最新人教版七年级下册数学导学案

合集下载

七年级数学下册6.1平方根导学案1新版新人教版2

七年级数学下册6.1平方根导学案1新版新人教版2

平方根学习目标:1、了解平方根的概念,会用根号表示数的平方根2、了解开方与乘方互为逆运算3、会用平方求百以内整数的平方根学习重点:平方根的概念学习难点 :会求平方根;学习过程:一、情境导入填空:(1)3的平方等于9,那么9的算术平方根就是________;(2)25的平方等于425,那么425的算术平方根就是________;(3)展厅的地面为正方形,其面积49平方米,则边长为________米.还有平方等于9,425,49的其他数吗?二、合作探究探究点一:平方根的概念及性质1、一般地, 如果一个数x的平方等于a,即,那么这个数x就叫做a的,记为,读作。

例如和是9的平方根,也就是说是9的平方根。

2、求一个数a的的运算,叫做开平方;与开平方互为逆运算;例:求出下列各数的平方根:(1)100;(2)916;(3)0.25;(4)0; (5)11; (6) 93、根据上面的计算,思考回答:(1)正数有几个平方根?他们有什么关系?(2)0 的平方根是多少?(3)负数有平方根吗?三、归纳:【类型一】求一个数的平方根求下列各数的平方根:(1)12425;(2)0.0001;(3)(-4)2;(4)10-6;(5)81.【类型二】利用平方根的性质求值一个正数的两个平方根分别是2a+1和a-4,求这个数.探究点二:开平方及相关运算求下列各式中x的值:(1)x2=361; (2)81x2-49=0;(3)49(x2+1)=50; (4)(3x-1)2=(-5)2.三,归纳1.平方根的概念:若x2=a,则x叫a的平方根,x=± a.2.平方根的性质:正数有两个平方根,且它们互为相反数;0的平方根是0;负数没有平方根.3.开平方及相关运算:求一个数a的平方根的运算叫做开平方,其中a叫做被开方数.开平方与平方互为逆运算.四:当堂检测必做题1.如果x的平方等于a,那么x就是a的,所以a的平方根是2.非负数a的平方根表示为3.因为没有什么数的平方会等于,所以负数没有平方根,因此被开方数一定是或者4.16即的平方根是5.9的算术平方根是() A.-3 B.3 C.±3 D.816. 64的平方根是() A.±8 B.±4 C.±2 D.±27. 4的平方的倒数的算术平方根是() A.4 B.18C.-14D.14选做题8.求下列各数的平方根.(1)100; (2)0; (3)925; (4)1; (5)11549; (6)0.099.1681的平方根是_______;9的平方根是_______.10.一个自然数的算术平方根是x ,则它后面一个数的算术平方根是( )A .x+1B .x 2+1C .x +1D .21x11.若2m-4与3m-1是同一个数的平方根,则m 的值是( )A .-3B .1C .-3或1D .-112.利用平方根来解下列方程.(1)225x = (2)2810x -= (3)2449x =(4)225360x -= (5)(2x-1)2-169=0; (6) 4(3x+1)2-1=0;13、已知︱a -2︱+3-b =0,求()a b a -的平方根.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.不等式﹣2x+6>0的正整数解有( )A .无数个B .0个C .1个D .2个 【答案】D【解析】不等式的解集是x<3,故不等式−2x+6>0的正整数解为1,2.故选D.2.若a >b ,则下列不等式正确的是( )A .2a <2bB .ac >bcC .-a+1>-b+1D .3a +1>3b +1 【答案】D【解析】根据不等式的性质,逐项判断即可.【详解】解:∵a >b ,∴2a >2b ,∴选项A 不符合题意;∵a >b ,c <0时,ac <bc ,∴选项B 不符合题意;∵a >b ,∴-a <-b ,∴-a+1<-b+1,∴选项C 不符合题意;∵a >b , ∴3a >3b , ∴3a +1>3b +1, ∴选项D 符合题意.故选:D .【点睛】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.3.已知a 、b 均为实数,a <b ,那么下列不等式一定成立的是( )A .3﹣|a|>3﹣|b|B .a 2<b 2C .a 3+1<b 3+1D .22a b -<- 【答案】C【解析】利用特例对A 、B 、D 进行判断;利用不等式的性质和立方的性质得到a 3<b 3,然后根据不等式的性质对C 进行判断.【详解】∵a <b ,∴当a =﹣1,b =1,则3﹣|a|=3﹣|b|,a 2=b 2,1122a b ->-, ∴a 3<b 3,∴a 3+1<b 3+1.故选:C .【点睛】本题考查了不等式的性质:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.4.已知a b <,则下列不等式一定成立的是( )A .220a b -<B .55a b -<-C .44a b +>+D .1122a b > 【答案】A【解析】根据不等式的性质逐一进行判断即可得.【详解】A. a b <,则2a<2b ,则220a b -<,故A 选项正确;B. a b <,则55a b ->-,故B 选项错误;C. a b <,则44a b +<+,故C 选项错误;D. a b <,则1122a b <,故D 选项错误, 故选A.【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变. 5.下列四个数中,与最接近的整数是( ) A .4B .5C .6D .7【答案】B【解析】直接得出1<<6,进而得出最接近的整数.【详解】∵1<<6,且1.012=21.1021,∴与无理数最接近的整数是:1.故选B.【点睛】此题主要考查了估算无理数的大小,正确估算出的取值范围是解题关键.6.若等腰三角形的腰上的高与另一腰上的夹角为56,则该等腰三角形的顶角的度数为()A.56B.34C.34或146D.56或34【答案】C【解析】分析:本题要分情况讨论.当等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角两种情况.详解:①当为锐角三角形时,如图1,∵∠ABD=56°,BD⊥AC,∴∠A=90°-56°=34°,∴三角形的顶角为34°;②当为钝角三角形时,如图2,∵∠ABD=56°,BD⊥AC,∴∠BAD=90°-56°=34°,∵∠BAD+∠BAC=180°,∴∠BAC=146°∴三角形的顶角为146°,故选:C .点睛:本题主要考查了等腰三角形的性质及三角形内角和定理,做题时,考虑问题要全面,必要的时候可以做出模型帮助解答,进行分类讨论是正确解答本题的关键,难度适中.7.若222A x x y =++,243B y x =-+-,则A 、B 的大小关系为( )A .A >B B .A <BC .A =BD .无法确定【答案】A【解析】根据比较大小的原则,求出A-B 与零的大小,即可比较A 和B 的大小.【详解】根据222A x x y =++,243B y x =-+-,所以可得A-B=2222(43)x x y y x ++--+-222243x x y y x =+++-+=22223x y y x ++-+=2221211x x y y -+++++=22(1)(1)10x y -+++>所以可得A>B故选A.【点睛】本题主要考查比较大小的方法,关键在于凑出完全平方式,利用完全平方大于等于零的性质.8.下列说法正确的个数是( ).①连接两点的线中,垂线段最短;②两条直线相交,有且只有一个交点;③若两条直线有两个公共点,则这两条直线重合;④若AB+BC=AC ,则A 、B 、C 三点共线.A .1B .2C .3D .4【答案】C【解析】线段的基本性质是:所有连接两点的线中,线段最短.故①错误;②任意两个点可以通过一条直线连接,所以,两条直线相交,有且只有一个交点,故②正确;③任意两个点可以通过一条直线连接,若两条直线有两个公共点,则这两条直线重合;故③正确; ④根据两点间的距离知,故④正确;综上所述,以上说法正确的是②③④共3个.故选C.9.下列命题中是假命题的是( )A .两直线平行,同旁内角互补B .同旁内角互补,两直线平行C .若//a b ,a c ⊥,那么b c ⊥D .如果两个角互补,那么这两个角一个是锐角,一个是钝角【答案】D【解析】根据平行线的性质可判断A 、C ;根据平行线的判定方法可判断B ;根据补角的定义可判断D.【详解】A. 两直线平行,同旁内角互补,是真命题;B. 同旁内角互补,两直线平行,是真命题;C. 若//a b ,a c ⊥,那么b c ⊥,是真命题;D. 如果两个角互补,那么这两个角可以都是直角,故是假命题;故选D.【点睛】此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.如图是5×5的正方形网络,以点D ,E 为两个顶点作位置不同的格点三角形,使所作的格点三角形与△ABC 全等,这样的格点三角形最多可以画出( )A .2个B .4个C .6个D .8个【答案】B 【解析】试题分析:观察图形可知:DE 与AC 是对应边,B 点的对应点在DE 上方两个,在DE 下方两个共有4个满足要求的点,也就有四个全等三角形.根据题意,运用SSS 可得与△ABC 全等的三角形有4个,线段DE 的上方有两个点,下方也有两个点. 故选B .考点:本题考查三角形全等的判定方法点评:解答本题的关键是按照顺序分析,要做到不重不漏.二、填空题题11.310-=_____________(结果保留根号). 【答案】103-【解析】因为10>3,所以3−10是负数,根据负数的绝对值等于它的相反数,可解答.【详解】解:310-=103-,故答案为:103-.【点睛】本题考查了绝对值,正数的绝对值等于它本身;负数的绝对值等于它的相反数;1的绝对值等于1. 12.如图,等腰直角三角板的顶点A ,C 分别在直线a ,b 上,若a ∥b ,∠1=35°,则∠2的度数为________。

人教版数学七年级下册导学案:(二元一次方程组)实际问题与二元一次方程组(导学案)

人教版数学七年级下册导学案:(二元一次方程组)实际问题与二元一次方程组(导学案)

实际问题与二元一次方程组第1课时实际问题与二元一次方程组(1)——探究1一、导学1.导入课题:前面我们结合实际问题,讨论了用方程组表示问题中的等量关系以及如何解方程组.本节课我们继续探究如何用二元一次方程组解决实际问题.2.学习目标:(1)会运用二元一次方程组解决一些实际生活中的应用问题,体会数学建模思想.(2)能根据题目中的已知量与未知量的联系正确设出未知数,列出方程组并求解.3.学习重、难点:重点:探究用二元一次方程组解决实际问题的过程.难点:寻找等量关系,并列出方程组,由方程组的解解释实际问题.4.自学指导:(1)自学内容:课本P99探究1.(2)自学时间:8分钟.(3)自学要求:同学们可以先独立分析问题中的数量关系,列出方程组,得出问题的解答,然后再互相交流.(4)探究提纲:①题目中哪些是已知量,哪些是未知量?有几个等量关系?②要检验饲养员李大叔的估计正确与否,就要求出每头大牛每天所需饲料和每头小牛每天所需饲料.③如果设每头大牛和每头小牛1天各约用饲料xkg和ykg,根据你发现的等量关系,可列方程组3015675 4220940.x yx y+=⎧⎨+=⎩④能列一元一次方程解这个问题吗?⑤请你解③中方程组,并交流一下你是如何解的.⑥饲养员李大叔的估计正确吗? 二、自学同学们可结合探究提纲相互研讨学习. 三、助学 1.师助生:(1)明了学情:教师深入课堂,了解学生的学习进度和自学中存在的问题.①能否找出等量关系,列出方程和方程组.②能否正确解出方程组. (2)差异指导:对少数学有困难和学法不当的学生进行点拨引导. 2.生助生:小组内学生相互提出学习疑点,相互帮助. 四、强化1.列方程组解应用题的基本思路和要注意的问题;列方程组解应用题的一般步骤.2.练习:某校七年级学生在会议室开会,每排坐12人,则有11人无座位;每排坐14人,则最后一排只有1人独坐.这间会议室共有座位多少排?该校七年级有多少学生?解:设这间会议室共有座位x 排,该校七年级有y 名学生,根据题意,得12111413.x y x y +=⎧⎨-=⎩,解得12155.x y =⎧⎨=⎩,答:这间会议室共有座位12排,该校七年级有155名学生. 五、评价1.学生学习的自我评价:各小组代表介绍本组学习收获和存在的问题.2.教师对学生的评价:(1)表现性评价:对学生在学习中的态度、方法和收效进行点评. (2)纸笔评价:课堂评价检测. 3.教师的自我评价(教学反思):本节课的重点是让学生经历和体验用方程组解决实际问题的过程,抓住实际问题的等量关系建立方程组模型.教学难点是利用相等关系将实际问题转化为数学问题.教学中,采取了让学生通过独立思考、自主探索、合作交流等方式,在思考、交流等数学活动中,养成严谨的思维方式和良好的学习习惯.(时间:12分钟 满分:100分)一、基础巩固(60分)1.(20分)现用190张铁皮做盒子,每张铁皮8个盒身或22个盒底,而一个盒身与两个盒底配成一个盒子.设用x 张铁皮做盒身,y 张铁皮做盒底,则可列方程组为(A )2.(20分)解下列方程组:解:(1)①+②,得4y=11. (2)整理,得解得114y =.89173 2.x y x y +=⎧⎨-=-⎩,①② 把114y =代入①, ①+②×3,得11x=11. 得11354x -=. 解得x=1.解得3112x =.把x=1代入②,得1-3y=-2. ∴这个方程组的解为解得y=1.311211.4x y ⎧⎪=⎨⎪=⎪⎪⎩, ∴这个方程组的解为11.x y =⎧⎨=⎩,3.(20分)一支部队第一天行军4h ,第二天行军5h ,两天共行军98km ,且第一天比第二天少走2km ,第一天和第二天行军的平均速度各是多少?解:设第一天行军的平均速度为xkm/h,第二天行军的平均速度为ykm/h.由题意,得4598 425x yx y+=⎧⎨+=⎩,,①②①+②,得8x=96,解得x=12,把x=12代入①,得48+5y=98. 解得y=10.∴这个方程组的解为1210. xy=⎧⎨=⎩,答:第一天行军的平均速度为12km/h,第二天行军的平均速度为10km/h.二、综合运用(20分)4.有大小两种货车,2辆大车与3辆小车一次可以运货15.5吨,5辆大车与6辆小车一次可以运货35吨.求3辆大车与5辆小车一次可以运货多少吨?解:设大车一次可以运货x吨,小车一次可以运货y吨.由题意,得2315.5 5635.x yx y+=⎧⎨+=⎩,①②②-①×2,得x=4.把x=4代入①,得4×2+3y=15.5.解得y=2.5.∴3x+5y=3×4+5×2.5=24.5.答:3辆大车与5辆小车一次可以运货24.5吨.三、拓展延伸(20分)5.某家商店的帐目记录显示,某天卖出39支牙刷和21盒牙膏,收入396元;另一天,以同样的价格卖出同样的52支牙刷和28盒牙膏,收入518元.这个记录是否有误?如果有误,请说明理由.解:有误,理由:设一支牙刷的价格为x元,一盒牙膏的价格为y元.由题意,得39213965228518x yx y+=⎧⎨+=⎩,,即137132137129.5.x yx y+=⎧⎨+=⎩,方程组无解.∴这个记录有误.实际问题与二元一次方程组第2课时实际问题与二元一次方程组(2)——探究2一、导学1.导入课题:上节课我们学习了运用方程组解决一些实际问题,这节课我们继续学习建立二元一次方程组的数学模型解应用题.2.学习目标:(1)在对各类应用题的解答过程中,学会构建二元一次方程组的数学模型.(2)养成自觉反思求解过程和自觉检验方程的解是否正确的良好习惯.3.学习重点、难点:运用二元一次方程组解决有关设计的应用题.4.自学指导:(1)自学内容:课本P99探究2.(2)自学时间:10分钟.(3)自学要求:画出示意图,借助图形直观地分析理解题意.(4)探究提纲:①这里研究的实际上是长方形的面积的分割问题,你能画出示意图来帮助自己理解吗?②把一个长方形分成两个小长方形,有哪些分割方式?若保持宽不变,把长分成两段(即竖向分割,如上图所示),左边种植甲种作物,右边种植乙种作物,设AE=xm,BE=ym.(a)根据原长方形的长为200m,可列出方程:x+y=200.(b)因为长方形宽为100m,所以两小长方形面积分别为100xm2,100ym2,又因为甲、乙两种作物的单位面积产量比为1∶2,所以甲、乙两种作物的总产量比可表示为100x∶200y,于是再由甲、乙两种作物的总产量比为3∶4,列出方程:100x∶200y=3∶4.③你能求出由②中(a)、(b)的方程联立组成的方程组的解吗?④根据求出的结果应如何表述你的种植方案?⑤你还能设计其他种植方案吗(如右图)?二、自学同学们结合探究提纲相互研讨学习.三、助学1.师助生:(1)明了学情:教师深入课堂,了解学生的自学进度和自学中存在的问题.①能否顺利表示出甲、乙两种作物的总产量的比.②能否求出方程组的解并规范作答.(2)差异指导:对少数学有困难和学法不当的学生进行点拨引导.2.生助生:小组内学生之间相互交流、研讨、互帮互学.四、强化1.列二元一次方程组解应用题的一般步骤.2.展示设计出的其他种植方案,并相互交流.五、评价1.学生的自我评价:各小组代表介绍本组的学习得与失.2.教师对学生的评价:(1)表现性评价:对学生在学习中的态度、方法和收效进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课用二元一次方程组解决问题的教学过程充分体现了以学生为主体,让学生积极参与的教学模式,充分发挥了学生的主动意识.在解决问题过程中学生的各种解题方法,扩大了学生的思维能力,通过让学生体验解题的技巧,从而树立了学生学习的信心,激发了学生学习的积极性,让学生真正成为课堂的主人.(时间:12分钟满分:100分)一、基础巩固(60分)1.(20分)如图,AB⊥BC,∠ABD的度数比∠DBC的度数的2倍少15°,设∠ABD与∠DBC的度数分别为x°、y°。

新人教版七年级数学(下册)导学案及参考答案

新人教版七年级数学(下册)导学案及参考答案

新人教版七‎年级数学(下册)第九章导学‎案第九章不等式与不‎等式组课题 9.1.1不等式及‎其解集【学习目标】了解不等式‎的解、解集的概念‎,会在数轴上‎表示出不等‎式的解集.【学习重点】不等式的解‎集的概念及‎在数轴上表‎示不等式的‎解集的方法‎。

【学习难点】不等式的解‎集的概念。

【导学指导】一、知识链接1、什么叫等式‎?2、什么叫方程‎?什么叫方程‎的解?3.问题1:一辆匀速行‎驶的汽车在‎11:20时距离‎A地50千‎米。

(1)要在12:00时刚好‎驶过A地,车速应为多‎少?(2)要在12:00以前驶‎过A地,车速应该具‎备什么条件‎?若设车速为‎每小时x千‎米,能用一个式‎子表示吗?二、自主探究阅读课本1‎14-115页,回答下面的‎问题1.不等式:_____‎_____‎_____‎_____‎_____‎_____‎_____‎__2.不等式的解‎:_____‎_____‎_____‎_____‎_____‎_____‎_____‎_____‎___3.思考:判断下列数‎中哪些是不‎等式5032x的解:76,73,79,80,74.9,75.1,90,60你能找出这‎个不等式其‎他的解吗?它到底有多‎少个解?你从中发现‎了什么规律‎?4.不等式的解‎集:_____‎_____‎_____‎_____‎_____‎_____‎_____‎__5.解不等式:_____‎_____‎_____‎_____‎_____‎_____‎_____‎__6、不等式的解‎集在数轴上‎的表示:(1)x>1 (2) x<3;【课堂练习】:1.课本115‎页练习1、2、32.下列式子中‎哪些是不等‎式?(1)a +b=b +a (2)-3>-5 (3)x ≠1 (4)x+3>6 (5)2m <n (6)2x -33.下列式子中‎:①-5<0 ②2x=3 ③3x-1>2 ④ 4x-2y ≤0 ⑤ x 2-3x+2>0 ⑥x-2y 其中属于不‎等式的是_‎_____‎_____‎_,属于一元一‎次不等式的‎是____‎_____‎_(填序号) 【要点归纳】:【拓展训练】:1、绝对值小于‎3的非负整‎数有( )A .1、2B .0、1C .0、1、2D .0、1、32、下列选项中‎,正确的是( ) A . 不是负数,则 B . 是大于0的‎数,则C .不小于-1,则D .是负数,则3、用数轴表示‎不等式x<34的解集正确‎的是( )ABCD4.在数轴上表‎示下列不等‎式的解集:(1)x>2; (2) x<4; (3)-2<x<3【课堂小结】:课题 9.1.2 不等式的性‎质 (1)【学习目标】掌握不等式‎的性质;会根据“不等式性质‎”解简单的一‎元一次不等‎式,并能在数轴‎上表示其解‎集;【学习重点】 理解并掌握‎不等式的性‎质并运用它‎正确地解一‎元一次不等‎式。

新人教版七年级数学下册)第八章导学案及参考答案

新人教版七年级数学下册)第八章导学案及参考答案

新人教版七年级数学(下册)第八章导学案及参考答案第八章二元一次方程组课题:8.1二元一次方程组【学习目标】:弄懂二元一次方程、二元一次方程组和它的解的含义,并会检验一对数是不是某个二元一次方程组的解;【学习重点】:二元一次方程、二元一次方程组及其解的意义.【学习难点】:弄懂二元一次方程组解的含义.【导学指导】一、温故知新1.含有()个未知数,且未知数的次数为()的方程叫一元一次方程。

方程中“元”是指()“次”是指()2.使一元一次方程()的未知数的值叫一元一次方程的解。

3.写出一个—元一次方程(),并指出它的解是()。

二、自主学习:阅读课本93-94页回答下列问题1.含有()个未知数,且未知数的次数为()的方程叫二元一次方程。

方程中“元”是指()“次”是指()2.使二元一次方程()的未知数的值叫二元一次方程的解。

3.写出一个二元一次方程(),并指出它的解是()。

4.把两个方程合在一起,写成x+y=222x+y=40像这样,把两个二元一次方程合在一起,就组成了一个()5. ( )叫二一次方程组的解。

【课堂练习】1.课本95页1 ;22、x +y =2的正整数解是__________3.若13x y =-⎧⎨=-⎩是方程3x-ay=3的一个解,那么a 的值是__________。

4.下列各式中是二元一次方程是( )(A) 6x-y=7; (B) x 2 =3x+y ; (C)y=5;(D) x 1y=35. 下列不是二元一次方程组的是( )A .141y x x y ⎧+=⎪⎨⎪-=⎩B .43624x y x y +=⎧⎨+=⎩C .44x y x y +=⎧⎨-=⎩D .35251025x y x y +=⎧⎨+=⎩6.方程组327413x y x y +=⎧⎨-=⎩的解是( ) A .13x y =-⎧⎨=⎩ B .31x y =⎧⎨=-⎩ C .31x y =-⎧⎨=-⎩ D .13x y =-⎧⎨=-⎩【要点归纳】本节课你有哪些收获?【拓展训练】1. 349x y +=中,如果2y = 6,那么x = 。

人教版七年级数学下册第八章二元一次方程组导学案

人教版七年级数学下册第八章二元一次方程组导学案

课题:8.1二元一次方程组【学习目标】 1、使学生了解二元一次方程的概念,能把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式,能举例说明二元一次方程及其中的已知数和未知数;2、使学生理解二元一次方程组和它的解等概念,会检验一对数值是不是某个二元一次方程组的解。

【学习重点】1、二元一次方程(组)的含义;2、用一个未知数表示另一个未知数。

【学习难点】检验一对数是否是某个二元一次方程(组)的解; 【自主学习】1.我们来看一个问题:篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分。

某队为了争取较好名次想在全部22场比赛中得到40分,那么这个队胜负场数应分别是多少?以上问题包含了哪些必须同时满足的条件?设胜的场数是x ,负的场数是y ,你能用方程把这些条件表示出来吗?______场数+______场数=总场数; ______积分+______积分=总积分, 你能用方程表示这两个条件?【合作探究】1、观察:什么叫做一元一次方程?这两个方程是不是一元一次方程?它们有什么特点?与一元一次方程有什么不同?归纳:①定义:___________________________________________________叫做二元一次方程②二元一次方程的一般形式:ax + by + c = 0 (其中a ≠0、b ≠0 且a 、b 、c 为常数) 注意:1. 二元一次方程的左边和右边都应是整式。

2.要判断一个方程是不是二元一次方程,一般先要把它化成二元一次方程的一般形式,再根据定义判断。

③定义:__________________________________________________叫做二元一次方程组 【及时反馈】 1. 已知x 、y 都是未知数,判别下列方程组是否为二元一次方程组?并说明理由。

①⎩⎨⎧=+=+75243y x y x ②⎩⎨⎧=+=32y x xy ③⎩⎨⎧+==+z y y x 75 ④⎩⎨⎧=+=823155y x y 2、把3(x+5)=5(y-1)+3化成ax+by=c 的形式为_____________。

七年级数学下册全册导学案(新版人教版)

七年级数学下册全册导学案(新版人教版)

七年级数学下册全册导学案(新版人教版)本资料为woRD文档,请点击下载地址下载全文下载地址:统计调查(二)【学习目标】了解总体、个体、样本及样本容的概念以及抽样调查的意义,明确在什么情况下采用抽样调查或全面调查,进一步熟悉对数据的收集、整理、描述和分析.【学习重点】对概念的理解及对数据收集整理【学习难点】总体概念的理解和随机抽样的合理性一、【自主学习】、学前准备:自学课本153—155页,写出你的困惑:二、【合作探究】如果要对某校XX名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,怎样进行调查?.抽样调查的意义在上述问题中,由于学生人数比较多,全面调查花费的时间长,消耗的人力、物力大,因此需要寻求既省时又省力又能解决问题的方法,这就是抽样调查抽样调查:抽取一部分对象进行调查的方法,叫抽样调查.2.总体、个体、样本、样本容量的意义总体:所要考察对象的全体.个体:总体的每一个考察对象叫个体.样本:抽取的部分个体叫做一个样本.样本容量:样本中个体的数目.3.抽样的注意事项:①抽样调查要具有广泛性和代表性,即样本容量要恰当.样本容量过少,那么不能很好地反映总体的情况,比如要调查XX名学生对电视节目的喜爱情况,若抽取的样本容量为几名学生就不能反映XX名学生的喜爱情况;如果抽取的学生人数过多,必然花费大量的时间、精力,达不到省时省力的目的.再如要调查60岁以上的老人的生病情况,在医院去抽取一些60岁以上的住院病人,它又不具有代表性,则应从60岁以上的老人册中任意抽取部分老人的生病情况来反映总体的60岁老人的生病情况,才能达到目的.②抽取的样本要有随机性.为了使样本能较好地反映总体的情况,除了有合适的样本容量外,抽取时还要尽量使每一个个体都有相等的机会被抽到,所谓随机就是机会相等.例如在XX名学生的注册学号中,随意抽取100个学号,调查这些学号对应的100名学生.当然还可以在上学或放学时,在学校门口随机进行调查;或则每隔10个人调查一个,直到调查满确定的样本容量.总体说来抽样调查最大的优点就是在抽样过程中避免了人为的干扰和偏差,因此随机抽样是最科学、应用最广泛的抽样方法,一般情况下,样本容量越大,估计精确度就越高.4.抽样调查100名学生最喜爱节目情况如下:节目类型划记人数百分比A新闻8B体育20c动画30D娱乐36E戏曲6合计00请你填充上表,并指出最好选择什么统计图来描述较好.三【达标测试】(A)、1、调查夏季市场销售的凉鞋质量情况适合采用_______________调查.2、了解一个班级学生的数学成绩是否有提高适合采用___________调查.3、数据处理的一般过程是_______________________________________.4、抽查我校一月份5天的用电量,结果如下:(单位:度)120,160,150,140,150,根据以上数据估计我校1月份用电总量为__________度.5、庆元宵校园歌手大奖赛,8位评委给6号选手的评分如下:9.8,9.9,9.5,9.7,9.4,9.7,9.6,9.6在去掉一个最高分和一个最低分后,6号选手最后平均分是__________________________.(B)、1、下列调查方式中,合适的是()A.要了解约90万顶救灾帐蓬的质量,采用普查的方式B.要了解外地游客对旅游景点“x疆民街”的满意程度,采用抽样调查的方式c.要保证“神舟七号”飞船成功发射,对主要零部件的检查采用抽样调查的方式D.要了解全疆初中学生的业余爱好,采用普查的方式2、为了了解某校七年级500名学生的身高情况,从中抽取了100名学生进行测量,这100名学生的身高是()A总体的一个样本B个体c总体D样本容量(即样本中个体的数量)4、下列适合抽样调查而不适合全面调查的是()A了解一批灯泡的使用寿命B了解截止XX年底中国的总人口C了解全市中学生电脑打字速度D了解全市七年级数学期末考试成绩5、甲、乙、丙三种糖果的售价分别为每千克6元、7元、8元.若将甲种糖果8千克,乙种糖果10千克,丙种糖果3千克混合,则售价应定为每千克()元,才能与三种糖果分开卖时卖一样多的钱(保留一位小数)A6.7B6.8c7.5D8.66、下列调查中,样本最具有代表性的是()A在重点中学调查全市高一学生的数学水平。

人教版七年级数学下册 第五章 5.1.2 垂线 导学案

人教版七年级数学下册 第五章 5.1.2 垂线  导学案

5.1相交线5.1.2垂线第1课时垂线一、新课导入1.导入课题:观察周围的景物:墙与地面、桌腿与地面、公路两边的电线杆与地面的位置关系都给我们垂直的印象,导出课题——垂线.2.学习目标:(1)能说出垂线、垂线段的意义、会用三角尺或量角器过一点画已知直线的垂线.(2)记住垂线的性质并会利用所学知识进行简单的推理.3.学习重、难点:重点:正确理解垂线、垂线段的概念.难点:能利用垂线的性质进行简单的推理.二、分层学习1.自学指导:(1)自学内容:课本P3至P4“探究”之前的内容.(2)自学时间:5分钟.(3)自学要求:认真阅读教材,对重、难点内容做好标记.不清楚,不懂的地方可以小组讨论.(4)自学参考提纲:①垂线的定义:结合相交线模型和图5.1-4体会当∠α=90°时,a和b互相垂直,这说明:当两条直线相交成的四个角中,有一个角是90°时,就说这两条直线是互相垂直的,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.②垂线的定义推理过程(如图1):因为AB⊥CD(已知),所以∠AOC=∠AOD=∠BOC=∠BOD=90°(垂直定义).反之因为∠AOC=90°(已知),所以AB⊥CD(垂直定义).③如图2,直线a ⊥b,∠1 = 35°,则∠2 =55°.④当两条直线相交所成的四个角相等时,这两条直线有什么位置关系?为什么?互相垂直.2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师在学生自学时巡视课堂,关注学生的学习进度和学习中存在的问题.②差异指导:对在自学中遇到疑难或认识有偏差的学生进行点拨引导.(2)生助生:学生通过小组交流探讨各自遇到的问题.4.强化:(1)垂线、垂线段的概念.(2)举例说明生活中的垂直现象.1.自学指导:(1)自学内容:课本P5练习之前的内容.(2)自学时间:3分钟.(3)自学要求:根据探究提纲动手操作画图;在动手过程中互助交流作图方法.(4)探究提纲:①如图,用三角尺或量角器画已知直线l的垂线,这样的垂线能画几条?小组内交流,明确直线l的垂线有无数条,即垂线存在,但位置有不确定性.②如图1,在直线l上取一点A,过点A画直线l的垂线,能画几条?如图2,经过直线l外一点B画直线l的垂线,这样的垂线能画几条?③从②中你能得出什么结论?在同一平面内,过一点有且只有一条直线与已知直线垂直.2.自学:学生可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生是否会列表,是否理解表中的数据的意义以及画图中存在的问题.②差异指导:根据学情分类指导.(2)生助生:同桌之间、小组内交流、研讨.4.强化:(1)用三角尺过已知点画已知直线的垂线的方法:①一边靠线;②移动找点;③画垂线.(2)垂线的存在性和唯一性:在同一平面上,过一点有且只有一条直线与已知直线垂直.(3)练习:画一条线段或射线的垂线,就是画它们所在直线的垂线,如图,请你过点P画出射线AB或线段AB的垂线.三、评价1.学生学习的自我评价:各小组长谈学习收获和存在的困惑.2.教师对学生的评价:(1)表现性评价:对学生在学习中表现出的态度、情感、方法和成效进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):在这堂课中,学生的主体地位突出了,真正亲历了知识形成的全过程.在自主学习、同桌合作交流的活动中升华了对知识的理解.教学实践也证明,在自由探索与合作交流的学习方式中,学生认识活动的强度和力度要比单纯接受知识大得多.在本节课实施中的每一个学习活动,都以学生个性思维、自我感悟为前提多次设计了让学生自主探索、合作交流的时间与空间.通过学生和谐有效地互动,强化了学生的自主学习意识.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)如图所示,若AB⊥CD于点O,则∠AOD=90°;若∠BOD=90°,则AB⊥CD.2.(10分)如图所示,已知AO⊥BC于点O,那么∠1与∠2的关系是∠1+∠2=90°.第1题图第2题图第3题图第4题图3.(10分)如图,OA⊥OB,OC是一条射线,若∠AOC=120°,则∠BOC=30°.4.(10分)如图所示,直线AB⊥CD于点O,直线EF经过点O,若∠1=26°,则∠2的度数是(B)A.26°B.64°C.54°D.以上答案都不对5.(15分)如图,直线AB、CD相交于点O,EO⊥AB,垂足为O,∠EOC =35°,求∠AOD和∠BOD的度数.解:因为EO⊥AB,所以∠EOB=∠EOA=90°,所以∠COB=∠COE+∠EOB=125°.又因为∠AOD=∠BOC(对顶角相等),所以∠AOD=125°.因为∠AOC=∠AOE-∠COE=55°,所以∠BOD=∠AOC=55°(对顶角相等).二、综合应用(20分)6.如图,AB⊥l,BC⊥l,B为垂足,那么A、B、C三点在同一直线上吗?为什么?解:A、B、C三点在同一直线上.∵AB⊥l,BC⊥l.且交点都为B.∴A、B、C三点在同一直线上(在同一平面内,过一点有且只有一条直线与已知直线垂直).三、拓展延伸(20分)7.如图,直线AB,CD相交于O点,OM⊥AB于O.(1)若∠1=∠2,求∠NOD;(2)若∠BOC=4∠1,求∠AOC与∠MOD.解:(1)因为OM⊥AB,所以∠1+∠AOC=90°.又∠1=∠2,所以∠2+∠AOC=90°,所以∠NOD=180°-(∠2+∠AOC)=180°-90°=90°.(2)由已知条件∠BOC=4∠1,即90°+∠1=4∠1,可得∠1=30°,所以∠AOC=90°-30°=60°,所以由对顶角相等可得∠BOD=60°,所以∠MOD=90°+∠BOD=150°.5.1.2垂线第2课时垂线段一、新课导入1.导入课题:如图所示,在铁路旁边有一个村庄A,现要建一个火车站,为了使此村庄的人乘火车最方便(即距离最近),应怎样选择火车站的位置呢?学完这节课,相信你就会明白!2.学习目标:(1)能说出垂线段的意义和点到直线的距离的含义.(2)记住垂线段的性质,并能利用它进行简单的推理.3.学习重、难点:重点:正确理解垂线段的概念和点到直线的距离.难点:利用垂线段的性质进行简单的推理.4.自学指导(1)自学内容:课本P5的练习以下的内容.(2)自学时间:5分钟.(3)自学要求:认真阅读教材,联系生活实际体会并测量.(4)自学参考提纲:①什么叫垂线段?②在课本P5“探究”中,先通过目测估计最短的线段是PO,再通过度量或叠合法比较验证你的结论.③由②可得到:连接直线外一点与直线上各点的所有线段中,垂线段最短.简称:垂线段最短.④点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.如右图,PO的长度叫做点P到直线l的距离.PO、PA、PB、PC中最短的线段是PO.⑤在课本P5“思考”图中画出水渠开挖的路线,若图中比例尺为1∶100000,水渠大约要挖多长?二、自学同学们可结合自学指导进行自学.三、助学1.师助生:(1)明了学情:教师参与到学生自学过程中,了解学生的认知情况.(2)差异指导:对个别学习有困难和认识有偏差的学生进行点拨和指导.2.生助生:小组内相互交流、探讨.四、强化1.垂线段最短.2.点到直线的距离.3.练习:如右图,三角形ABC中,∠C=90°.(1)分别指出点A到直线BC,点B到直线AC的距离是哪些线段?ACBC (2)三条边AB、AC、BC中哪条边最长?为什么?AB五、评价1.学生学习的自我评价:各学习小组长谈本组学习方式和收效及存在的困惑.2.教师对学生的评价:(1)表现性评价:对学生在学习中的态度、方法、成效以及存在的不足进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):在这堂课中,我们从学生熟悉的生活实例入手,探讨了有关垂线段的意义和点到直线的距离问题,让学生真正经历了知识形成的全过程.同时课堂强调了学生的动手操作,让学生经历大胆猜测,合作交流等学习过程,为后面的学习打下坚实的基础.(时间:12分钟满分:100分)一、基础巩固(60分)1.(10分)体育课上,老师测量跳远成绩的依据是(C)A.垂直的定义B.两点之间,线段最短C.垂线段最短D.两点确定一条直线2.(10分)点到直线的距离是指(D)A.直线外一点到这条直线上一点之间的距离B.直线外或直线上一点到直线的垂线段的长度C.直线外一点到这条直线的垂线的长度D.直线外一点到这条直线的垂线段的长度3.(10分)P是直线AB外一点,过点P作PO⊥AB,垂足为O,若C为直线AB上任意一点,则线段PC与线段PO的大小关系是(C)A.PC>POB.PC<POC.PC≥POD.PC≤PO4.(10分)如图,三角形ABC中,∠C=90°,AC=3,点P是BC边上一动点,则AP的长不可能是(B)A.3B.2.8C.3.5D.45.(20分)如图所示,直线AB,CD相交于点O,P是CD上一点.(1)过点P画AB的垂线段PE;(2)过点P画直线CD的垂线,与AB相交于F点;(3)线段PE,PO,PF三者中最短的是PE,依据是垂线段最短.二、综合应用(20分)6.一辆汽车在直线形的公路AB上由A向B行驶,C、D是分别位于公路AB两侧的加油站.(1)设汽车行驶到公路AB上点M的位置时,距离加油站C最近;行驶到点N的位置时,距离加油站D最近,请在图中分别画出点M、N的位置;(2)当汽车从A出发向B行驶时,在公路AB的哪一段路上距离C、D两加油站都越来越近?在哪一段路上距离加油站D越来越近,而离加油站C却越来越远?解:(1)如图.(2)在公路AB的AM段距离C、D两加油站都越来越近,在MN段距离加油站D越来越近,而加油站C却越来越远.三、拓展延伸(20分)7.如图,平原上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备修建一个蓄水池.(1)不考虑其他因素,请你画图确定蓄水池H点的位置,使它到四个村庄距离之和最小;(2)计划把河水引入蓄水池H中,怎样开渠最短并说明根据.解:(1)∵两点之间线段最短,∴连接AD,BC交于H,则H为蓄水池位置,它到四个村庄距离之和最小.(2)过H作HG⊥EF,垂足为G.“过直线外一点与直线各点的连线中,垂线段最短”是把河水引入蓄水池H 中开渠最短的根据.。

最新人教版七年级下册数学导学案

最新人教版七年级下册数学导学案

人教版第五章相交线与平行线导学案5.1.1 相交线导学案【学习目标】1、了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角。

2、理解对顶角相等,并能运用它解决一些问题.【学习重点】邻补角、对顶角的概念,对顶角性质与应用.【学习难点】理解对顶角相等的性质.【学习过程】一、学前准备各小组对七年级上学过的直线、射线、线段、角做总结.每人写一个总结小报告,并编写两道与它们相关的题目,在小组交流,并推出小组最好的两道题在班级汇报.二、探索思考探索一:完成课本P2页的探究,填在课本上.你能归纳出“邻补角”的定义吗?.“对顶角”的定义:.练习一:1.如图1所示,直线AB和CD相交于点O,OE是一条射线.(1)写出∠AOC的邻补角:____ _ ___ __;(2)写出∠COE的邻补角: __;(3)写出∠BOC的邻补角:____ _ ___ __;(4)写出∠BOD的对顶角:____ _.2.如图所示,∠1与∠2是对顶角的是()探索二:任意画一对对顶角,量一量,算一算,它们相等吗?如果相等,请说明理由.请归纳“对顶角的质”:.练习二:1.如图,直线a,b相交,∠1=40°,则∠2=_______∠3=_______∠4=_______ 2.如图直线AB、CD、EF相交于点O,∠BOE的对顶角是______,∠COF 的邻补角是____,若∠AOE=30°,那么∠BOE=_______,∠BOF=_______ 3.如图,直线AB、CD相交于点O,∠COE=90°,∠AOC=30°,∠FOB=90°,则∠EOF=_____.三、当堂反馈1.若两个角互为邻补角,则它们的角平分线所夹的角为度.2.如图所示,直线a,b,c两两相交,∠1=60°,∠2=23∠4,•求∠3、∠5的度数.3.如图所示,有一个破损的扇形零件,•利用图中的量角器可以量出这个扇形零件的圆心角的度数,你能说出所量的角是多少度吗?你的根据是什么?4.探索规律:(1)两条直线交于一点,有对对顶角;(2)三条直线交于一点,有对对顶角;(3)四条直线交于一点,有对对顶角;(4)n条直线交于一点,有对对顶角.四、学习反思本节课你有哪些收获?图1ba4321第1题FEODCBA第2题FEODCBA第3题5.1.2 垂线 导学案【学习目标】1了解垂线、点到直线的距离的意义,理解垂线和垂线段的性质;2会用三角板过一点画已知直线的垂线,并会度量点到直线的距离.【学习重点】垂线的意义、性质和画法,垂线段性质及其简单应用. 【学习难点】垂线的画法以及对点到直线的距离的概念的理解. 【学习过程】一、学前准备在学习对顶角知识的时候,我们认识了“两线四角”,及两条直线相交于一点,得到四个角,这四个角里面,有两对对顶角,它们分别对应相等,如图,可以说成“直线AB 与CD 相交于点O ”.我们如果把直线CD 绕点O 旋转,无论是按照顺时针方向转,还是按照逆时针方向转,∠BOD 的大小都将发生变化.当两条直线相交所成的四个角中有一个为直角时,叫做这两条直线互相垂直,其中的一条直线叫垂线,它们的交点叫垂足.如图用几何语言表示:方式⑴∵ ∠AOC=90° ∴ AB_____CD ,垂足是_____方式⑵∵ AB ⊥CD 于O ∴ ∠AOC=______ 二、探索思考探索一:请你认真画一画,看看有什么收获.⑴如图1,利用三角尺或量角器画已知直线l 的垂线,这样的垂线能画__________条;⑵如图2,经过直线l 上一点A 画l 的垂线,这样的垂线能画_____条; ⑶如图3,经过直线l 外一点B 画l 的垂线,这样的垂线能画_____条;(图1) (图2) (图3a )(图3b )经过探索,我们可以发现:在同一平面内,过一点有且只有_____条直线与已知直线垂直. 练习一:1.如图所示,OA ⊥OB ,OC 是一条射线,若∠AOC=120°,求∠BOC 度数第1题图 第2题图 2.如图所示,直线AB ⊥CD 于点O ,直线EF 经过点O ,若∠1=26°,求∠2的度数. 3.如图所示,直线AB ,CD 相交于点O ,P 是CD 上一点. (1)过点P 画AB 的垂线PE ,垂足为E .(2)过点P 画CD 的垂线,与AB 相交于F 点. (3)比较线段PE ,PF ,PO 三者的大小关系探索二:仔细观察测量比较上题中点P 分别到直线AB 上三点E 、F 、O 的距离,你还有什么收获?请将你的收获记录下来:_______________________________________________简单说成: .还有,直线外一点到这条直线的垂线段的 叫做点到直线的距离.注意:垂线是 ,垂线段是一条 ,点到直线的距离是一个数量,不能说“垂线段”是距离. 练习二:1.在下列语句中,正确的是( ).A .在同一平面内,一条直线只有一条垂线B .在同一平面内,过直线上一点的直线只有一条C .在同一平面内,过直线上一点且垂直于这条直线的直线有且只有一条D .在同一平面内,垂线段就是点到直线的距离 2.如图所示,AC ⊥BC ,CD ⊥AB 于D ,AC=5cm ,BC=12cm ,AB=13cm ,则点B 到AC 的距离是________,点A 到BC 的距离是_______,点C 到AB•的距离是_______,•AC>CD•的依据是_________. 三、当堂反馈1.如图所示AB ,CD 相交于点O ,EO ⊥AB 于O ,FO ⊥CD 于O ,∠EOD 与∠FOB 的大小关系是( )A .∠EOD 比∠FOB 大 B .∠EOD 比∠FOB 小C .∠EOD 与∠FOB 相等 D .∠EOD 与∠FOB 大小关系不确定2.如图,一辆汽车在直线形的公路AB 上由A 向B 行驶,C ,D 是分别位于公路AB 两侧的加油站.设汽车行驶到公路AB 上点M 的位置时,距离加油站C 最近;行驶到点N 的位置时,距离加油站D 最近,请在图中的公路上分别画出点M ,N 的位置并说明理由.OD CBAC D A BO l l A lB lB3.如图,AOB为直线,∠AOD:∠DOB=3:1,OD平分∠COB.(1)求∠AOC的度数;(2)判断AB与OC的位置关系.四、学习反思:本节课你有哪些收获?5.1.3 同位角、内错角、同旁内角导学案【学习目标】1使学生理解三线八角的意义,并能从复杂图形中识别它们;2通过三线八角的特点的分析,培养学生抽象概括问题的能力.【学习重点】三线八角的意义,以及如何在各种变式的图形中找出这三类角.【学习难点】能准确在各种变式的图形中找出这三类角.【学习过程】一、学前准备在前面我们学习了两条直线相交于一点,得到四个角,即“两线四角”,这四个角里面,有对对顶角,有对邻补角.如果是一条直线分别与两条直线相交,结果又会怎样呢?二、探索思考探索:如图,直线c分别与直线a、b相交(也可以说两条直线a、b被第三条直线c所截),得到8个角,通常称为“三线八角”,那么这8个角之间有哪些关系呢?观察填表:表一位置1 位置2 结论∠1和∠5 处于直线c的同侧处于直线a、b的同一方这样位置的一对角就称为同位角∠2和∠8 处于直线c的()侧这样位置的一对角就称为()∠3和∠6 处于直线a、b的()方这样位置的一对角就称为()∠1和∠5 这样位置的一对角就称为()表二位置1 位置2 结论∠4和∠8 处于直线c的两侧处于直线a、b之间这样位置的一对角就称为内错角∠3和∠5这样位置的一对角就称为()表三位置1 位置2 结论∠3和∠8 处于直线c的()侧处于直线a、b()这样位置的一对角就称为同旁内角∠4和∠5这样位置的一对角就称为()练习:1.如图1所示,∠1与∠2是__ _角,∠2与∠4是_ 角,∠2与∠3是__ _角.(图1) (图2) (图3)2.如图2所示,∠1与∠2是___ _角,是直线______和直线_______•被直线_______所截而形成的,∠1与∠3是___ __角,是直线________和直线______•被直线________所截而形成的.3.如图3所示,∠B同旁内角有哪些?三、当堂反馈1.如图,(1)直线AD、BC被直线AC所截,找出图中由AD、BC被直线AC所截而成的内错角是_________和__________(2)∠3和∠4是直线_________和_________被_________所截,构成内错角.2.已知∠1与∠2是同旁内角,且∠1=60°,则∠2为()A. 60°B. 120°C. 60°或120°D.无法确定3.如图,判断正误①∠ 1和∠ 4是同位角;()②∠ 1和∠ 5是同位角;()③∠ 2和∠ 7是内错角;()④∠ 1和∠ 4是同旁内角;()341E2B CDAabc4.如图,直线DE 、BC 被直线AB 所截.⑴∠1与∠2、∠1与∠3、∠1与∠4各是什么角?⑵如果∠1=∠4,那么∠1和∠2相等吗?∠1和∠3互补吗?为什么?四、学习反思本节课你有哪些收获?5.2.1 平行线 导学案【学习目标】1使学生知道平行线的概念,掌握平行公理;2了解平行线具有传递性,能够画出已知直线的平行线.【学习重点】平行线的概念和平行公理,利用直尺和三角板画已知直线的平行线. 【学习难点】用几何语言描述画图过程,根据几何语言画出图形. 【学习过程】一、学前准备在上学期我们学过点和直线的位置关系,同学们还记得点和直线有几种位置关系吗?请画出来,并尝试用几何语言来表示.二、探索思考探索一:我们知道,火车行驶的两条笔直的铁轨、人行道上的斑马线等都给我们平行的形象.一般地, 叫做平行线.如图,记作“a b ”或“AB CD ”,读作“直线a 平行于直线b ”.请同学们思考一下:在同一平面内,两条不重合的直线有几种位置关系?动手画一画,并尝试用几何语言来表示..练习一:1.下列说法中,正确的是( ).A .两直线不相交则平行B .两直线不平行则相交C .若两线段平行,那么它们不相交D .两条线段不相交,那么它们平行 2.在同一平面内,有三条直线,其中只有两条是平行的,那么交点有( ).A .0个B .1个C .2个D .3个 探索二:请同学们仔细阅读课本P13页“平行线的讨论”,认真思考.通过观察和画图,可以体验一个基本事实(平行公理):经过直线外一点, 一条直线与这条直线平行.同样,我们还有(平行线的传递性):如果两条直线都 平行,那么这两条直线也 .简单的说就是:平行于同一直线的两直线 也平行.用几何语言可表示为:如果b ∥a ,c ∥a ,那么 . 练习二:1.如图1所示,与AB 平行的棱有_______条,与AA ′平行的棱有_____条. 2.如图2所示,按要求画平行线. (1)过P 点画AB 的平行线EF ;(2)过P 点画CD 的平行线MN . 3.如图3所示,点A ,B 分别在直线1l ,2l 上,(1)过点A 画到2l 的垂线段;(2)过点B 画直线3l ∥1l .(图1) (图2) (图3) 4.下列说法中,错误的有( ).①若a 与c 相交,b 与c 相交,则a 与b 相交; ②若a ∥b ,b ∥c ,那么a ∥c;③过一点有且只有一条直线与已知直线平行;④在同一平面内,两条直线的位置关系有平行、•相交、垂线三种 A .3个 B .2个 C .1个 D .0个 三、当堂反馈1.在同一平面内,一条直线和两条平行线中一条直线相交,那么这条直线与平行线中的另一边必__________.2.同一平面内,两条相交直线不可能与第三条直线都平行,这是因为________________. 3.判断题341E2BCDA ABCDab(1)不相交的两条直线叫做平行线.( )(2)在同一平面内,不相交的两条射线是平行线.( )(3)如果一条直线与两条平行线中的一条平行, 那么它与另一条也互相平行.( )4.读下列语句,并画出图形:⑴点P是直线AB外一点,直线CD经过点P,且与直线AB平行,直线EF也经过点P•且与直线AB垂直.⑵直线AB,CD是相交直线,点P是直线AB,CD外一点,直线EF经过点P•且与直线AB平行,与直线CD相交于E.四、学习反思本节课你有哪些收获?5.2.2 平行线的判定导学案【学习目标】1、掌握平行线的判定,并能判断两条直线是否平行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)过点 P 画 AB的垂线 PE,垂足为 E.
(2)过点 P 画 CD的垂线,与 AB 相交于 F 点.
(3)比较线段 PE, PF, PO三者的大小关系
探索二:仔细观察测量比较上题中点 P 分别到直线 AB上三点 E、F、O的距离,你还有什么收获?
请将你的收获记录下来: _______________________________________________
三、当堂反馈

1.如图所示 AB, CD相交于点 O,EO⊥ AB于O, FO⊥CD于 O,∠ EOD与∠ FOB的 大小关系是( )
A .∠ EOD比∠ FOB大 B .∠ EOD比∠ FOB小 C.∠ EOD与∠ FOB相等 D .∠ EOD与∠ FOB大小关系不确定
a
2
3
1
4
第 1题
b
E D
A
B O
C
第2题
F
E
B
C
O
D
A
F
第 3题
【学习难点】 理解对顶角相等的性质 .
【学习过程】
一、学前准备 各小组对七年级上学过的直线、 射线、线段、 角做总结. 每人写一个总结小报告,
并编写两道与它们相关的题目,在小组交流,并推出小组最好的两道题在班级汇报.
二、探索思考 探索一:完成课本 P2 页的探究,填在课本上. 你能归纳出 “邻补角” 的定义吗?
B
⑴如图 1,利用三角尺或量角器画已知直线 l 的垂线,这样的垂线能画 __________ 条;
⑵如图 2,经过直线 l 上一点 A 画 l 的垂线,这样的垂线能画 _____条;
⑶如图 3,经过直线 l 外一点 B 画 l 的垂线,这样的垂线能画 _____条;
B
B
l
A
l
l
l
(图 1) (图 3b)
4.探索规律: ( 1)两条直线交于一点,有 (2)三条直线交于一点,有 ( 3)四条直线交于一点,有 ( 4) n 条直线交于一点,有
对对顶角; 对对顶角;
对对顶角; 对对顶角.
探索二:任意画一对对顶角,量一量,算一算,它们相等吗?如果相等,请说明理由.
请归纳“对顶角的质 ”:

练习二:
1.如图,直线 a,b 相交,∠ 1=40°,则∠ 2=_______∠3=_______∠ 4=_______
D.在同一平面内,垂线段就是点到直线的距离
2.如图所示, AC⊥ BC,CD⊥ AB于 D,AC=5cm,BC=12cm,AB=13cm,
则点
B 到 AC的距离是 ________,点 A 到 BC的距离是 _______,点
C到
AB?的距离是 _______, ?AC>CD的? 依据是 _________.
C
一、学前准备
在学习对顶角知识的时候,我们认识了“两线四角” ,及两条直线相交于一点,得到四个角,
这四个角里面,有两对对顶角,它们分别对应相等,如图,可以说成“直线
AB与 CD相交于点 O”.
我们如果把直线 CD绕点 O 旋转,无论是按照顺时针方向转,还是按照逆时针方向转,∠
BOD
的大小都将发生变化.
简单说成:
.还有,直线外一点到这条直线的垂线段的
叫做点到直
线的距离 . 注意:垂线是
,垂线段是一条
,点到直线的距离是一个数量,不能说“垂线
段”是距离 . 练习二:
1.在下列语句中,正确的是(
).
A.在同一平面内,一条直线只有一条垂线
B .在同一平面内,过直线上一点的直线只有一条
C .在同一平面内,过直线上一点且垂直于这条直线的直线有且只有一条
当两条直线相交所成的四个角中有一个为直角时,叫做
这两条直线互相垂直 ,其中的一条直
线叫 垂线 ,它们的交点叫 垂足 .如图
用几何语言表示:
A
方式⑴∵ ∠ AOC=90°
∴ AB_____CD,垂足是 _____
方式⑵∵ AB ⊥ CD于 O ∴ ∠ AOC=______
C
OD
二、探索思考
探索一:请你认真画一画,看看有什么收获.
2.如图直线 AB、 CD、EF 相交于点 O,∠ BOE的对顶角是 ______,∠ COF的邻补角是
____,若∠ AOE=3°0 ,那么∠ BOE=______,_ ∠ BOF=_______
四、学习反思 本节课你有哪些收获?
1.如图所示, OA⊥ OB,OC是一条射线,若∠ AOC=120°,求∠ BOC度数
_

2.如图所示,∠ 1 与∠ 2 是对顶角的是(

三、当堂反馈
1.若两个角互为邻补角,则它们的角平分线所夹的角为
度.
2.如图所示,直线 a,b,c 两两相交,∠ 1=60°,∠ 2= 2 ∠ 4, ?求∠ 3、∠ 5 的度数. 3
3.如图所示,有一个破损的扇形零件, ?利用 图中的量角器可以量出这个扇形零件的圆心角 的度数,你能说出所量的角是多少度吗?你的 根据是什么?
5.1.2 垂线 导学案
【学习目标】 1 了解垂线、点到直线的距离的意义,理解垂线和垂线段的性质;
2 会用三角板过一点画已知直线的垂线,并会度量点到直线的距离
.
【学习重点】 垂线的意义、性质和画法,垂线段性质及其简单应用
.
【学习难点】 垂线的画法以及对点到直线的距离的概念的理解
.
【学习过程】
A
D
O B
5.1.1 相交线 导学案
第五章 相交线与平行线导学案
【学习目标】 1、了解邻补角、对顶角 , 能找出图形中的一个角的邻补角和对顶角。
2、理解对顶角相等 ,并能运用它解决一些问题 .
【学习重点】 邻补角、对顶角的概念 ,对顶角性质与应用 .
3.如图,直线 AB、 CD相交于点 O,∠ COE=9°0 , ∠AOC=3°0 , ∠FOB=9°0 , 则∠ EOF=_____.
. “对顶角” 的定义:

练习一:
1.如图 1 所示,直线 AB和 CD相交于点 O, OE是一条射线.
(1)写出∠ AOC的邻补角: ____ _ ___ __ ;
(2)写出∠ COE的邻补角:
__

(3)写出∠ BOC的邻补角: ____ _ ___ __ ;
图1
(4)写出∠ BOD的对顶角: ____
经过探索,我们可以发现: 与已知直线垂直. 练习一:
(图 2)
在同一平面内,过一点有且只有
( 图 3a )
_____ 条直线
第 1 题图
第 2 题图
2.如图所示,直线 AB⊥CD于点 O,直线 EF 经过点 O,若∠ 1=26°,求∠ 2 的度数.
3 .如图所示,直线 AB, CD相交于点 O,P 是 CD上一点.
相关文档
最新文档