金属加工刀具的基本知识

合集下载

金属切削加工的基本知识

金属切削加工的基本知识
(2)进给速度vf和进给量f
进给速度vf是单位时间内刀具对工件沿进给方
向的相对位移,单位是mm/s或mm/min。
进给量f是工件或刀具每回转一周时两者沿进
给运动方向的相对位移,单位是mm/r。
二者关系:
vf=f×n
切 削 用 量 三 要 素
(3)背吃刀量 工件上已加工表面和待加工表面间的垂直距 离,单位为mm。 外圆柱表面车削的深度可用下式计算: ap=(dw-dm)/2 mm 对于钻孔工作 ap=dm/2 mm 上两式中 dm——已加工表面直径(mm) dw—— 待加工表面直径(mm)
(3)金刚石
是目前人工制造出的最硬的物质,分天然和人造两种。
特点:
耐磨性好,可用于加工硬质合金、陶瓷、高硅铝合金及耐磨塑料等高硬度、
高耐磨的材料;
其热稳定性差, 强度低、脆性大、对振动敏感,只宜微量切削; 与铁有极强的化学亲合力,不适于加工黑金属。
(4)立方氮化硼
由软的立方氮化硼在高温高压下加入催化剂转变而成。
切 削 层 横 截 面 要 素
由切削刃正在切削的这一层金属叫作切削层。切削层的 截面尺寸称为切削层参数。它决定了刀具切削部分所承受的 负荷和切屑尺寸的大小,通常在基面Pr内度量。 1. 切削厚度 ac (λs= 0)
ac= f sinκr
2. 切削宽度 aw
aw= ap/sinκr
3. 切削层面积 Ac ( κr = 0)
特点:Leabharlann 有很高的硬度及耐磨性; 热稳定性好,可用来加工高温合金; 化学惰性大,可用与加工淬硬钢及冷硬铸铁; 有良好的导热性、较低的摩擦系数。
第二节 金属切削过程中的基本规律
一、切削变形
1.变形区的划分

金属切削刀具常用的5个切削角度

金属切削刀具常用的5个切削角度

金属切削刀具是制造业中常用的工具,正确的切削角度对切削质量有着重要的影响。

在金属加工过程中,常用的五个切削角度包括:刀尖倒角角度、主偏角、副偏角、前角和后角。

一、刀尖倒角角度刀尖倒角角度是指刀具前端倒角的角度,它的大小会影响切削的刀尖强度和耐磨性。

一般来说,刀尖倒角角度越小,刀尖强度越高,耐磨性也越好。

常见的刀尖倒角角度为15度至45度不等,选用合适的刀尖倒角角度能够减小切屑厚度、改进切削刚度和提高刀具寿命。

二、主偏角主偏角又称前角,是指切削刃与工件表面的夹角。

主偏角的大小直接影响着刀具的切削力和切屑的形态。

通常情况下,主偏角越小,切削力越小,切削刚度越大。

然而,主偏角过小也容易导致刀具容易断裂和刀尖易磨损。

在实际加工中需要根据不同的工件材料和加工条件来选择合适的主偏角。

三、副偏角副偏角又称侧倾角,是指刀具刃部与切削面的夹角。

副偏角的大小影响着切屑的流动和刀具的耐磨性。

一般情况下,副偏角越小,切屑流动越顺畅,切屑的形态也更好。

但过小的副偏角容易导致刀具刃部的磨损加剧。

在选择副偏角时需要兼顾切屑形态和刀具的耐磨性。

四、前角前角是刀具刃部与工件表面接触时形成的角度,它的大小直接影响着切削时的切削力和切屑的形态。

一般情况下,前角越大,切削力越小,切屑流动也更加顺畅。

然而,过大的前角容易导致刀具刃部的磨损加快。

在实际加工中需要根据工件材料和加工条件来选择合适的前角。

五、后角后角是刀具刃部背面与工件表面形成的角度,它的大小影响着刀具刃部的强度和切削力。

一般情况下,后角越大,刀具刃部强度越高,切削力也相对较小。

然而,过大的后角会导致刃部切削过程中的摩擦增大,从而影响切削质量。

在选择后角时需要根据实际情况进行合理的选择。

总结:金属切削刀具的切削角度对切削质量和刀具寿命有着重要的影响。

正确选择刀尖倒角角度、主偏角、副偏角、前角和后角,可以有效地改善切削过程中的刀具性能,提高加工质量,降低成本,增加经济效益。

在实际加工中,需要根据具体的工件材料和加工条件来合理选择切削角度,以达到最佳的加工效果。

第十七章 金属切削加工基础知识

第十七章 金属切削加工基础知识

图17-17 刀具磨损的三个阶段
• 第五节
工件材料的切削加工性
• 一、 衡量工件材料切削加工性的指标 • 由于切削加工性是对材料多方面的综合评价,所以很难用一个简单的 物理量来精确规定和测量。在生产和实验中,常取某一项指标来反映 材料切削加工性的某一具体方面,最常用的是vT和Kr。 • vT——指在一定的切削条件下,当刀具的寿命为T分钟时,切削某种材 料所允许的最大的切削速度。vT越高,表示材料的切削加工性越好。 通常取T=60min,则vT可写作v60。 • Kr——称为相对加工性,一般以正火状态45钢的v60为基准,写作 (v60),然后将其它各种材料的v60与之相比所得的比值。当Kr>1时, 表示该材料比45钢容易切削。反之,则比45钢难切削。常用工件材料 的相对加工性可分为八级,见表17-2。
• 五、切削热与切削温度 • 1.切削热的来源: • ⑴是正在加工和已加工表面所发生的弹性和塑性变形而产生的大量的热, 是切削热的主要来源; • ⑵是切屑与刀具前刀面之间的摩擦产生的热; • ⑶是工件与刀具后刀面之间的摩擦产生的热。切削时所消耗的功约有98% -99%转换为切削热。 • 2.切削温度 • 切削温度过高,会使刀头软化,磨损加剧,寿命下降;工件和刀具受热膨 胀,会导致工件精度超差影响加工精度,特别是在加工细长轴、薄壁套时, 更应注意热变形的影响。 ⑴ • 在生产实践中,为了有效地降低切削温度,常应用切削液,切削液能带走 大量的热,对降低切削温度的效果显著,同时还能起到润滑、清洗和防锈的 作用。常见的切削液有: • ⑴切削油 主要是各种矿物油、动植物油和加入油性、极压添加剂的混 合油。其润滑性能好,但冷却性能较差,主要用来减少磨损和降低工件的表 面粗糙度,一般用于低速精加工,如铣削加工和齿轮加工等。 • ⑵水溶液 主要成分是水并加入防锈剂、表面活性剂或油性添加剂。其 热导率高、流动性好,主要起冷却作用,同时还具有防锈、清洗等作用。 • ⑶乳化液 由乳化油加水稀释而成,呈乳白色或半透明状,有良好的流 动性和冷却作用,是应用最广泛的切削液。低浓度的乳化液用于粗车、磨削。 高浓度乳化液用于精车、钻孔和铣削等。在乳化液中加入硫、磷等有机化合 物,可提高润滑性。适用于螺纹、齿轮等精加工。

《金属切削原理与刀具》知识点总结

《金属切削原理与刀具》知识点总结

I 切削原理部分第1章刀具几何角度及切削要素1、切削加工必备三个条件:刀具与工件之间要有相对运动;刀具具有适当的几何参数,即切削角度;刀具材料具有一定的切削性能2、切削运动:刀具与工件间的相对运动,即表面成形运动。

分为主运动和进给运动。

1)主运动是刀具与工件之间最主要的相对运动,消耗功率最大,速度最高。

有且仅有一个。

运动形式:旋转运动(车削、镗削的主轴运动)直线运动(刨削、拉削的刀具运动)运动主体:工件(车削);刀具(铣削)。

2)进给运动:使新切削层不断投入切削,使切削工作得以继续下去的运动。

进给运动的速度一般较低,功率也较少。

其数量可以是一个,也可以是多个。

可以是连续进行的,也可以是断续进行的。

可以是工件完成的,也可以是刀具完成的。

运动形式:连续运动:如车削;间歇运动:如刨削。

一个运动,如钻削;多个运动,如车削时的纵向与横向进给运动;没有进给运动,如拉削。

运动主体:工件,如铣削、磨削;刀具,如车削、钻削。

3、切削用量切削用量是指切削速度c v 、进给量f (或进给速度)和背吃刀量p a 。

三者又称为切削用量三要素。

1)切削速度c v (m/s 或m/min):切削刃选定点相对于工件的主运动速度称为切削速度。

主运动为旋转运动时,切削速度由下式确定1000dn v c π=式中:d-工件或刀具的最大直(mm)n-工件或刀具的转速(r/s 或r/min)2)进给量f:工件或刀具转一周(或每往复一次),两者在进给运动方向上的相对位移量称为进给量,其单位是mm/r(或mm/双行程)。

3)背吃刀量p a (切削深度mm)2m w p d d a -=式中:w d -工件上待加工表面直径(mm);m d -工件上已加工表面直径(mm)。

4、工件表面:切削过程中,工件上有三个不断变化的表面待加工表面:工件上即将被切除的表面。

过渡表面:正被切削的表面。

下一切削行程将被切除。

己加工表面:切削后形成的新表面。

5、刀具上承担切削工作的部分称为刀具的削部分,刀具切削部分由一尖二刃三面组成。

加工刀片知识点归纳总结

加工刀片知识点归纳总结

加工刀片知识点归纳总结一、刀片材料1.高速钢刀片:高速钢刀片是一种用途广泛的工具钢,具有良好的耐磨性和热硬性。

适用于一般的加工工艺,例如车削、铣削、切削、钻削等。

2.硬质合金刀片:硬质合金刀片由金属钨和碳化钴等合金粉末通过粉末冶金工艺制成。

硬质合金刀片具有极高的硬度和耐磨性,适用于高速切削、重切削和精密切削等高难度加工。

3.陶瓷刀片:陶瓷刀片由氧化锆、氧化铝、碳化硅等陶瓷材料制成,具有超高硬度和优异的耐磨性,适用于高速、高温、高硬度材料的切削加工。

4.金刚石刀片:金刚石刀片具有极高的硬度和热导性,适用于加工硬脆材料,如石英、玻璃、陶瓷等。

5.立铁镍基刀片:立铁镍基刀片由立铁和镍基合金制成,具有出色的耐高温性和耐腐蚀性,适用于加工高温合金、高硬度耐热合金等材料。

6.多晶金刚石刀片:多晶金刚石刀片具有高硬度、高导热性和耐磨性,适用于高速加工铝、铜、塑料等材料。

二、刀片几何形状1.刀片角度:刀片的切削角度对于切削作用影响非常大,一般包括前角、后角、刃后角、主偏角、副偏角等。

2.刀片形状:刀片的形状影响着切削表面的质量和加工效率,主要包括平面刀片、圆弧刀片、斜面刀片、倒角刀片等。

3.刀片刃形:刀片的刃形决定了切屑的形态和加工结果,一般包括主刃、侧刃、前角、后角等。

4.刀片刃尖:刀片的刃尖质量和形状对于切削作用非常重要,在切削过程中直接接触工件,直接影响加工表面的质量。

5.刀片刃长:刀片的刃长影响着切削的稳定性和切削力的分布,一般包括刃长、刃宽、刃厚等参数。

三、刀片的热处理1.淬火:通过加热至临界温度后迅速冷却,使刀片的结构发生相变并获得高硬度。

2.回火:通过加热至一定温度后冷却,调整刀片的组织结构,提高韧性和耐磨性。

3.脱碳:在高温条件下,使刀片表面碳元素被氧化剥离,降低表面硬度和增加表面韧性。

4.氮化:在刀片表面渗氮处理,提高刀片的硬度和耐磨性。

5.表面涂层:在刀片表面涂覆涂层,用于降低刀片摩擦、提高耐磨性和延长刀片使用寿命。

金属切削原理与刀具的基本概述

金属切削原理与刀具的基本概述

金属切削原理与刀具的基本概述金属切削是通过切削工具对金属材料进行切削,以实现加工目标的一种常见的金属加工方法。

切削工具是实现切削过程的关键元素,它的设计和选择对于切削加工质量和效率具有重要影响。

本文将概述金属切削原理以及刀具的基本概念,以帮助读者深入了解金属切削的基本原理和刀具的工作原理。

金属切削原理涉及刀具与金属工件之间的物理力学相互作用。

切削过程中,切削刃与工件接触,施加切削力并逐渐移除金属屑来实现切削。

切削力主要有切向力、法向力和主切削力组成。

切向力是切削力在切削方向上的分力,它决定了切削刃与工件之间的相对运动。

法向力是切削力在垂直于切削方向上的分力,它将工件稳定固定在工作台上。

主切削力是切削力在切削方向上的主要分力,它直接影响切削刃的切削能力和工件的表面质量。

刀具的选择和设计对于切削过程的效率和质量有重要影响。

常见的刀具类型包括立铣刀、车刀、钻头和铰刀等。

刀具的形状、材料和刃口几何形状都对刀具的切削能力和寿命产生影响。

刀具的材料通常选择硬度高、耐磨损和高温稳定性好的材料。

常见的刀具材料包括高速钢、硬质合金和陶瓷材料。

高速钢具有较高的硬度和耐磨性能,适用于一般的切削工作。

硬质合金刀具由金属碳化物颗粒与钴合金基体组成,具有更高的硬度和热稳定性,适用于高速切削和难切削材料的加工。

陶瓷刀具具有优异的耐磨性和高温稳定性,适用于高速、高温的切削工作。

刀具的刃口几何形状对切削过程的效率和质量具有重要影响。

常见的刃口几何形状包括平行刀刃、斜切刀刃和弧形刀刃等。

刃口的选择应根据加工类型、材料和表面质量要求进行合理选择。

此外,切削参数的选择也是确保切削过程顺利进行的关键因素。

切削参数包括切削速度、进给速度和切削深度等。

切削速度决定了刀具与工件之间的相对运动速度,进给速度则决定了切削刃每分钟移除的金属量,切削深度是切削刃切入工件的深度。

在切削过程中,润滑和冷却也是必不可少的。

刀具和工件之间的摩擦和热量会导致刀具磨损和工件热变形。

金加工基础知识

金加工基础知识

(2)形状精度 是指零件加工后的表面与理想表面在形状上相接近的 程度 常用的有直线度、平面度、圆度、圆柱度、线轮廓 度和面轮廓度等。
(3)位置精度 是指零件加工后的表面、轴线或对称平面之间的实 际位置与理想位置接近的程度。
常用的有平行度、垂直度、同轴度、对称度等。
形状和位置公差特征项目的名称及符号
六、金属切削过程
金属切削过程是指工件上一层多余的金属被刀具切除 的过程和已加工表面的形成的过程。 在这个过程中始终存在着刀具与工件(金属材料)之间 切削和抗切削的矛盾,并产生一系列重要现象。如形成 切屑、切削力、切削热与切削温度及刀具的磨损等。
1、切屑的形成过程 金属切削的特点是被切金属层在刀具的挤压、摩擦作 用下产生变形以后转变为切屑和形成已加工表面。 剪切滑移变形, 切削:与挤压情况类似 加工硬化、 。弹性变形→剪切应力增 形成切屑 大,达到屈服点→产生塑 性变形,沿OM线滑移→剪 切应力与滑移量继续增大 ,达到断裂强度→切屑与 母体脱离。
常见的切削运动
4、切削用量
切削用量是用来表示 切削加工中主运动和进 给运动参数的数量。 切削用量包括: 切削速度 进给量 背吃刀量三个要素。
(1)切削速度:在切削加工时,切削刃选定点相对 于工件主运动的瞬时速度称为切削速度,它表示在单 位时间内工件和刀具沿主运动方向相对移动的距离, 单位为m/min或m/s。
3)、铣刀
五、刀具材料
1、刀具材料应当具备的性能 较高的硬度和耐磨性 常温硬度应在HRC60以上。耐磨性是硬度、组织及化 学性能等的综合反映 足够的强度和韧度 为了承受切削力、冲击和振动,刀具材料应具有足 够的强度和韧性。
较高的耐热性 高温硬度、强度、耐磨性,抗氧化性、抗扩散粘结 性等,是衡量刀具材料综合切削性能的主要指标。 良好的工艺性和经济性 为了便于刀具制造,包括锻、轧、焊接、切削加工、

第一讲车刀基本知识

第一讲车刀基本知识

耐磨性和热稳定性很高,抗冲击抗震 适于合金钢、高强度钢、钛合金、超高强度钢的精密加工和一般精密加工,
动性中等,韧性较好
在加工过程中,冲击较小时也适于粗加工
刀具在阀门加工中的应用
牌号
型号
使用性能
YG3
A118A
1.硬度较高,耐磨性强,切削速度较高; 2.抗冲击抗震性差
YG8
A118A/A118/C120/A32 0
1.强度较高; 2.抗冲击力抗震性能强; 3.切削速度较低; 4.通用性强
加工阀门适用范围
阀门体、盖、压盖、阀瓣的半精加工 1.体平头、中口、挖体、盖面、压盖、挖瓣槽; 2.优先选用 1.平堆焊铜面刀具,优先选用; 2.也可加工YG3刀具加工件,但效率低
1.制作扩孔刀,里眼刀; 2.CZ45盖孔刀具,BZ45锥扣前扩孔刀具,平铜刀具
谢谢!
4、焊接式车刀刀杆截面形状和尺寸选择 焊接式车刀刀杆常采用中碳钢制造。刀杆截面形状主
要有矩形、正方形和圆形三种,外形尺寸主要是高度、宽 度和长度,已标准化。外圆车刀、切槽刀、切断刀等一般 选用矩形刀杆,截面尺寸按机床中心高选择,可参见表114。亦可按切削层面积选取,可参见表11-5。
硬质合金焊接刀片的选择
焊接车刀的硬质合金刀片形状和 尺寸有统一的标准规格,根据冶 金工业部标准YB850-75,我国 硬质合金焊接刀片的型号分A、 B、C、D、E、F六种,每种又 分若干组,每组有尺寸系列。刀 片型号的表示方法是一个字母加 三位数字,第一位数字表示组别, 它和字母合起来表示刀片的形状。 后两位数ቤተ መጻሕፍቲ ባይዱ表示刀片的主要尺寸, 主要尺寸相同而其他尺寸不同时, 在数字后面加A、B、C等,以示 区别。如为左切刀片,则在型号 末尾标以“Z”。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金属加工刀具的基本知识
刀具是机械制造中用于切削加工的工具,又称切削工具。

广义的切削工具既包括刀具,还包括磨具。

绝大多数的刀具是机用的,但也有手用的。

由于机械制造中使用的刀具基本上都用于切削金属材料,所以“刀具”一词一般就理解为金属切削刀具。

切削木材用的刀具则称为木工刀具。

刀具的发展在人类进步的历史上占有重要的地位。

中国早在公元前28~前20世纪,就已出现黄铜锥和紫铜的锥、钻、刀等铜质刀具。

战国后期(公元前三世纪),由于掌握了渗碳技术,制成了铜质刀具。

当时的钻头和锯,与现代的扁钻和锯已有些相似之处。

然而,刀具的快速发展是在18世纪后期,伴随蒸汽机等机器的发展而来的。

1783年,法国的勒内首先制出铣刀。

1792年,英国的莫兹利制出丝锥和板牙。

有关麻花钻的发明最早的文献记载是在1822年,但直到1864年才作为商品生产。

那时的刀具是用整体高碳工具钢制造的,许用的切削速度约为5米/分。

1868年,英国的穆舍特制成含钨的合金工具钢。

1898年,美国的泰勒和.怀特发明高速钢。

1923年,德国的施勒特尔发明硬质合金。

在采用合金工具钢时,刀具的切削速度提高到约8米/分,采用高速钢时,又提高两倍以上,到采用硬质合金时,又比用高速钢提高两倍以上,切削加工出的工 砻嬷柿亢统叽缇 纫泊蟠筇岣摺?
由于高速钢和硬质合金的价格比较昂贵,刀具出现焊接和机械夹固式结构。

1949~1950年间,美国开始在车刀上采用可转位刀片,不久即应用在铣刀和其他刀具上。

1938年,德国德古萨公司取得关于陶瓷刀具的专利。

1972年,美国通用电气公司生产了聚晶人造金刚石和聚晶立方氮化硼刀片。

这些非金属刀具材料可使刀具以更高的速度切削。

1969年,瑞典山特维克钢厂取得用化学气相沉积法,生产碳化钛涂层硬质合金刀片的专利。

1972年,美国的邦沙和拉古兰发展了物理气相沉积法,在硬质合金或高速钢刀具表面涂覆碳化钛或氮化钛硬质层。

表面涂层方法把基体材料的高强度和韧性,与表层的高硬度和耐磨性结合起来,从而使这种复合材料具有更好的切削性能。

刀具按工件加工表面的形式可分为五类。

加工各种外表面的刀具,包括车刀、刨刀、铣刀、外表面拉刀和锉刀等;孔加工刀具,包括钻头、扩孔钻、镗刀、铰刀和内表面拉刀等;螺纹加工工具,包括丝锥、板牙、自动开合螺纹切头、螺纹车刀和螺纹铣刀等;齿轮加工刀具,包括滚刀、插齿刀、剃齿刀、锥齿轮加工刀具等;切断刀具,包括镶齿圆锯片、带锯、弓锯、切断车刀和锯片铣刀等等。

此外,还有组合刀具。

按切削运动方式和相应的刀刃形状,刀具又可分为三类。

通用刀具,如车刀、刨刀、铣刀(不包括成形的车刀、成形刨刀和成形铣刀)、镗刀、钻头、扩孔钻、铰刀和锯等;成形刀具,这类刀具的刀刃具有与被加工工件断面相同或接近相同的形状,如成形车刀、成形刨刀、成形铣刀、拉刀、圆锥铰刀和各种螺纹加工刀具等;展成刀具是用展成法加工齿轮的齿面或类似的工件,如滚刀、插齿刀、剃齿刀、锥齿轮刨刀和锥齿轮铣刀盘等。

各种刀具的结构都由装夹部分和工作部分组成。

整体结构刀具的装夹部分和工作部分都做在刀体上;镶齿结构刀具的工作部分(刀齿或刀片)则镶装在刀体上。

刀具的装夹部分有带孔和带柄两类。

带孔刀具依*内孔套装在机床的主轴或心轴上,借助轴向键或端面键传递扭转力矩,如圆柱形铣刀、套式面铣刀等。

带柄的刀具通常有矩形柄、圆柱柄和圆锥柄三种。

车刀、刨刀等一般为矩形柄;圆锥柄*锥度承受轴向推力,并借助摩擦力传递扭矩;圆柱柄一般适用于较小的麻花钻、立铣刀等刀具,切削时借助夹紧时所产生的摩擦力传递扭转力矩。

很多带柄的刀具的柄部用低合金钢制成,而工作部分则用高速钢把两部分对焊而成。

刀具的工作部分就是产生和处理切屑的部分,包括刀刃、使切屑断碎或卷拢的结构、排屑或容储切屑的空间、切削液的通道等结构要素。

有的刀具的工作部分就是切削部分,如车刀、刨刀、镗刀和铣刀等;有的刀具的工作部分则包含切削部分和校准部分,如钻头、扩孔钻、铰刀、内表面拉刀和丝锥等。

切削部分的作用是用刀刃切除切屑,校准部分的作用是修光已切削的加工表面和引导刀具。

刀具工作部分的结构有整体式、焊接式和机械夹固式三种。

整体结构是在刀体上做出切削刃;焊接结构是把刀片钎焊到钢的刀体上;机械夹固结构又有两种,一种是把刀片夹固在刀体上,另一种是把钎焊好的刀头夹固在刀体上。

硬质合金刀具一般制成焊接结构或机械夹固结构;瓷刀具都采用机械夹固结构。

刀具切削部分的几何参数对切削效率的高低和加工质量的好坏有很大影响。

增大前角,可减小前刀面挤压切削层时的塑性变形,减小切屑流经前面的摩擦阻力,从而减小切削力和切削热。

但增大前角,同时会降低切削刃的强度,减小刀头的散热体积。

在选择刀具的角度时,需要考虑多种因素的影响,如工件材料、刀具材料、加工性质(粗、精加工)等,必须根据具体情况合理选择。

通常讲的刀具角度,是指制造和测量用的标注角度在实际工作时,由于刀具的安装位置不同和切削运动方向的改变,实际工作的角度和标注的角度有所不同,但通常相差很小。

制造刀具的材料必须具有很高的高温硬度和耐磨性,必要的抗弯强度、冲击韧性和化学惰性,良好的工艺性(切削加工、锻造和热处理等),并不易变形。

通常当材料硬度高时,耐磨性也高;抗弯强度高时,冲击韧性也高。

但材料硬度越高,其抗弯强度和冲击韧性就越低。

高速钢因具有很高的抗弯强度和冲击韧性,以及良好的可加工性,现代仍是应用最广的刀具材料,其次是硬质合金。

聚晶立方氮化硼适用于切削高硬度淬硬钢和硬铸铁等;聚晶金刚石适用于切削不含铁的金属,及合金、塑料和玻璃钢等;碳素工具钢和合金工具钢现在只用作锉刀、板牙和丝锥等工具。

硬质合金可转位刀片现在都已用化学气相沉积法涂覆碳化钛、氮化钛、氧化铝硬层或复合硬层。

正在发展的物理气相沉积法不仅可用于硬质合金刀具,也可用于高速钢刀具,如钻头、滚刀、丝锥和铣刀等。

硬质涂层作为阻碍化学扩散和热传导的障壁,使刀具在切削时的磨损速度减慢,涂层刀片的寿命与不涂层的相比大约提高1~3倍以上。

由于在高温、高压、高速下,和在腐蚀性流体介质中工作的零件,其应用的难加工材料越来越多,切削加工的自动化水平和对加工精度的要求越来越高。

为了适应这种情况,刀具的发展方向将是发展和应用新的刀具材料;进一步发展刀具的气相沉积涂层技术,在高韧性高强度的基体上沉积更高硬度的涂层,更好地
解决刀具材料硬度与强度间的矛盾;进一步发展可转位刀具的结构;提高刀具的制造精度,减小产品质量的差别,并使刀具的使用实现最佳化。

相关文档
最新文档