光伏电站数据采集系统与远程通讯系统
光伏电站数据采集系统与远程通讯系统

光伏电站数据采集系统与远程通讯系统一、项目简介1、项目名称:巨力新能源10MW太阳能光伏屋顶发电项目2、建设单位:中国巨力集团有限公司3、建设规模:10MWp屋顶光伏发电项目4、项目地址:中国巨力集团5、电站范围:中国巨力集团厂区6、单位屋顶:8处二、监控系统说明如图2.1所示,光伏综合监控系统具备就地和远程监控功能,监控软件由本地监控与远程监控相结合。
本地监控由中央控制器(包括数据采集、控制算法、网关等功能、通讯链路、本地显示组成,主要功能是负责本地发电设备数据采集、控制、数据存储、能量调度、通讯等功能。
远程监控由广域网通讯链路、路由器、数据库服务器、网络服务器、上位机展示平台组成,主要功能是负责将各个电站数据进行收集,电站状况调查,数据存储、处理、分析,发电经济性分析等等。
传统光伏电站监控系统主要由逆变器厂商随设备提供,从本厂逆变器出发,对电站运行的一些参数进行监测,难以或不能直接控制逆变器的运行状态,无法获取电站中的其它设备的信息及控制这些设备,也无法满足电网调度系统对电站的实时监控要求。
而且该项目将采用不同厂商的设备,电源厂商自有的监控系统一般对其他厂家的设备兼容性差,容易造成一个个“孤岛”系统,无法形成统一的监控体系。
大型光伏电站必须配备自动运行、功能完善的监控系统。
这种监控系统不同于传统发电厂监控系统或变电站综合自动化系统,相对来说,大型光伏电站内设备种类不及传统电厂丰富,生产控制流程也不太复杂。
但其典型特点是装机容量大(10MW以上、占地面积广(150亩以上,且地理位置偏僻、维护人员很少,这就要求生产运行、设备监控、环境监测、安保技防等各环节集中统一起来,且能够适应其位置分散、配置灵活的特点。
基于现场总线设计的大型光伏电站监控系统可以满足这些要求。
因此,需要搭建一个统一的本地集中监控中心,该监控中心位于巨力索具园区,能够对不同厂商、不同类别、不同型号的光伏发电电源设备及计量表计、直/交流柜及其它电力设备进行统一监控,实现对该项目所包含的光伏电站完整、统一的实时监测和控制。
光伏电站监控系统结构与布局

光伏电站监控系统结构与布局随着清洁能源的发展和应用,光伏电站已成为一种主要的可再生能源发电方式。
为了保障光伏电站的安全运行和高效发电,监控系统的建设至关重要。
一个完善的光伏电站监控系统不仅能够实时监测电站的运行状态,还可以对电站进行远程监控和管理,提高电站的发电效率和维护效率。
本文将介绍光伏电站监控系统的结构与布局。
一、光伏电站监控系统结构光伏电站监控系统的结构主要包括传感器、数据采集系统、数据传输通道、数据处理与存储系统和监控中心。
其中,传感器用于实时监测光伏电站的各项参数,数据采集系统用于将传感器采集到的数据传输至数据处理系统,数据传输通道用于实现数据的远程传输,数据处理与存储系统用于处理和存储传感器采集到的数据,监控中心用于对电站进行远程监控和管理。
1.传感器:传感器是光伏电站监控系统的基础设备,用于实时监测电站的各项参数,包括光照强度、温度、风速、电压、电流等。
通过传感器采集到的数据,可以实现对电站运行状态的实时监测和分析。
2.数据采集系统:数据采集系统用于将传感器采集到的数据传输至数据处理系统。
数据采集系统通常由数据采集器和数据传输设备组成,数据采集器用于采集传感器数据,数据传输设备用于将采集到的数据传输至数据处理系统。
3.数据传输通道:数据传输通道包括有线通信和无线通信两种方式,用于实现数据的远程传输。
有线通信主要通过光纤和网线进行数据传输,无线通信主要通过无线网络和卫星通信进行数据传输。
4.数据处理与存储系统:数据处理与存储系统用于接收并处理传感器采集到的数据,同时对数据进行存储和备份。
数据处理与存储系统可以实现数据的实时分析、报警和故障诊断,提高电站的运行效率和可靠性。
5.监控中心:监控中心是光伏电站监控系统的核心部分,用于对电站进行远程监控和管理。
监控中心通常配备有监控软件和显示设备,可以实现对电站的实时监测、参数调节、报警处理等功能。
二、光伏电站监控系统布局1.电站内部监控:电站内部监控主要包括对光伏组件、逆变器、变压器等设备的监测。
光伏电站通讯系统原理

光伏电站通讯系统原理光伏电站通讯系统是指通过通信设备将光伏电站内的信息传输到中心控制系统中,从而实现对光伏电站的监控、管理和维护。
光伏电站通信系统具有及时性、准确性和高效性等特点,对于确保光伏发电系统稳定运行和提高能源利用效率具有重要作用。
光伏电站通讯系统包括通讯网络、通信应用及通信管理,其中通讯网络是通信系统的基础。
现代光伏电站通信系统主要采用互联网技术,包括局域网、广域网和虚拟专用网等。
通讯网络涵盖了设备之间、设备与控制中心之间、设备与维护人员之间的通讯。
光伏电站内部设备之间的通信通常采用局域网,包括智能逆变器、太阳能电池板、温度传感器等。
设备与控制中心之间的通信采用广域网或虚拟专用网,主要用于数据传输和信息管理。
设备和维护人员之间的通信可以通过无线通信和短信通知等方式实现,方便维护人员及时了解设备运行状态和进行设备维护。
通信应用是光伏电站通信系统的核心。
通信应用包括数据采集、实时监测、故障诊断、数据存储和可视化等。
数据采集是通信应用的第一步,通过采集逆变器、电池板、温度传感器等设备的数据,实现对光伏电站整体运行状态的了解。
实时监测是在数据采集的基础上实现的,通过该应用可以实时监测光伏电站发电量、电网电压、电机电流等数据,以及检测发电系统中的故障。
故障诊断是通信应用的重要环节,通过对数据的分析和对设备运行状况的判断,及时诊断设备故障,并进行维护和修理。
数据存储是为了保证光伏电站数据完整性和安全性而设计的,通过对数据进行存储和备份,保证数据不会丢失或损坏。
可视化是为了方便管理人员对光伏电站信息进行快速、直观地了解,通过数据的可视化处理,管理人员可以直观地看到光伏电站发电量、电机状态、发电质量等各项指标。
通信管理是为了保证通信系统的稳定性和安全性而设计的。
通信管理包括网络安全、数据保密、数据备份等,主要涉及授权认证、数据采集、网络管理等方面。
网络安全负责保证通信系统不受网络攻击和病毒感染,并保证数据传输过程中的安全性和可靠性。
光伏电站数据采集与远程监控

t h r e e a s p e c t s o f t h e i d e a i s d i s c u s s e d , i n c l u d i n g t h e h a r d w a r e s t uc r t u r e , s o f t w a r e s y s t e m a n d a p p l i c a t i o n f u n c t i o n .
l y z e s t h e n e e d f o r c o l l e c t i n g a l l k i n d s o f i n f o r ma t i o n . Ba s e d o n t h i s p r o p o s e d s o l a r s c h e d u l i n g t e c h n o l o g y s u p p o  ̄s y s t e m d e s i g n ,
So l a r Po we r S t a t i o n Re mo t e Mo ni t o r i n g a nd Da t a Ac qu i s i t i o n CAO Ya n - n i n g , L I F e n g ,DUAN Ke -l i ,YANG Ha i - h o n g ( Al a x E l e c t r i c P o we r B u r e a u , A l a x L e f t B a n n e r 7 5 0 3 0 6 , I n n e r Mo n g o l i a , C h i n a )
Ke y wo r d s :s o l a r p o w e r s t a t i o n ;d a t a a c q u i s i t i o n;r e mo t e mo n i t o r i左旗具有较好 的太阳能资源 ,目前 已建 成 2座 光 伏 电站 ,总装 机 容 量 2 5 Mw ,远 期 预 计能达到 6 0 M W ,属 于较 大 型 的 光伏 电 站 。 随 着 越 来 越 多 的光 伏 电站相 继并 网 ,电 网调 度需 要 监视 哪些 信息 、如何实现太阳能光伏发电的信息采集 、如何实 现有 功 无功 控制 、如何 规范 定 位太 阳能 调度 技 术 支持 系统等诸多问题亟待解决。
光伏电站数据采集与远程监控

光伏电站数据采集与远程监控摘要:随着越来越多的光伏发电站连接到网格一个接一个,有许多问题需要解决在电网调度,如监控什么信息,如何实现信息收集的太阳能光伏发电、如何实现有源和无功功率控制,以及如何规范和位置太阳能调度技术支持系统。
关键词:光伏电站;数据采集;远程监控;随着光伏发电技术的发展,光伏装机容量在电网中占的比例不断增加,越来越多的独立和并网光伏电站即将或已经投入运行使用。
这些光伏电站大多建设在交通闭塞的边远地区,工作人员无法守在电站现场,通常只能工作在无人值守的条件下。
因此实时地采集光伏电站运行参数,监控光伏电站运行状态,评估电站的运行效益对保证电站安全、稳定地运行具有十分重要的意义。
一、光伏发电系统概述随着光伏技术的不断发展、光伏组件成本的不断降低,光伏发电显现出了越来越显著的经济效益和社会效益,得到了越来越广泛的应用。
常见的光伏发电系统有:独立发电系统、并网发电系统和混合光伏系统。
独立发电系统指的是完全依靠光伏电池板转换的电能供电系统,根据是否带有储能设备分为两种形式:(1)中间不带储能设备的直联系统,光伏电池板发出来的电全部提供给负载使用,典型应用如太阳能水泵系统。
该系统自动日出而做、日落而息,越干旱,光照越强,抽水越多;(2)带储能设备的系统,光伏电池板发出的电能除了供给负载使用外,剩余的能量通过储能设备储存起来,以供需要的时候使用。
若带的是直流负载,则系统由光伏电池板、防反二极管、蓄电池及控制器等组成,典型的应用如太阳能路灯等。
若带的是交流负载,则系统除直流负载系统的组件外,还需要配备将直流电能转换为交流电能的离网逆变器。
该系统主要应用于远离电网的偏远山村、孤岛等地方的供电。
白天系统向负载及蓄电池供电,夜晚蓄电池将电能输出,供负载使用。
并网发电系统是当今光伏发电系统的主要形式,它将太阳能电池板转换过来的直流电逆变成同当地电网电压同频、同相的交流电后馈送到电网中,以供周围电网中的负载使用。
光伏电厂监控系统图、通讯系统图培训(2018版)

2016年7月30日
1
西村光伏电站计算机监控系统简介
一、计算机监控系统的概念
计算机监控系统是指具有数据采集、监视和控制功能的计算机系统,是以监 测控制计算机为主体,加上检测装置(传感器)、执行机构与被监测控制的 对象(生产过程)共同构成的整体。在这个系统中,计算机直接参与被监控 对象的检测、监督和控制。
二、计算机监控系统的组成
计算机控制系统由控制部分和被控对象组成,其控制部分包括硬件部分和软 件部分。 计算机控制系统软件包括系统软件和应用软件。 系统软件一般包括操作系统、语言处理程序和服务性程序等,它们通常由计 算机制造厂为用户配套,有一定的通用性。 应用软件是为实现特定控制目的而编制的专用程序,如数据采集程序、控制 决策程序、输出处理程序和报警处理程序等。它们涉及被控对象的自身特征 和控制策略等,由实施控制系统的专业人员自行编制。
.
10
西村光伏电站计算机监控系统简介
四、电站计算机监控系统二期光伏区网络结构
.
11
西村光伏电站计算机监控系统简介
五、汇流箱信号传送示意图
008B0201 008B0202 008B0203 008B0204 008B0205 008B0206 008B0207 008B0208 008B0209
办公网 络
web
远动站2
地调
光功率气象服务器 AGC/AVC 光功率预测 单向隔离 Internet
`
SCADA
测控装置 SCADA1
保护装置
SCADA2
SCADA3
五防工作站
故障录波器
保护信子站
站用变
直流屏 电度表 通信管理机
光伏电站智能接入系统方案(35kV单点接入)

光伏电站智能接入系统方案(35kV单点接入)1. 概述随着可再生能源的快速发展,光伏电站作为清洁能源的重要组成部分,其并网需求日益增长。
为了提高光伏电站的接入效率和可靠性,本文将介绍一种光伏电站智能接入系统方案,该方案以35kV单点接入为基础,通过采用先进的光伏逆变器、智能化监控系统和优化接入方案,实现光伏电站高效、稳定地接入电网。
2. 系统架构2.1 光伏发电系统光伏发电系统主要由光伏组件、光伏逆变器、蓄电池等组成。
其中,光伏组件将太阳光能转化为直流电能,光伏逆变器将直流电能转换为交流电能,蓄电池则用于存储多余的电能。
2.2 智能化监控系统智能化监控系统主要包括数据采集与处理、远程通信、故障诊断等功能。
数据采集与处理模块负责实时监测光伏发电系统的运行状态,包括发电功率、电压、电流等参数;远程通信模块通过有线或无线方式将监测数据传输至远程监控中心;故障诊断模块则可自动检测并诊断系统故障,提醒运维人员进行处理。
2.3 接入电网系统接入电网系统主要包括35kV单点接入、输电线路、变电站等。
35kV单点接入是指将光伏电站的输出电压升高至35kV,然后通过一条或多条输电线路接入电网。
3. 技术方案3.1 光伏逆变器选型为了实现高效、稳定的电能转换,本项目选用高效、高品质的光伏逆变器。
光伏逆变器应具备以下特点:- 高转换效率(≥98%);- 具有较强的抗干扰能力;- 支持多路MPPT,以适应不同倾角和光照条件;- 具备远程监控和故障诊断功能。
3.2 智能化监控系统设计智能化监控系统应包括以下几个部分:- 数据采集与处理:采用高精度传感器实时监测光伏发电系统的运行参数,如发电功率、电压、电流、温度等,并通过数据处理模块进行实时分析与处理。
- 远程通信:利用有线或无线通信技术(如光纤、4G/5G、NB-IoT等)将监测数据传输至远程监控中心,以便进行远程监控与调度。
- 故障诊断:根据实时监测数据,采用人工智能算法进行故障预测与诊断,实现故障的及时发现与处理。
光伏电站远程视频监控系统解决方案

用户培训
对用户进行系统操作和维护培训,确保用户能够 正常使用和维护系统。
后期维护
定期对系统进行检查和维护,保证系统的稳定运 行和延长使用寿命。
04
解决方案的效益分析
经济效益分析
降低运维成本
远程视频监控系统可以实时监测 电站设备的运行状态,及时发现 并处理故障,减少现场巡检的频 率,从而降低运维成本。
远程视频监控系统有助于提高 光伏电站的管理水平和技术水 平,推动可再生能源的发展。
展望
技术升级与创新
随着技术的不断进步,远程视频监控系统 将不断升级和创新,提高监控的准确性和
实时性。
拓展应用领域
远程视频监控系统不仅可用于光伏电站的 监控,还可拓展应用于其他可再生能源领 域和工业领域,具有更广泛的应用前景。
提升能源利用效率
通过远程监控系统,可以实时了解电站的运行状 况,优化能源的利用效率,为社会节约能源资源 。
促进清洁能源发展
光伏电站远程视频监控系统的应用,有助于推动 清洁能源的发展,减少对传统能源的依赖,促进 社会可持续发展。
环境效益分析
减少环境污染
光伏电站的运行过程中不产生污染物,远程视频监控系统的应用可 以进一步减少对环境的干扰和污染。
节约土地资源
光伏电站的建设不需要消耗大量的土地资源,远程视频监控系统的 应用可以进一步减少对土地的占用和破坏。
促进生态恢复
光伏电站的建设可以在一定程度上恢复当地的生态环境,远程视频 监控系统的应用可以更好地保护和恢复当地的生态平衡。
05
案例分析述
该解决方案为大型光伏电站提供了一套全面的远程视频监控系统,具备高清晰 度、稳定可靠的特性。通过高清摄像头和智能分析技术,实现对电站的全面监 控,及时发现异常情况,提高电站的安全性和运行效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光伏电站数据采集系统与远程通讯系统一、项目简介1、项目名称:巨力新能源10MW太阳能光伏屋顶发电项目2、建设单位:中国巨力集团有限公司3、建设规模:10MWp屋顶光伏发电项目4、项目地址:中国巨力集团5、电站范围:中国巨力集团厂区6、单位屋顶:8处二、监控系统说明如图2.1所示,光伏综合监控系统具备就地和远程监控功能,监控软件由本地监控与远程监控相结合。
本地监控由中央控制器(包括数据采集、控制算法、网关等功能)、通讯链路、本地显示组成,主要功能是负责本地发电设备数据采集、控制、数据存储、能量调度、通讯等功能。
远程监控由广域网通讯链路、路由器、数据库服务器、网络服务器、上位机展示平台组成,主要功能是负责将各个电站数据进行收集,电站状况调查,数据存储、处理、分析,发电经济性分析等等。
传统光伏电站监控系统主要由逆变器厂商随设备提供,从本厂逆变器出发,对电站运行的一些参数进行监测,难以或不能直接控制逆变器的运行状态,无法获取电站中的其它设备的信息及控制这些设备,也无法满足电网调度系统对电站的实时监控要求。
而且该项目将采用不同厂商的设备,电源厂商自有的监控系统一般对其他厂家的设备兼容性差,容易造成一个个“孤岛”系统,无法形成统一的监控体系。
大型光伏电站必须配备自动运行、功能完善的监控系统。
这种监控系统不同于传统发电厂监控系统或变电站综合自动化系统,相对来说,大型光伏电站内设备种类不及传统电厂丰富,生产控制流程也不太复杂。
但其典型特点是装机容量大(10MW 以上)、占地面积广(150亩以上),且地理位置偏僻、维护人员很少,这就要求生产运行、设备监控、环境监测、安保技防等各环节集中统一起来,且能够适应其位置分散、配置灵活的特点。
基于现场总线设计的大型光伏电站监控系统可以满足这些要求。
因此,需要搭建一个统一的本地集中监控中心,该监控中心位于巨力索具园区,能够对不同厂商、不同类别、不同型号的光伏发电电源设备及计量表计、直/交流柜及其它电力设备进行统一监控,实现对该项目所包含的光伏电站完整、统一的实时监测和控制。
网线 交换机VGA/网口转换器通讯网关RS485网线 逆变器VGAVGATCP/IP,GPRS传感器数据采集器 本地显示屏 温度传感器 光照传感器 风速传感器 风向传感器 中控大厅大屏幕本地集控中心,电网数据中心,金太阳数据中心 RS485通讯网关RS485无线电能表RS485交直流配电柜RS485网线其他设备交换机网线 监控服务器网线通讯网关无线AP 网线 网线通讯网关 通讯网关网线图2.1屋顶光伏电站监控系统示意图三、监控系统主要功能3.1功能介绍该系统可以实现多个层次的监控:光伏电站监控,远程控制、远程诊断、数据上传。
电站信息监控:本地光伏发电监控系统实时监控光伏发电站发电量、输出功率、逆变器功率。
监控环境温度、风速、光照强度等参数。
监控逆变器、温度传感器、功率质量测量仪等设备状态及设备报警。
提供丰富的VGA、LED显示功能、网络远程监控和自定义报表等高级功能。
支持工业标准RS485接口和MODBUS协议及设备自定义协议。
支持多种逆变器、智能电表、温度、光照、风速等设备。
本地光伏监控系统通过TCP/IP实时上传监控详细数据到在线监控平台。
用户通过浏览器实时了解远程电站运行情况,掌握电站设备详细运行参数,报警信息等。
远程控制、远程诊断:对远程光伏电站监控系统主机的管理,远程登录各采集点本地监控系统网关。
查看工控机实时运行情况,掌握主机和光电站各设备实时通讯情况,报警信息。
数据上传:目前金太阳光伏电站需要将数据上传到鉴衡金太阳数据中心,本光伏监控系统实现通过互联网上传至衡金太阳数据中心功能。
图3.1监控系统功能模块图3.2 监控范围电站主要数据。
包括:逆变器监控参数:PN, SN, PV 输入电压, PV 输入电流,交流输出电压,电流,频率,功率,逆变器温度,当天发电量,当年发电量,总发电量,减排和减煤等。
环境传感器监控参数:光照,环境温度,风速,风向等多种传感器。
智能电表监控参数 :总功率,总无功功率,总有功发电量,总无功发电量,线电压,相电压,电流,频率,有功功率,无功功率,功率因数,谐波电压,谐波电流等。
四、系统结构整个系统分为现场采集系统、数据传输链路、本地集控中心、监控软件平台、异地容灾系统。
4.1 现场采集系统逆变器逆变器环境监测仪. . .485通讯网关智能电表光伏配电室厂房楼顶. . .智能电表工业交换机工业无线AP以太网485厂房N并网配电室防逆流采集箱图4.1现场采集系统通讯示意图每个厂房数据采集层方案如图4.1所示,每个厂房的监控设备主要包括位于厂房屋顶环境监测仪(一般一个项目配置一套环境监测仪),位于光伏配电室的逆变器和智能电表等设备,一般采用485方式通讯,并通过防逆流采集箱采集并网配电室的并网功率等,用于防逆流。
数据采集层使用通讯网关采集设备数据,通讯网关采用嵌入式Linux操作系统,具有功耗低、性能强、长期工作稳定的特点,包括4个485接口,2个以太网口,每个485可以采集31台设备,完全满足当前数据采集及协议解析需要,内部集成看门狗功能,可以有效防止系统崩溃的影响。
通讯网关通过485采集逆变器、智能电表、智能汇流箱及环境监测仪数据,并将采集到的数据根据设备协议进行解析,并保存到实时数据库中,通讯网关通过工业交换机与位于厂房屋顶的无线AP进行通讯,并将数据通过无线WIFI 网络上传到监控中心服务器。
4.2数据传输链路图 4.2数据传输链路示意图注:1)上图中6号、14号、17号厂房的“★”代表三射频工业无线AP EKI-6340-3。
(详细资料见附带产品资料)2)其它厂房上的无线接入点均采用性价比较高的EKI-6331AN产品。
(详见产品资料)4.2.1无线AP通讯方案本项目由8栋厂房组成,厂区之间、厂房之间不能通过厂区局域网进行连接,而厂房之间如果架设光纤成本很高,采用GPRS或者3G每年需要支付大量的流量费用,实时性也不能得到保证。
我们在设计通讯方案时充分考虑了这一点,为了最大程度保证系统可靠性、通讯稳定性及降低成本,我们主干通讯网采用先进的无线工业Mesh网络。
该网络是基于无线iMESH网络技术的无线以太网产品,在多重跳台,高数据吞吐率,快速漫游,自组网自恢复方面都有优越的性能。
该无线网络使用IEEE802.11n进行通讯,理论最大传输带宽为300兆,所使用的产品全部支持MIMO技术(MIMO 技术特点将两条无线通路进行捆绑带宽翻倍),在主干和需要大带宽的传输路径中可增加带宽保障数据传输的稳定和可靠。
因此,采用无线工业Mesh网络完全满足光伏监控需要,并且最大程度降低施工风险。
此方案要将覆盖区域分成“主干Mesh网络”及“AP覆盖”两部分。
分区原则根据厂区及厂房的实地情况而定。
初步拟定通过三台高性能的研华户外工业无线Mesh AP EKI-6340-3产品组成主干Mesh网络(建议组Mesh网络频率使用5.8GHZ),再通过分布在各厂房的接入点的EKI-6331AN进行同主干EKI-6340-3网络进行互联。
(Mesh网络的特点在无线网络有故障点出现时,无线AP会自动选择另一条途径通讯,保证数据传输)。
由于EKI-6340系列AP支持三个射频,实现在两个射频频组建冗余主干Mesh 网络的同时,第一个射频进行无线覆盖。
同时,在实施时采用高增益的扇形天线提高传输距离并保证带宽。
每个现场点通过EKI-6331AN同骨干Mesh网络的EKI-6340-3进行通讯。
4.2.2 无线通讯方案特点1、带宽分析研华无线交换机使用IEEE802.11n进行通讯,最大传输带宽为300Mbps,所使用的产品全部支持MIMO技术(MIMO技术特点将两条无线通路进行捆绑带宽翻倍),在主干和需要大带宽的传输路径中可增加带宽保障数据传输的稳定和可靠。
本带宽不但可以满足当前控制数据的通讯需要,也可以满足未来视频通讯需要,具有一定可扩展性。
带宽需要看视频部分的码流和视频监控点位情况而定,以每栋厂房顶一个视频摄像头,每个摄像头1~2Mbps带宽计算,预计已知区域的视频带宽总和为18Mbps~36Mpbs左右。
通过研华Mesh AP EKI-6340系列产品构建的实际骨干网络带宽可达200Mbps以上,可用于数据传输的有效为100Mbps 以上,因此即便现场具有视频监控的传输需求,研华工业无线通讯设备仍然可满足通讯需求。
2、解决的问题此方案可以解决以下问题:1、现场覆盖面积广,需要远距离传输问题2、视频数据传输中需要高带宽的问题3、户外应用,需要安装方便,并支持宽温和高防护等级等工业特点。
4、稳定可靠的无线产品,保障系统的安全5、避免传统AP桥接带宽损耗过多问题6、光纤布线复杂、成本高的问题3、方案优势1)Mesh网络:通过主干组成的Mesh网络,进行主干信息的通讯。
研华率先在工业无线网络中使用先进的工业Mesh技术。
在网络中出现故障点时,网络可以通过Mesh网络进行自恢复,研华的工业Mesh网络自恢复时间为20ms。
保证数据通讯的正常稳定。
使用Mesh网络的特点为方便安装配置,通过Mesh网络可以进行跳接传输(非视距传输),大大提高网络的稳定性(网络可以自愈合),网络架构简单灵活,带宽高。
2)MIMO技术:即多路输入多路输出(MIMO)技术,是指在发射端和接收端分别使用两个或多个发射天线和接收天线,信号通过发射端和接收端的多个天线传送和接收,从而改善每个用户的通讯品质,提高抗干扰能力。
4、方案实施说明如上图所示,根据厂区的位置,将无线通讯部分分成“骨干Mesh网络”及“AP覆盖节点”两大部分。
骨干基站按4台预估,但为了尽可能的节约成本,实施时可先按3个骨干基站安装并实测,如果实测效果不理想时,再增加第4台骨干基站的架设即可。
实施规划:1)骨干基站的架设与实施如图4.3所示的6号、14号及17号厂房均采用骨干基站,骨干基站为研华IP67高防护等级宽温型三射频Mesh AP,型号为EKI-6340-3。
图4.3骨干基站及天线安装示意图骨干基站、天线及配件见下表:设备名称说明数量EKI-6340-3 三射频基站 15.8GHz 23dBi骨干定向天线用于骨干基站间通讯 25.8GHz 14dBi扇形天线用于所有厂房间无线节点的覆盖通讯2“1分2”功分器将覆盖所用的1个射频接两组天线,增大覆盖角度22米馈线用于基站与天线连接8 馈线防雷模块用于馈线的避雷 6网线防雷模块用于网线的避雷 12)监控节点基站的架设与实施如图4.3所示的1~5,7~13,15~16及18号厂房均采用节点基站,节点基站为研华IP55防护等级的高性价比无线AP产品,型号为EKI-6331AN。