用MATLAB命 令绘出f(t/2)和f(2t)的频谱图,并加以比较。
2 abs(1/w sin(1/2 w))
2 1 0
-20 0 20
w
2 abs(1/w sin(w))
2 1 0
Heaviside(t+1/2)-Heaviside(t-1/2)
1 0.5
0 -1 0 1
t
Heaviside(t/2+1/2)-Heaviside(t/2-1/2)
1 0.5
0 -1 0 1
t
Heaviside(2 t+1/2)-Heaviside(2 t-1/2)
1 0.5
0 -1 0 1
t
解:取w0
12 , A
4,
1 2
>> ft=sym('4*cos(2*pi*6*t)*(Heaviside(t+1/4)-Heaviside(t-1/4))');
>> FW=simplify(fourier(ft))
4 cos(2 6 t) (Heaviside(t+1/4)-Heaviside(t-1/4)) 8 abs(w sin(1/4 w)/(-w2+144 2))
>> ft1=sym('Heaviside(t+1/2)-Heaviside(t-1/2)'); >> subplot(321) >> ezplot(ft1,[-1.5 1.5]),grid on >> FW1=simplify(fourier(ft1)); >> subplot(322) >> ezplot(abs(FW1),[-10*pi 10*pi]),grid on >> axis([-10*pi 10*pi -0.2 2.2]) >> ft2=sym('Heaviside(t/2+1/2)-Heaviside(t/2-1/2)'); >> subplot(323) >> ezplot(ft2,[-1.5 1.5]),grid on >> FW2=simplify(fourier(ft2)); >> subplot(324) >> ezplot(abs(FW2),[-10*pi 10*pi]),grid on >> axis([-10*pi 10*pi -0.2 2.2]) >> ft3=sym('Heaviside(2*t+1/2)-Heaviside(2*t-1/2)'); >> subplot(325) >> ezplot(ft3,[-1.5 1.5]),grid on >> FW3=simplify(fourier(ft3)); >> subplot(326) >> ezplot(abs(FW3),[-10*pi 10*pi]),grid on >> axis([-10*pi 10*pi -0.2 2.2])
的傅里叶逆变换 f(t)。
>> syms t >> FW=sym('1/(1+w^2)'); >> ft=ifourier(Fw,t) ft = exp(-2*t)*heaviside(t)
7.1 傅里叶变换的实现 7.1.2 连续时间信号的频谱
例7 - 3:用MATLAB 命令绘出例 7 -1中 单边指数信号的幅度值 和相位值。
相位图
>> subplot(212) >> ezplot(phase);grid on >> title('相位图')
1 0 -1 -6 -4 -2 0 2 4 6
w
例7
-
4:已知调制信号f
(t)
AG
(t) cosw0t
[u(t
)
2
- u(t
-
2 )]c os w0 t ,
用MATLAB命令求其频谱。
Fourier反变换的语句格式分为三种: (1) f=ifourier(F);它是符号函数f的Fourier变换,默认返回是关于w的函数 (2) f=ifourier(F,v);它返回函数f是u的函数,而不是默认的x。 (3) f=ifourier(F,u,v);是对关于v的函数F进行变换,返回函数f是关于u的函数。
第七章 傅里叶变化及其性质
7.1 傅里叶变换的实现 7.1.1 MATLAB符号运算求解法 7.1.2 连续时间信号的频谱图 7.2 傅里叶变换的性质 7.2.1 尺度变换特性
7.1 傅里叶变换的实现 7.1.1 MATLAB符号运算求解法
Fourier变换的语句格式分为三种: (1) F=fourier(f);它是符号函数f的Fourier变换,默认返回是关于w的函数 (2) F=fourier(f,v);它返回函数F式关于符号对象v的函数,而不是默认的w。 (3) F=fourier(f,u,v);是对关于u的函数f进行变换,返回函数F是关于v的函数。
>> ft=sym('exp(-2*t)*Heaviside(t)');
幅度值
>> FW=fourier(ft);
0.4
>> subplot(211) >> ezplot(abs(FW));grid on >> title('幅度值')
0.2
-6 -4 -2 0 2 4 6
w
>> phase=atan(imag(FW)/real(FW/4*w)/(-w^2+144*pi^2)
2
0.8
>> subplot(121)
0.6
>> ezplot(ft,[-0.5 0.5]),grid on
0
0.4
>> subplot(122)
-2
>> ezplot(abs(FW),[-24*pi 24*pi]),grid on