成都玉林中学(肖家河校区)八年级数学下册第一单元《二次根式》测试卷(包含答案解析)

合集下载

八年级下册数学《二次根式》单元测试题及答案

八年级下册数学《二次根式》单元测试题及答案

八年级下册数学《二次根式》单元测试卷一、单选题1n 的最小值是( )A .4B .6C .8D .122.式子x 1-有意义的x 的取值范围是( ) A .1x 2≥-且x≠1 B .x≠1 C .1x 2≥- D .1x>2-且x≠13.x ﹣5,则x 的取值范围是( )A .x <5B .x ≤5C .x ≥5D .x >5 4.下列根式中是最简二次根式的是( )A B C D 5.下列计算中,正确的是( )A =B .()2=8C =3D .⨯26.已知x +y -x 2y +xy 2=( )A .B .C .D .7.下列二次根式中,与 是同类二次根式的是( )A B C D8. )A .B .2C .D .29.下列计算正确的是( )A.5=B2= C.=D= 10.如图,在矩形ABCD 中无重叠放入面积分别为16cm 2和12cm 2的两张正方形纸片,则图中空白部分的面积为( )cm 2.A .16-B .-12+C .8-D .4-二、填空题11.若a 、b 为实数,且b+4,则a+b =_____. 12有意义,则m 的取值范围是__.13.把二次根式(x-1__. 14.计算:112-⎛⎫⎪⎝⎭=__. 15.计算:(﹣1)2018+()(2__.16a=_____.17_____. 18cm 、cm ,则这个三角形的周长是______.三、解答题19.计算:2﹣3.20(21.已知x =,求x 2+x+y 2﹣2xy ﹣y 的值.22.有理数a 、b 、c b c +.23.(1)已知a +3与2a ﹣15是一个正数的平方根,求a 的值;(2)已知x ,y 为实数,且y 的值. 利用二次根式有意义的条件分析得出答案.24.解答下列各题(1)计算:(2)当a ,b 时,求代数式a 2﹣ab +b 2的值.25m、n,使m2+n2=a且mn=a±将变成m2+n2±2mn,即变成(m±n)2+±2,所以,简.例如:5±22请仿照上例解下列问题:参考答案1.B【解析】【分析】=则6n 是完全平方数,满足条件的最小正整数n 为6.【详解】∵=∴6n 是完全平方数,∴n 的最小正整数值为6.故选B .【点睛】主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数进行解答.2.A【解析】根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使x 1-在实数范围内有意义,必须12x 10x 1{{x 2x 102x 1+≥≥-⇒⇒≥--≠≠且x 1≠.故选A . 3.C【解析】【分析】(a≤0),由此性质求得答案即可.【详解】,∴5-x≤0∴x≥5.故选C .【点睛】(a≥0)(a≤0).4.B【详解】A,故此选项错误;3B是最简二次根式,故此选项正确;C,故此选项错误;D=故选B.考点:最简二次根式.5.C【解析】【分析】根据二次根式的乘除运算法则和二次根式的性质逐一计算可得.【详解】A3=,故A选项错误;B、(232=,故B选项错误;C3,故C选项正确;D、D选项错误;故答案选:C.【点睛】本题主要考查二次根式的乘除法,解题的关键是掌握二次根式的性质和运算法则.6.B【解析】【分析】把x2y+xy2分解因式,然后将x、y值代入进行计算即可得.【详解】∵x,y=xy(x+y)=+××)]=故选B .【点睛】本题考查了代数式求值,涉及了因式分解,二次根式的混合运算,解题时灵活运用二次根式的乘法与加法法则是解题的关键.7.C【解析】【分析】先将各二次根式化简为最简二次根式,然后根据同类二次根式的定义判断即可.【详解】解:A 的被开方数是6、不符合题意;BC ,符合题意;D 2故选C .【点睛】本题主要考查的是同类二次根式的定义,掌握同类二次根式的定义是解题的关键. 8.D【解析】【分析】先化简各二次根式,再计算乘法,最后合并同类二次根式可得.【详解】原式=﹣12×==,2故选:D.【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的性质和运算法则.9.B【解析】【分析】根据二次根式的加减法对A进行判断;根据二次根式的除法法则对B、D进行判断;根据二次根式的乘法法则对C进行判断.【详解】解:A、与不能合并,所以A选项错误;B、原式,所以B选项正确;C、原式,所以C选项错误;D、原式=,所以D选项错误.2故选:B.【点睛】本题考查了二次根式的运算:熟练掌握二次根式的加法法则、二次根式的乘除法法则及二次根式的性质是解答本题的关键.10.B【解析】【分析】根据正方形的面积求出两个正方形的边长,从而求出AB、BC,再根据空白部分的面积等于长方形的面积减去两个正方形的面积列式计算即可得解.【详解】∵两张正方形纸片的面积分别为16cm2和12cm2,∴4=cm ,=cm ,∴AB=4cm,BC=4)cm ,∴空白部分的面积=4)×4−12−16=(12-+ cm 2.故选B.【点睛】此题考查二次根式的应用,解题关键在于将正方形面积直接开根即是正方形的边长. 11.5或3【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得221010a a ⎧-≥⎨-≥⎩, 解得a =1,或a =﹣1,b =4,当a =1时,a +b =1+4=5,当a =﹣1时,a +b =﹣1+4=3,故答案为5或3.【点睛】本题考查了函数表达式有意义的条件,当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负. 12.m≤12. 【解析】让二次根式的被开方数1-2m 为非负数列式求值即可.解:由题意得:1-2m≥0,解得m≤12.故答案为m≤12.13.【解析】【分析】根据二次根式有意义的条件可以判断x-1的符号,即可化简.【详解】解:x1x1=-=-=((故答案是:.【点睛】本题主要考查了二次根式的化简,正确根据二次根式有意义的条件,判断1-x>0,从而正确化简|1-x|是解决本题的关键.14【解析】【分析】按照实数的运算法则依次计算,112-⎛⎫⎪⎝⎭=2【详解】原式==2【点睛】此题考查的知识有:数的负指数幂,二次根式的分母有理化,熟练掌握相应的运算法则是解答此题的关键.15.2【解析】【分析】先计算乘方、二次根式的乘法,再计算加减可得.【详解】原式=1+4﹣3=2,故答案为:2.【点睛】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的运算法则.16.5【解析】【分析】根据同类二次根式的被开方数相同列方程求解即可.【详解】∵∴4+a=2a-1解得a=5.故答案为5.【点睛】本题主要考查了同类二次根式的定义,即:二次根式化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.17【解析】【分析】可先将各二次根式化为最简,然后根据同类二次根式的被开方数相同即可作出判断.【详解】4【点睛】此题主要考查同类二次根式的定义,属于基础题,化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.18.【解析】【分析】将三边相加,化简各二次根式后合并即可得.【详解】=cm),故答案为.【点睛】本题主要考查二次根式的应用,解题的关键是掌握二次根式的混合运算顺序和运算法则.19.【解析】【分析】先将各二次根式进行化简,再合并同类二次根式即可得解.【详解】+26=.【点睛】此题考查二次根式的混合运算,先化简,再合并同类二次根式,注意选择合适的方法简算.20.-【解析】试题分析:按二次根式的乘除的运算法则计算即可.试题分析:原式=-=-==-.621.【解析】【分析】先利用完全平方公式变形得到原式=(x﹣y)2+(x﹣y),然后利用整体代入的方法计算.【详解】原式=x2﹣2xy+y2+(x﹣y)=(x﹣y)2+(x﹣y).∵x=y,∴x﹣y=原式=(2=.【点睛】本题考查了二次根式的化简求值.二次根式的化简求值,一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.22.b-a+2c【解析】【分析】根据数轴得出a-b<0,b+c<0,b-c>0,进而化简得出即可.【详解】解:b c + =a b b c b c --+--=b-a+b+c-b+c=b-a+2c【点睛】此题主要考查了二次根式以及绝对值的性质与化简,正确化简二次根式是解题关键. 23.(1)a 的值为 4 或 18;(2)5.【解析】【分析】(1)直接利用平方根的定义分析得出答案;(2)利用二次根式有意义的条件分析得出答案.【详解】解:(1)根据平方根的性质得,32150a a ++-=,解得 :a=4, 3215a a ,+=- 解得:a=18, 答:a 的值为 4 或 18;(2)满足二次根式9090,x x -≥⎧⎨-≥⎩ 解得:x=9,∴y=4,32 5.==+=【点睛】此题主要考查了二次根式有意义的条件,正确得出 x ,y 的值是解题关键.24.【解析】【分析】(1)先化简各二次根式,再合并同类二次根式即可得;(2)将a、b的值代入原式,根据完全平方公式和平方差公式计算可得.【详解】(1)原式=(2)当a,b2)+)2=﹣(3﹣2)+5﹣=9.【点睛】本题主要考查二次根式的化简求值,解题的关键是熟练掌握二次根式的性质与运算法则.25.11【解析】【分析】(1)把3分成2+1计算即可;(2)把4分成3+1,根据二次根式的性质进行化简即可.【详解】(11;(2.【点睛】本题考查的是二次根式的性质和化简,正确理解阅读材料所示内容、掌握二次根式的性质是解题的关键.。

人教版数学八年级下册《二次根式》单元检测题(含答案)

人教版数学八年级下册《二次根式》单元检测题(含答案)
解析:(1)∵ 有意义,
∴ ,解得: ;
(2)∵ 有意义,
∴ ,解得: 且 ;
(3)∵ 有意义,
∴ ,
∴ ,解得: ;
(4)∵ ,
∴ ,解得: 。
17.(1) ;(2)45;(3)24;(4) ;(5) ;(6) ;(7)49;(8)12;(9) .
解析: 原式
原式
原式
原式
原式
原式
原式
原式
原式
18. ;
A. B. C。 D。
10.下列结论中,错误的是()
A.若 ,则 B.若 ,则
C。若 ,则 D。若 ,则
二、填空题
11. ﹣ 的有理化因式可以是.
12.已知实数a在数轴上的位置如图,则化简|1﹣a|+ 的结果为_____.
13.已知2〈x〈5,化简: =________________.
14.已知x是实数且满足 ,则相应的代数式x2+2x﹣1的值为________.
解:原式=
=
=
.
当 时,
原式 .
19.(1) ;(2) .
解析:(1)原式= ;
(2)原式=
=
= .
20.x+y的平方根是±1.
解析:

∴x 2017且x 2017,
∴x=2017,
y=−2016,
∴x+y=2017−2016=1,
∴x+y的平方根是±1.
A。 B. C. D.
5.若 与 — 互为倒数,则( )
A.a=b-1B.a=b+1C。a+b=1D。a+b=—1
6.在Rt△ABC中,∠C=90°,c为斜边,a、b为直角边,则化简 的结果为( )

八年级数学下册二次根式单元测试题及答案(含答案)

八年级数学下册二次根式单元测试题及答案(含答案)

八年级数学下册二次根式单元测试题及答案(含答案)八年级下册数学目标单元检测题(一)《二次根式》一、选择题:(每小题2分,共26分)1、下列代数式中,属于二次根式的是()。

A、3x 2B、1 4C、 aD、a 32、在二次根式,中,x的取值范围是()。

A、x≥1B、x>1C、x≤1D、x<13、已知(x-1)2+y2=0,则(x+y)2的算术平方根是()。

A、1B、±1C、-1D、44、下列计算中正确的是()。

A、2/11(x2y) 5B、3(x2)2y2C、a/323D、45/3235、化简1/23+11/23=()。

A、1/5B、30C、65D、6306、下列二次根式:12.5a,a,b,1/a,m+y2/(anx)。

其中最简二次根式的有()。

A、2个B、3个C、1个D、4个7、若等式(m3)/(m3)=1成立,则m的取值范围是()。

A、m≥1/2B、m>3C、1/2≤m<3D、m≥38、已知直角三角形有两条边的长分别是3cm,4cm,那么第三条边的长是()。

A、5cmB、7cmC、5cm或7cmD、无法确定9、把二次根式x4x2y2化简,得()。

A、2x2yB、x2+xyC、1xyD、x2y210、下列各组二次根式中,属于同类二次根式的为()。

A、2和BB、2和CC、a+1/12ab和DD、a1/ab2和Da1/ab211、如果a≤1,那么化简√(a1)/(1a)=()。

A、(a+1)/(1a)B、(1a)/(a+1)C、(a+1)/√(1a)D、(1a)/√(a+1)12、下列各组二次根式中,x的取值范围相同的是()。

A、x1和x(2x3)B、x21和x2 2C、(x2)2和(x3)2D、√(x24)和√(x22x1)二、填空题:(每小题3分,共36分)13、2633;14、用“>”或“<”符号连接:(1)3(5)2(2)35;27(3)357 3.15、3的相反数是3,绝对值是3.16、如果最简二次根式3a3与72a是同类二次根式,那么a的值是2/3.17、计算:8/24=1/3;(1)2=1;(5)2=25.。

人教版八年级数学下册试卷二次根式单元测试题及答案

人教版八年级数学下册试卷二次根式单元测试题及答案

人教版八年级数学下册试卷二次根式单元测试题及答案八年级下册数学目标单元检测题(一)《二次根式》一、选择题:(每小题2分,共26分)1、下列代数式中,属于二次根式的是()A、3√x-2B、-AC、-4BD、a-√21(a≥1)2、在二次根式√x-1中,x的取值范围是()C、x≤13、已知(x-1)²=0,则(x+y)²的算术平方根是()A、14、下列计算中正确的是()C、√(a/3)=√(2/3)5、化简√(2/3)+√(1/3),得()B、√56、下列二次根式:12.5a,a,b,1/a,m+y/√(2anx)中最简二次根式的有()D、4个7、若等式(m-3)/(m+3)=1成立,则m的取值范围是()B、m>38、已知直角三角形有两条边的长分别是3cm,4cm,那么第三条边的长是()A、5cm9、把二次根式√(x^4+x^2y^2)化简,得()A、x^2+xy10、下列各组二次根式中,属于同类二次根式的为()C、a+1/12a^2b和D、a-1/ab^211、如果a≤1,那么化简√(a/(1-a))=()C、1/√(1-a)12、下列各组二次根式中,x的取值范围相同的是()B、x+1与x-1二、填空题:(每小题3分,共36分)13、化简√(42x-3)/(x-4x+1),得()B、4-4x14、用“>”或“<”符号连接:(1)-26<-33;(2)3<5;(3)3/(-5)>-7/(-3)26<-33<3<5<3/(-5)>-7/(-3)15、3(-5)的相反数是-15,绝对值是1516、如果最简二次根式3a-3与7-2a是同类二次根式,那么a的值是a=3/217、计算:8√(24)=8√3;(1/2)²=1/4;(-5)²=2518、当$x\geq -\frac{1}{3}$时,二次根式$3x+1$有意义;当$x>-1$时,代数式$x+1$有意义。

八年级(下)第一章:二次根式测试卷.docx

八年级(下)第一章:二次根式测试卷.docx

八下第一章《二次根式》单元测试题-、仔细选选(每小题3分,共30分)1.二次根式需石屮,字母a 的取值范围是2-计算辰-石的结果是 3. 下列各组二次根式中,化简后被开方数相同的一组是 A. &和⑴ B.寸刃和0C.你和&4. 卜-列四个等式:①J (_4)2 =4;②(一丽)2=16;③(丽)乙4;④J (-好=-4.正确的是 A.①②B.③④ 5. 估计V19+2的值是在A. 6和7之间B. 5和6之间 6. 下列运算正确的是( )C.②④D.①③A • ^52 — 42 =— 4 4, =5 — 4 = 1B. 7(-16)(-25) = 7^16 x 7^25 = -4 x (-5) = 20D.莎xy/j = 4护7. 已知一斜坡的坡比为2:1 (坡比二铅宜高度:水平宽度),斜坡长为15米,则斜坡上最高点离地面的高度为()A. 7. 5米B. 3亦米C. 6亦米D.型巧米?8. 实数a 、b 在数轴上的对应位置如图所示,贝IJ 、/石二讦+|b|的值为()------------ 1---------------- 1 ---------------- » ------------ ►a b 0A. a —2bB. aC. —aD. a+2b9. 若P2x+l + |y+3|=0,则{(x+yF 的值为()(A) a>-3(B )心一3(C) a>3 (D)心3A. V3B. 3C. 3^3C. 7和8之间D. 8和9之间D. 9C.5 12 17 13 13 1310. AABC 的三边长分别是1、k 、3,则化简7—^41?二36k + 81 — |2k — 3|的结果为() A. -5 B. 1 C. 13 D. 19-4k二、认真填一填(每小题4分,共24分)11・当"一1吋,二次根式二7的值是 ________________ 。

八年级数学下《二次根式》单元测试包括答案解析

八年级数学下《二次根式》单元测试包括答案解析

八年级数学下《二次根式》单元测试含答案解析一、选择题1.化简的结果是()A.2 B.﹣2 C.2或﹣2 D.42.下列计算正确的是()A.B.C.D.3.化简得()A.1 B.C.D.4.能使=成立的取值范围是()A.a>3 B.a≥0 C.0≤a<3 D.a<3或a>35.下列各式计算正确的是()A.2•3=6B.=2C.( +)2=2+3=5 D.﹣•=﹣6.化简﹣得()A.2 B.C.﹣2 D.47.已知x,y为实数,且y=++,则的值为()A.﹣ B.C.D.28.如图,某水库堤坝的横断面为梯形,背水坡AD的坡比(坡比是斜坡的铅直距离与水平距离的比)为1:1.5,迎水坡BC的坡比为1:,坝顶宽CD为3m,坝高CF为10m,则坝底宽AB约为()(≈1.732,保留3个有效数字)A.32.2 m B.29.8 m C.20.3 m D.35.3 m9.若a=3﹣,则代数式a2﹣6a﹣2的值是()A.0 B.1 C.﹣1 D.10.化简(﹣2)2008×(2+)2009的结果是()A.﹣l B.﹣2 C. +2 D.﹣﹣2二、填空题11.若是二次根式,则x的取值范围是.12.=;(﹣)2﹣=.13.=;=.14.化简:﹣3的结果是.15.计算:=.16.在平面直角坐标系中点A到原点的距离是.17.如图,自动扶梯AB段的长度为20m,BC=10m,则AC=m.18.比较大小:32;﹣﹣.19.若(x﹣)2+=0,则=.20.已知的小数部分为a,则a(a+2)=.三、解答题21.计算:(1)﹣+;(2)()2﹣;(3)(2﹣3)2;(4)(7+)2﹣(7﹣)2.22.如图,实数a、b在数轴上的位置,化简﹣﹣.23.如图,某校自行车棚的人字架棚顶为等腰三角形ABC,点D是边AB的中点,中柱CD=2,AB=2,求△ABC的周长及面积.24.己知x=+1,y=﹣1,求x2+y2﹣xy的值.25.观察下列各式:=2,=3,=4请你将发现的规律用含自然数n(n≥1)的等式表示出来.参考答案与试题解析一、选择题1.化简的结果是()A.2 B.﹣2 C.2或﹣2 D.4【考点】二次根式的性质与化简.【专题】计算题.【分析】根据二次根式的性质进行化简即可.【解答】解:=2.故选A.【点评】本题考查了二次根式的性质与化简.解题的关键是要知道开方出来的数是一个≥0的数.2.下列计算正确的是()A.B.C.D.【考点】二次根式的混合运算.【分析】根据二次根式加减,乘除运算法则与二次根式的化简的知识,即可求得答案.【解答】解:A、,故本选项错误;B、=2﹣,故本选项错误;C、,故本选项正确;D、,故本选项错误.故选C.【点评】此题考查了二次根式的混合运算.解题的关键是掌握二次根式加减,乘除运算法则与二次根式的化简.3.化简得()A.1 B.C.D.【考点】二次根式的性质与化简.【分析】根据二次根式的性质化简.【解答】解:原式=2=,故选B.【点评】本题考查了二次根式的化简,注意要化简成最简二次根式.4.能使=成立的取值范围是()A.a>3 B.a≥0 C.0≤a<3 D.a<3或a>3【考点】二次根式的乘除法.【分析】根据平方根有意义,必须被开方数≥0,分母不能为0求解即可.【解答】解:∵=成立,∴,解得a>3,故选:A.【点评】本题主要考查了二次根式的乘除法,解题的关键是熟记运算法则.5.下列各式计算正确的是()A.2•3=6B.=2C.( +)2=2+3=5 D.﹣•=﹣【考点】二次根式的乘除法.【分析】运用二次根式的乘除法法则判定即可.【解答】解:A、2•3=6,故A选项错误;B、=3,故B选项错误;C、(+)2=2+3+2=5+2,故C选项错误;D、﹣•=﹣,故D选项正确.故选:D.【点评】本题主要考查了二次根式的乘除法,解题的关键是熟记运算法则.6.化简﹣得()A.2 B.C.﹣2 D.4【考点】二次根式的混合运算.【分析】先去括号,再合并同类二次根式即可.【解答】解:原式=2﹣2﹣2=﹣2.故选C.【点评】本题考查的是二次根式的混合运算,在进行此类运算时一般先把二次根式化为最简二次根式的形式后再运算.7.已知x,y为实数,且y=++,则的值为()A.﹣ B.C.D.2【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式求出x,再求出y,然后代入代数式进行计算即可得解.【解答】解:由题意得,6x﹣1≥0且1﹣6x≥0,解得x≥且x≤,所以,x=,y=,所以,==.故选C.【点评】本题考查的知识点为:二次根式的被开方数是非负数.8.如图,某水库堤坝的横断面为梯形,背水坡AD的坡比(坡比是斜坡的铅直距离与水平距离的比)为1:1.5,迎水坡BC的坡比为1:,坝顶宽CD为3m,坝高CF为10m,则坝底宽AB约为()(≈1.732,保留3个有效数字)A.32.2 m B.29.8 m C.20.3 m D.35.3 m【考点】解直角三角形的应用﹣坡度坡角问题.【专题】应用题.【分析】根据坡比的定义可分别求出BF、AE,继而根据AB=BF+FE+AE即可得出答案.【解答】解:在Rt△BCF中,∵CF:BF=1:1.5,CF=10m,∴BF=15m,在Rt△BCF中,∵DE:AE=1:,DE=10m,∴BF=10m,故可得AB=BF+FE+AE=15+3+10≈35.3m.故选D.【点评】本题考查了坡度、坡角的知识,关键是理解坡度的定义,分别求出BF、AE的长度.9.若a=3﹣,则代数式a2﹣6a﹣2的值是()A.0 B.1 C.﹣1 D.【考点】完全平方公式;实数的运算.【分析】先根据完全平方公式整理,然后把a的值代入计算即可.【解答】解:a2﹣6a﹣2,=a2﹣6a+9﹣9﹣2,=(a﹣3)2﹣11,当a=3﹣时,原式=(3﹣﹣3)2﹣11,=10﹣11,=﹣1.故选C.【点评】熟记完全平方公式:(a﹣b)2=a2﹣2ab+b2,利用完全平方公式先化简再代入求值更加简便.10.化简(﹣2)2008×(2+)2009的结果是()A.﹣l B.﹣2 C. +2 D.﹣﹣2【考点】二次根式的混合运算.【专题】计算题.【分析】先根据积的乘方得到原式=[(﹣2)(+2)]2008•(+2),然后利用平方差公式计算即可.【解答】解:原式=[(﹣2)(+2)]2008•(+2)=(3﹣4)2008•(+2)=+2.故选C.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.二、填空题11.若是二次根式,则x的取值范围是x≤.【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,3﹣4x≥0,解得x≤.故答案为:x≤.【点评】本题考查的知识点为:二次根式的被开方数是非负数.12.=;(﹣)2﹣=0.【考点】二次根式的混合运算.【专题】计算题.【分析】先把化为最简二次根式,然后约分即可;根据二次根式的性质计算(﹣)2﹣.【解答】解:=×=;(﹣)2﹣=21﹣21=0.故答案为,0.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.13.=﹣1;=35.【考点】二次根式的性质与化简.【分析】根据二次根式的性质进行化简即可.【解答】解:=﹣1;==35.故答案为:﹣1;35.【点评】本题考查了二次根式的性质,=|a|=.14.化简:﹣3的结果是.【考点】二次根式的加减法.【分析】先进行二次根式的化简,然后合并同类二次根式即可.【解答】解:原式=2﹣=.故答案为:.【点评】本题考查了二次根式的加减法,解答本题的关键是掌握二次根式的化简以及同类二次根式的合并.15.计算:=2.【考点】二次根式的乘除法;平方差公式.【分析】本题是平方差公式的应用,是相同的项,互为相反项是﹣与.【解答】解:( +)(﹣)=5﹣3=2.【点评】运用平方差公式(a+b)(a﹣b)=a2﹣b2计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.16.在平面直角坐标系中点A到原点的距离是2.【考点】勾股定理;点的坐标.【专题】计算题.【分析】根据平面直角坐标系中点A,其中横坐标为﹣,纵坐标为﹣,利用勾股定理即可求出点A到原点的距离.【解答】解:∵在平面直角坐标系中,点A,∴点A到原点的距离为:=2.故答案为:2.【点评】此题主要考查学生对勾股定理和点的坐标的理解和掌握,此题难度不大,属于基础题.17.如图,自动扶梯AB段的长度为20m,BC=10m,则AC=10m.【考点】二次根式的应用.【分析】根据勾股定理求解即可.【解答】解:AC===10.故答案为:10.【点评】本题考查了二次根式的应用,解答本题的关键是根据勾股定理求出AC的长度.18.比较大小:3>2;﹣>﹣.【考点】实数大小比较.【分析】先求出两数的平方,再比较即可;求出两个数的倒数,根据倒数求出即可.【解答】解:∵(3)2=18,(2)2=12,∴3>2,∵=+,=+,又∵>,∴﹣>﹣,故答案为:>,>.【点评】本题考查了实数的大小比较的应用,解此题的关键是能选择适当的方法比较两个实数的大小.19.若(x﹣)2+=0,则=.【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.【解答】解:∵(x﹣)2+=0,∴,解得,∴==.故答案为.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.20.已知的小数部分为a,则a(a+2)=2.【考点】估算无理数的大小.【分析】先根据的范围求出a的值,代入后进行计算即可.【解答】解;∵1<<2,∴a=﹣1,∴a(a+2)=(﹣1)(﹣1+2)=(﹣1)(+1)=3﹣1=2,故答案为:2.【点评】本题考查了估算无理数的大小,二次根式的混合运算,平方差公式的应用,解此题的关键是求出a的值.三、解答题21.计算:(1)﹣+;(2)()2﹣;(3)(2﹣3)2;(4)(7+)2﹣(7﹣)2.【考点】二次根式的混合运算.【专题】计算题.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先利用二次根式的性质得到原式=﹣,然后约分后进行减法运算;(3)利用完全平方公式计算;(4)先利用平方差公式计算,然后进行乘法运算.【解答】解:(1)原式=2﹣+=;(2)原式=﹣=0;(3)原式=12﹣12+18=30﹣12;(4)原式=(7++7﹣)(7+﹣7+)=14×2=28.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.22.如图,实数a、b在数轴上的位置,化简﹣﹣.【考点】二次根式的性质与化简;实数与数轴.【专题】计算题.【分析】根据数轴表示数的方法得到a<0<b,再根据二次根式的性质得原式=|a|﹣|b|﹣|a ﹣b|,然后去绝对值后合并即可.【解答】解:∵a<0<b,∴原式=|a|﹣|b|﹣|a﹣b|=﹣a﹣b+a﹣b=﹣2b.【点评】本题考查了二次根式的性质与化简:=|a|.也考查了实数与数轴.23.如图,某校自行车棚的人字架棚顶为等腰三角形ABC,点D是边AB的中点,中柱CD=2,AB=2,求△ABC的周长及面积.【考点】二次根式的应用.【分析】根据点D为AB的中点,三角形ABC为等腰三角形,可得CD⊥AB,并且求出AD和BD的长度,在Rt△ACD中求出AC的长度,同理可求出BC的长度,继而以求得△ABC的周长及面积.【解答】解:在等腰三角形ABC中,∵点D是边AB的中点,∴CD⊥AB,AD=BD=,在Rt△ACD中,∵AD=,CD=2,∴AC==3,同理可得,BC=3,则△ABC的周长为3+3+2=8,面积为×2×2=6.【点评】本题考查了二次根式的应用以及勾股定理的应用,解答本题的关键是得出CD为三角形ABC的高,并且运用勾股定理求出等腰三角形的腰长,难度一般.24.己知x=+1,y=﹣1,求x2+y2﹣xy的值.【考点】二次根式的化简求值.【分析】先把原式化为x2+y2﹣2xy+xy=(x﹣y)2+xy,再求出x﹣y和xy的值,整体代入即可.【解答】解:∵x=+1,y=﹣1,∴x﹣y=(+1)﹣(﹣1)=+1﹣+1=2,xy=(+1)(﹣1)=()2﹣12=2﹣1=1;∴原式x 2+y 2﹣2xy +xy=(x ﹣y )2+xy =22+1 =5.【点评】本题考查了二次根式的化简求值,以及分母有理化和数学的整体思想,是基础知识要熟练掌握.25.观察下列各式:=2,=3,=4请你将发现的规律用含自然数n (n ≥1)的等式表示出来 =(n +1)(n ≥1) .【考点】二次根式的性质与化简. 【专题】规律型.【分析】观察分析可得:=(1+1); =(2+1)则将此题规律用含自然数n (n ≥1)的等式表示出来是=(n +1)(n ≥1).【解答】解:由分析可知,发现的规律用含自然数n (n ≥1)的等式表示出来为=(n +1)(n ≥1).故答案为:=(n +1)(n ≥1).【点评】本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.本题的关键是根据数据的规律得到=(n +1)(n≥1).。

八年级下册数学《二次根式》单元测试题附答案

八年级下册数学《二次根式》单元测试题附答案

八年级下册数学《二次根式》单元测试卷一、单选题1.在根式中,最简二次根式是( ) A .①② B .③④C .①③D .①④2.要使式子5x +有意义,则x 的取值范围为( ) A .5x ≠- B .0x >C .5x ≠- 且0x >D .0x ≥3.把 )ABC .D .4.下列各式正确的是( )A a =B a =±C ||a =D 2a =5.若方程2(2)144y -=,则y 的值是 A .10B .-10C .-10或14D .126.若1a =1b = A .3B .±3C .5D .97.如果1x ≥A .(x -B .(x ±-C .(1x -D .(x -83x =-,则x 的取值范围是 A .3x > B .3x ≥C .3x <D .3x ≤9=x 的取值范围是( ) A .x ≠2B .x ≥0C .x ≥2D .x >210.已知xy<0 )A .B .-C .D .-11.化简A .5-B .1C .D .112.如果ab >0,a +b <0,那么下面各式:①√ab =√a√b ; ②√a b⋅√ba=1;③√ab ÷√ab=-b .其中正确的是( ) A .①②B .①③C .①②③D .②③13.化简201520162)2)⋅的结果为 A .32-- B .32+ C .32-D .14++10,则x 的值等于( ) A .2 B .±2C .4D .±4二、解答题15.若,x y 都是实数,且8y =,求 x +3y 的立方根。

16.计算:(1)((÷(2)17.计算:+++⋅⋅⋅+18.如图,数轴上表示l的对应点分别为A、B,点B关于点A的对称点为C,设点C表示的数为x,求2xx+的值.19.阅读下列解题过程,按要求回答问题.)0xy<<解:原式①②= x③④.(1)上面的解答过程是否正确?若不正确,指出是哪一步出现错误;(2)请写出你认为正确的解答过程.20.已知2310x x-+=,.21.阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:231+=+(,善于思考的小明进行了以下探索:设(2a m +=+(其中ab m n 、、、均为整数),则有22a m 2n +=++∴22a m 2n b 2mn =+=,.这样小明就找到了一种把部分a +法.请你仿照小明的方法探索并解决下列问题:当a b m n 、、、均为正整数时,若(2a m +=+,用含m 、n 的式子分别表示a b 、,得a = ,b = ;(2)利用所探索的结论,找一组正整数a b m n 、、、,填空: + =( +2;(3)若(2a m +=+,且ab m n 、、、均为正整数,求a 的值.三、填空题22.计算________. 23.比较大小:6√5________5√6.24.已知01a <<____________.25.化简:7()3.2614+⋅⋅⋅+=的解是______.参考答案1.C【解析】【分析】直接根据最简二次根式的定义求解即可.【详解】不能化简,是最简二次根式;,不是最简二次根式;不能化简,是最简二次根式;故选C.【点睛】本题考查了最简二次根式:满足①被开方数不含分母;②被开方数中不含开得尽方的因数或因式的二次根式叫最简二次根式.2.D【解析】【分析】根据分式有意义的条件可得x+5≠0,再根据二次根式有意义的条件可得x≥0,由此即可求得答案.【详解】由题意得:x+5≠0,且x≥0,解得:x≥0,故选D.【点睛】本题考查了分式有意义的条件二次根式有意义的条件,关键是掌握分式有意义的条件是分母不等于零,二次根式中的被开方数是非负数.3.C【解析】解:由x<0,∴=.故选C.点睛:本题主要考查了二次根式的性质与化简,解题的关键是求出x<0.4.C【解析】解:A.当a<0﹣a.故选项错误;BC.正确.D.当a≥0a.故选项错误.故选C.5.C【解析】∵(y-2)2=144,∴y-2=12或y-2=-12,∴y=14或y=-10.故选C.6.A【解析】【分析】【详解】=3.故选A.【点睛】本题考查了二次根式的化简求值,正确对所求的式子进行变形是关键.7.A【解析】【分析】然后再根据绝对值的性质进行化简即可得.【详解】∵x≥1,∴1-x≤0,(x-1,故选A.【点睛】本题考查了二次根式的性质与化简,熟练掌握二次根式的性质是解题的关键.8.B【解析】【分析】=|x-3|,根据题意得|x-3|=x-3,然后利用绝对值的意义即可得到x的取值范围.【详解】=|x-3|,∴|x-3|=x-3,∴x-3≥0,∴x≥3,故选B.【点睛】=以及绝对值的性质是解题的关键.a9.D【解析】【分析】根据被开方数为非负数,且分式的分母不能为0,列不等式组求出x的取值范围即可.【详解】由题意可得:20xx≥⎧⎨-⎩>,解得:x>2.故选D.【点睛】二次根式的被开方数是非负数,分母不为0,是本题确定取值范围的主要依据.10.B【解析】y,>∵0xy<,x∴<,∴原式=-故选B.11.C【解析】3,=====故选C.12.D【解析】【分析】先根据ab>0,a+b<0,判断出a、b的符号,再逐个式子分析即可.【详解】∵ab>0,a+b<0,∴a<0,b<0,∴√a√b无意义,故①不正确;√a b ⋅√b a =√a b ×ba =1,故②正确√ab ÷√ab =√ab ×ba =√b 2=−b ,故③正确. 故选D. 【点睛】本题考查了二次根式的性质,熟练掌握性质是解答本题的关键. √a 2=|a |={a(a ≥0)−a(a <0),√ab =√a ⋅√b (a ≥0,b ≥0),√ab =√a√b (a ≥0,b >0). 13.A 【解析】 【分析】逆用积的乘方法则以及二次根式的运算法则进行计算即可得. 【详解】原式=)))201520152?2?2=))2015222⎡⎤⎣⎦=-)2=2 , 故选A. 【点睛】本题考查了二次根式的运算,积的乘方,逆用积的乘方法则将所给式子进行变形是解题的关键. 14.A 【解析】 【分析】方程左边化成最简二次根式,再解方程. 【详解】原方程化为10=,合并,得10=,2=,即24x =,2x =.故选A . 【点睛】本题主要考查二次根式的性质与化简,二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并. 15.3 【解析】 【分析】首先根据二次根式的非负性可以求出x 的值,再将其代入已知等式即可求出y 的值,从而求出x+3y 的值,再对其开立方根即可求解. 【详解】 由题意可知,3030x x -≥⎧⎨-≥⎩解得:x=3, 则y=8,x+3y=27, 故x+3y 的立方根是3. 【点睛】本题考查了二次根式有意义的条件,立方根及平方根的知识,属于基础题,掌握各个知识点是关键. 二次根式有意义的条件:各个二次根式中的被开方数都必须是非负数.16.(1)9ab 2) 2. 【解析】 【分析】(1)按顺序根据二次根式乘除法的运算法则进行计算即可; (2)先分别化简每个二次根式,然后再按运算顺序进行计算即可. 【详解】(1)原式=23··2a=29·a b a=9ab(2)原式=(÷==2.【点睛】本题考查了二次根式的混合运算,熟练掌握运算法则是解题的关键.17.9【解析】【分析】先分母有理化,然后再合并同类二次根式即可.【详解】原式=(100++1100+-1=9.【点睛】 本题考查了二次根式的混合运算,分母有理化,正确进行分母有理化是解题的关键. 18.4【解析】【分析】首先根据已知条件可以确定线段AB 的长度,然后根据对称的性质即可确定x 的值,代入所求代数式计算即可解决问题.【详解】根据题意得AB 1,由对称性知AC =AB ,所以AC -1,所以x =1--1)=2,所以x +2x=2=2=4.【点睛】考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.19.(1)②③出现错误;(2【解析】【分析】(1)根据y <x <0,即可作出判断;(2)首先把被开方数中的式子的分母分解因式,即可把能开方的因式开出,然后分子分母同时乘以x ,即可得到能开方的因式,即可化简.【详解】(1)不正确,∵y <x <0,∴y-x<0x =-,∴②③出现错误;(2)原式x -【点睛】a =是解此题的关键.20【解析】 试题分析:在方程x 2-3x+1=0两边同除以x 可得130x x -+=,即可得13x x +=,根据完全平方公式把2212x x +-化为214x x ⎛⎫+- ⎪⎝⎭,代入求值即可. 试题解析:方程2310x x -+=中,当0x =时 ,方程左边为00110-+=≠,故0x ≠;将方程两边同除以x ,则有: 130x x -+=, 即13x x +=;∴原式====21.解:(1)22m 3n +;2mn .(2)4,2,1,1(答案不唯一).(3)由题意,得22a m 3n {42mn =+=.∵4=2mn ,且m 、n 为正整数,∴m =2,n =1或m =1,n =2.∴a =22+3×12=7或a =12+3×22=13.【解析】(1)∵2(a m +=+,∴2232a m n +=++,∴a =m 2+3n 2,b =2mn .故答案为m 2+3n 2,2mn .(2)设m =1,n =2,∴a =m 2+3n 2=13,b =2mn =4.故答案为13,4,1,2(答案不唯一).(3)由题意,得a =m 2+3n 2,b =2mn .∵4=2mn ,且m 、n 为正整数,∴m =2,n =1或m =1,n =2,∴a =22+3×12=7,或a =12+3×22=13.22.1【解析】试题解析:原式.故答案为1.23.>.【解析】试题解析:6√5=√62×5=√180,5√6=√52×6=√150;∵180>150,∴√180>√150,即6√5>5√6.考点:实数大小比较.24.2 a【解析】【分析】根据完全平方公式结合二次根式的性质进行化简即可求得答案. 【详解】∵0<a<1,∴1a>1,=11a a a a-++=2a,故答案为:2 a .【点睛】本题考查了二次根式的性质与化简,熟练掌握完全平方公式的结构特征是解本题的关键.25.73【解析】【分析】利用二次根式的性质进行化简,计算即可求得结果.【详解】原式=100073⎛⎫ ⎪⎝⎭ =100099910009997337⨯ =73, 故答案为:73. 【点睛】本题考查了二次根式的性质与化简,熟练掌握相关的运算法则是解题的关键.26.9【解析】【分析】设,由()11111y y y y =-++可将原方程进行化简,解化简后的方程即可求得答案. 【详解】设,则原方程变形为()()()()()1111112894y y y y y y ++=+++++, ∴1111111112894y y y y y y -+-++-=+++++, 即11194y y -=+, ∴4y+36-4y=y(y+9),即y 2+9y-36=0,∴y=-12或y=3,,,∴x=9,故答案为:9.【点睛】本题考查了解无理方程,解题的关键是利用换元法,还要注意()11111y y y y =-++的应用.。

新人教版初中数学八年级数学下册第一单元《二次根式》测试卷(含答案解析)(1)

新人教版初中数学八年级数学下册第一单元《二次根式》测试卷(含答案解析)(1)

一、选择题1.是同类二次根式的是( )A B C D2. )A B C D 3.下列计算正确的是( ). A .()()22a b a b b a +-=- B .224x y xy +=C .()235a a -=-D .=4.下列式子中是二次根式的是( )A B C D 5.设a b 0>>,2240a b ab +-=,则a b b a +-的值是( )A .2B .-3C .D .6x 的取值范围是( )A .1≥xB .1x >C .1x ≤D .1x = 7.下列计算中,正确的是()A .=B .10==C .(33+-=-D .2a b =+ 8.下列各式正确的是( ).A .2=10BC .D 2 9.下列计算正确的是( )A =B .8-=C =D 4= 10.下列根式是最简二次根式的是( )A B C D 11.估计 )A .在2~3之间B .在3~4之间C .在4~5之间D .在5~6之间12. ).A .1x ≤B .1x <C .1≥xD .1x ≠二、填空题13.已知3y x =+,当x 分别取1,2,3,,2020⋯时,所对应的y 值的总和是_________.14.=_____15.16.已知5ab =,则=__.17.化简-15827102÷31225a=___________. 当1<x <4时,|x -=____________.18.比较大小:19.已知3y =,则()x x y +的值为_________.20.在实数范围内有意义,则 x 的取值范围是_______ .三、解答题21.化简(1)+(222.计算:(1(21(3)(﹣2)(4)223.计算:(12- (2) 248(31)(31)(31)(31)1++++- 24.先化简,再求代数式21123a a a a a ⎛⎫+++- ⎪⎝⎭的值,其中31a 25.计算:(1(2(3)201|5|1)3-⎛⎫--+- ⎪⎝⎭(4)2-.26.已知1x =,x 的整数部分为a ,小数部分为b ,求a b的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】将各个二次根式化成最简二次根式后,选被开方数为2的根式即可.【详解】A 不符合题意;B 不符合题意;,因此选项C 不符合题意;是同类二次根式,因此选项D 符合题意;故选:D .【点睛】本题考查同类二次根式的意义,将二次根式化成最简二次根式后,被开方数相同的二次根式是同类二次根式.2.B解析:B【分析】根据分数的性质,在分子分母同乘以2,再根据二次根式的性质化简即可.【详解】4===, 故选:B .【点睛】此题考查化简二次根式,掌握分数的性质确定分子分母同乘以最小的数值,使分母化为一个数的平方,由此化简二次根式是解题的关键.3.D解析:D【分析】根据平方差公式、合并同类项、幂的乘方、二次根式的运算法则即可求出答案.【详解】A.原式=a 2−b 2,故A 错误;B.2x 与2y 不是同类项,不能合并,故B 错误;C.原式=a 6,故C 错误;D.原式=D 正确;故选:D .【点睛】本题考查了平方差公式、合并同类项、幂的乘方、二次根式,解题的关键是熟练运用运算法则,本题属于基础题型.4.C解析:C【分析】利用二次根式的定义进行解答即可.【详解】A 中,当0a <时,不是二次根式,故此选项不符合题意;B 1x <-时,不是二次根式,故此选项不符合题意;C =()2 10x +≥恒成立,因此该式是二次根式,故此选项符合题意;D 20-<,不是二次根式,故此选项不符合题意;故选:C .【点睛】(0a ≥)的式子叫做二次根式. 5.D解析:D【分析】由2240a b ab +-=可得2()6a b ab +=,2()2a b ab -=,然后根据0a b >>求得a b +和a b -的值,代入即可求解.【详解】∵2240a b ab +-=,即224a b ab +=,∴2()6a b ab +=,2()2a b ab -=,∵0a b >>,∴a b +=a b -=,∴a b a b b a a b ++=---== 故选:D .【点睛】本题考查了求分式的值以及二次根式的除法运算,正确运用完全平方公式是解题的关键. 6.A解析:A【分析】根据二次根式有意义的条件可得x-1≥0,再解即可.【详解】解:由题意得:x-1≥0,解得:x≥1,故选:A .【点睛】本题考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数. 7.C解析:C【分析】根据二次根式的加法、乘法运算法则对每个选项的式子计算,判断正误即可.【详解】A 、=A 选项错误.B 、=B 选项错误.C 、22(339123+-=-=-=-,故C 选项正确.D 、2a b =+,故D 选项错误.故选:C .【点睛】本题主要考查二次根式的加法、乘法运算,熟记二次根数的加法、乘法运算法则是解题关键.8.D解析:D【分析】根据二次根式的加法法则,乘法计算法则计算后依次判断.【详解】AB 不是同类二次根式,不能计算,故该项错误;C 、=≠D2=,故该项正确;故选:D.【点睛】此题考查二次根式的计算,掌握二次根式的加法计算法则,二次根式的乘法计算法则,二次根式的化简是解题的关键.9.C解析:C【分析】根据二次根式的加减乘除运算法则分别计算出各项的结果,再进行判断得出结论即可.【详解】解:A≠B、8-≠C=D=,原式计算错误,故不符合题意;故选:C.【点睛】此题主要考查了二次根式的加减乘除运算,熟练掌握二次根式的运算法则是解答此题的关键.10.D解析:D【分析】根据最简二次根式的定义即可求出答案.【详解】A,故A不是最简二次根式;B=,故B不是最简二次根式;C,故C不是最简二次根式,2故选:D.【点睛】本题考查最简二次根式,解题的关键是正确理解最简二次根式的定义,本题属于基础题型.11.C解析:C【分析】先根据二次根式的乘法法则可知,再由16<24<25,利用算术平方根的性质可得4<5,可得结果.【详解】解:∵16<24<25,∴45,即4<5,故选:C .【点睛】本题主要考查了估算无理数的大小,熟练掌握算术平方根的性质及二次根式的乘法法则是解答此题的关键.12.A解析:A【分析】根据被开方数大于等于0列式计算即可得解.【详解】10x -≥,解得,1x ≤.故选:A .【点睛】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.二、填空题13.2022【分析】将原式化简为然后根据x 的不同取值求出y 的值最后把所有的y 值加起来即可【详解】解:当时当时当时∴当分别取时所有值的总和是:故答案是:2022【点睛】本题考查二次根式的化简解题的关键是掌解析:2022【分析】 将原式化简为23y x x =--+,然后根据x 的不同取值,求出y 的值,最后把所有的y 值加起来即可.【详解】解:3323y x x x x =+=+=--+,当2x ≥时,231y x x =--+=,当2x <时,2352y x x x =--+=-,当1x =时,523y =-=,∴当x 分别取1,2,3,,2020⋯时,所有y 值的总和是:312019320192022+⨯=+=. 故答案是:2022.【点睛】本题考查二次根式的化简,解题的关键是掌握二次根式的性质进行化简.14.【分析】先将化为再合并同类二次根式即可【详解】解:=故答案为【点睛】此题考查了二次根式的加减法把化为是解答此题的关键解析:【分析】化为【详解】==.故答案为【点睛】化为15.<【分析】直接利用二次根式的性质分别变形进而比较得出答案【详解】解:==∵>∴∴<故答案为:<【点睛】此题主要考查了二次根式的分母有理化正确化简二次根式是解题关键解析:<【分析】直接利用二次根式的性质分别变形,进而比较得出答案.【详解】=====∵+<∴∴故答案为:<.【点睛】此题主要考查了二次根式的分母有理化,正确化简二次根式是解题关键.16.【分析】先利用二次根式化简然后分和两种情况解答即可【详解】解:原式当时原式;当时原式;即故答案为【点睛】本题主要考查了二次根式的性质和绝对值的性质根据二次根式的性质化简所给的二次根式是解答本题的关键解析:±【分析】先利用二次根式化简,然后分0a >、0b >和0a <,0b <两种情况解答即可.【详解】解:原式=+=,=5ab =,∴当0a >,0b >时,原式==当0a <,0b <时,原式=-=-即=±故答案为±【点睛】本题主要考查了二次根式的性质和绝对值的性质,根据二次根式的性质化简所给的二次根式是解答本题的关键.17.;【分析】由二次根式的性质进行化简然后计算除法运算即可;由绝对值的意义和二次根式的性质进行化简即可求出答案【详解】解:-÷====;∵∴∴;∴;故答案为:;【点睛】本题考查了二次根式的乘除运算二次根解析:2- 25x -+.【分析】由二次根式的性质进行化简,然后计算除法运算即可;由绝对值的意义和二次根式的性质进行化简即可求出答案.【详解】 解:-15827102÷31225a=158-=215896a-⨯÷=23-=2-∵14x <<,∴40x -<,10x ->,∴44x x -=-∴44(1)25x x x x -=---=-+;故答案为:2-25x -+.【点睛】本题考查了二次根式的乘除运算,二次根式的性质,绝对值的意义,解题的关键是熟练掌握运算法则,正确的进行解题.18.>【分析】根式比较大小:通常先转化成分数指数幂寻找分母的最小公倍数作为新的指数从而进行解题【详解】解:分母2和3的最小公倍数为6;∴由于即故所以故答案为:>【点睛】本题考查了实数的比较大小解题的关键 解析:>【分析】根式比较大小:通常先转化成分数指数幂,寻找分母的最小公倍数作为新的指数.从而进行解题.【详解】 1310=125=,分母2和3的最小公倍数为6; ∴16623(10)10100===,16632(5)5125===,由于100125<,即66<,,所以>.故答案为:>.【点睛】本题考查了实数的比较大小,解题的关键是掌握比较大小的法则进行计算. 19.25【分析】根据二次根式有意义的条件可得关于x 的不等式组进而可求出xy 然后把xy 的值代入所求式子计算即可【详解】由题意得:所以x=2当x=2时y=3所以故答案为:25【点睛】本题考查了二次根式有意义解析:25【分析】根据二次根式有意义的条件可得关于x 的不等式组,进而可求出x 、y ,然后把x 、y 的值代入所求式子计算即可.【详解】由题意得:2020x x -≥⎧⎨-≥⎩,所以x=2,当x=2时,y=3,所以22()(23)525x x y +=+==.故答案为:25.【点睛】本题考查了二次根式有意义的条件、代数式求值和一元一次不等式组,属于基础题目,熟练掌握基本知识是解题的关键. 20.【分析】根据二次根式的性质被开方数大于等于0列出不等式即可求解【详解】由题意得:解得:故答案为:【点睛】本题主要考查了二次根式熟练掌握二次根式的性质并列出不等式是解决本题的关键解析:3x ≥【分析】根据二次根式的性质,被开方数大于等于0,列出不等式即可求解.【详解】由题意得:30x -解得:3x故答案为:3x .【点睛】本题主要考查了二次根式,熟练掌握二次根式的性质并列出不等式是解决本题的关键.三、解答题21.(1)1-+;(2)54【分析】(1)先利用平方差公式计算,然后将每个二次根式化为最简二次根式,最后合并计算即可;(2)先将每个二次根式化简为最简二次根式,然后合并即可.【详解】(1)解:原式22231=-+=-+=-+(2)解:原式=== 【点睛】 本题考查了二次根式的运算,熟练掌握运算法则是解题的关键.22.(1);(2)2;(31;(4)21﹣【分析】(1)先化简二次根式,再合并同类项即可求解;(2)根据二次根式乘除法性质进行化简计算即可解答;(3)根据二次根式的乘法运算法则进行求解即可;(4)利用完全平方公式进行计算即可.【详解】解:(1(21=1 =3﹣1=2;(3)(﹣2)6+5﹣=1;(4)2=222-⨯=18﹣+3=21﹣.【点睛】本题考查了二次根式的加减乘除混合运算、完全平方公式,熟记公式,掌握二次根式的运算法则是解答的关键.23.(1)52;(2)16332- 【分析】(1)先由二次根式的性质、立方根、绝对值的意义进行化简,然后进行计算,即可得到答案;(2)由平方差公式进行化简,然后得到答案.【详解】解:(1)原式31322=++52=; (2)原式248(31)(31)(31)(31)(31)12-++++=-16163133122--=-=. 【点睛】本题考查了平方差公式,实数的混合运算,二次根式的性质,以及绝对值的化简,解题的关键是熟练掌握运算法则进行计算.24.()()123a aa++;33+【分析】根据分式的乘除法则进行化简即可解题.【详解】原式=()()() 2223112 11132+=+33333a a aa a a a aa a a a a a++++--++==,当a=时,131====.【点睛】本题考查分式的化简求值及二次根式的运算,熟练运用运算法则是解题关键.25.(1)-;(2)43)16;(4)-.【分析】(1)先化简二次根式,再进行二次根式的加减运算即可.(2)先化简二次根式,再进行二次根式的乘除运算,最后进行二次根式的加减运算即可.(3)先利用绝对值,零指数幂,负整数指数幂、立方根计算出各项,再进行加减运算即可.(4)先利用完全平方式和平方差公式展开,再化简二次根式,最后进行二次根式加减乘除混合运算即可.【详解】(12433=⨯⨯==-(22=4=4=+(3)21|5|1)3-⎛⎫--+-⎪⎝⎭5193 =-++ 16=(4)2-22222=--+612202=--+4=-⨯=-【点睛】本题考查实数的混合运算,掌握去绝对值,零指数幂、负整数指数幂和求立方根的计算,二次根式的混合运算是解答本题的关键.26【分析】由2<31的整数部分与小数部分,即,a b的值,再代入ab进行分母有理化,从而可得答案.【详解】解:2<3,3∴<4,x的整数部分为a,小数部分为b,3 a∴=,132 b=-=,)32322.74ab∴====-【点睛】本题考查的是无理数的估算,整数部分与小数部分的含义,二次根式的除法运算,平方差公式的应用,掌握分母有理化是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题1.下列各式变形中,正确的是( )A .236x x x ⋅=B xC .2211x x x x x ⎛⎫-⋅=- ⎪⎝⎭D .2211234x x x ⎛⎫-+=- ⎪+⎝⎭2. )A .1B .2C .3D .43.下列二次根式中是最简二次根式的是( )A BC D 4.下列计算正确的是( )A .236a a a +=B .22(3)6a a -=C .-=D .()222x y x y -=-5.( )A .1个B .2个C .3个D .4个 6.设a b 0>>,2240a b ab +-=,则a b b a +-的值是( )A .2B .-3C .D .7.已知三个数2,4如果再添加一个数,使这四个数成比例,则添加的数是( ).A .B .或C .D .8.下列运算正确的有( )个.①6-==②72==2=④=⑤=⑥()()221312*********-=+-= A .1 B .2 C .3 D .4 9.下列运算正确的是( ) A .628+= B .66-= C .623÷= D .()266-=10.若根式1x -在实数范围内有意义,则( ).A .1x ≤B .1x <C .1≥xD .1x ≠11.下列运算正确的是( )A .235⋅=B .193627⋅=C .6212⋅=D .32462⋅= 12.函数12y x =-中,自变量x 的取值范围是( ). A .2x > B .2x ≠ C .2x < D .0x ≠二、填空题13.计算:()235328-+---=__________.14.实数a ,b 在数轴上的位置如图所示,化简:|a +1|﹣22(1)()b a b -+-=_____.15.若224x x y -+-+=,则y x =________.16.若224y x x =-+-+,则y x 的平方根是__________. 17.已知223y x x =-+-+,则xy 的值为__________.18.计算:2210(15)-=_____,818+=______.19.13a a+=,则a a +=______. 20.已知实数a 、b 在数轴上的位置如图所示,化简2()a b a b -++=_____________三、解答题21.计算:(1)121850322(2)256)(56)51)-.22.|2|x -. 23.计算:(1(2(3)201|5|1)3-⎛⎫--+- ⎪⎝⎭(4)2-.24.计算:1.25.先化简,再求值:2221111x x x x -+⎛⎫÷- ⎪-⎝⎭,其中x 1.26.2.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】依据同底数幂的乘法法则、二次根式的性质、完全平方公式以及分式的运算法则,即可得出结论.【详解】解:A .x 2•x 3=x 5,故本选项不合题意;x =,故本选项不合题意;C.2311x x x x ⎛⎫-⋅=- ⎪⎝⎭,故本选项不合题意; D.2211234x x x ⎛⎫-+=- ⎪+⎝⎭,故本选项符合题意; 故选:D .【点睛】本题考查了同底数幂的乘法法则、二次根式的性质、完全平方公式以及分式的运算法则,解题的关键是熟练掌握运算法则.2.C解析:C【分析】为同类根式,即可得到此方程的正整数解的组数有三组.【详解】解:∵,x ,y 为正整数,∴====∴11327x y =⎧⎨=⎩,224812x y =⎧⎨=⎩,331473x y =⎧⎨=⎩,共有三组正整数解. 故选:C .【点睛】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.3.A解析:A【分析】利用最简二次根式定义判断即可.【详解】2=,故本选项不合题意;==,故本选项不合题意. 故选:A .【点睛】此题考查了最简二次根式,熟练掌握最简二次根式定义是解本题的关键.4.C解析:C【分析】根据合并同类项、幂的乘方与积的乘方、二次根式的加减及完全平方公式逐个进行判断即可.【详解】解:A .2a+3a=5a ,因此选项A 不符合题意;B .(-3a )2=9a 2,因此选项B 不符合题意;C .(3=-=C 符合题意;D .(x-y )2=x 2-2xy+y 2,因此选项D 不符合题意;故选:C .【点睛】本题考查合并同类项、幂的乘方与积的乘方、二次根式的加减及完全平方公式,依据法则或运算性质逐个进行计算才能得出正确答案.5.B解析:B【分析】根据最简二次根式的定义进行求解即可.【详解】=2==2个,故选:B .【点睛】本题考查了最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.6.D解析:D【分析】由2240a b ab +-=可得2()6a b ab +=,2()2a b ab -=,然后根据0a b >>求得a b +和a b -的值,代入即可求解.【详解】∵2240a b ab +-=,即224a b ab +=,∴2()6a b ab +=,2()2a b ab -=,∵0a b >>, ∴a b +=a b -=,∴a b a b b a a b ++=---== 故选:D .【点睛】本题考查了求分式的值以及二次根式的除法运算,正确运用完全平方公式是解题的关键. 7.D解析:D运用比例的基本性质,将所添的数当作比例式a:b=c:d中的任何一项,进行计算即可,【详解】设添加的这个数是x当24:x=时,2x=x=当2:4x=时,2x=x=当2:4x=时,4x=2x=,当2:4x=8=,解得x=故选D.【点睛】本题考查比例的基本性质,注意写比例式的时候,一定要按照顺序写,顺序不同,结果不同.8.A解析:A【分析】根据二次根式的运算法则分别进行计算,计算出正确结果即可作出判断.【详解】①-===①错误.②21122==2=,故②错误.=22=-2=,故③错误.④==④错误.⑤12=⨯122=⨯24=,故⑤错误.==5=,故⑥正确.∴①②③④⑤⑥中只有⑥1个正确.故选A..【点睛】本题主要考查二次根式的运算,解题的关键是能熟练运用二次根式的性质和运算法则进行计算.9.B解析:B根据二次根式的加法与除法、绝对值运算、算术平方根逐项判断即可得.【详解】A不是同类二次根式,不能加减合并,此项错误;B、=C===,此项错误;D6故选:B.【点睛】本题考查了二次根式的加法与除法、绝对值运算、算术平方根,熟练掌握各运算法则是解题关键.10.A解析:A【分析】根据被开方数大于等于0列式计算即可得解.【详解】-≥,x10x≤.解得,1故选:A.【点睛】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.11.D解析:D【分析】根据各个选项中的式子进行计算得出正确的结果,从而可以解答本题.【详解】解:=,故本选项错误;B. 3===,故本选项正确.6故选:D.【点睛】本题考查二次根式的乘法运算,解答本题的关键是明确二次根式乘法运算的计算方法.12.C解析:C【分析】0≠;根据二次根式的性质,得20x -≥,从而得到自变量x 的取值范围.【详解】结合题意,得:200x -≥⎧⎪≠ ∴22x x ≤⎧⎨≠⎩ ∴2x <故选:C .【点睛】本题考查了分式、二次根式的知识;解题的关键是熟练掌握分式、二次根式的性质,从而完成求解.二、填空题13.7-【分析】首先利用绝对值的性质和二次根式算术平方根立方根的性质化简然后再计算加减即可【详解】解:【点睛】此题主要考查了实数运算关键是掌握绝对值的性质和二次根式的性质解析:【分析】首先利用绝对值的性质和二次根式、算术平方根、立方根的性质化简,然后再计算加减即可.【详解】3()=322--=32+2=7【点睛】此题主要考查了实数运算,关键是掌握绝对值的性质和二次根式的性质.14.﹣2a 【分析】依据数轴即可得到a+1<0b ﹣1>0a ﹣b <0即可化简|a+1|﹣【详解】解:由题可得﹣2<a <﹣11<b <2∴a+1<0b ﹣1>0a ﹣b <0∴|a+1|﹣=|a+1|﹣|b ﹣1|+|解析:﹣2a.【分析】依据数轴即可得到a+1<0,b﹣1>0,a﹣b<0,即可化简|a+1|.【详解】解:由题可得,﹣2<a<﹣1,1<b<2,∴a+1<0,b﹣1>0,a﹣b<0,∴|a+1|=|a+1|﹣|b﹣1|+|a﹣b|=﹣a﹣1﹣(b﹣1)+(﹣a+b)=﹣a﹣1﹣b+1﹣a+b=﹣2a,故答案为:﹣2a.【点睛】本题考查了二次根式的性质,绝对值的意义,数轴的定义,解题的关键是熟练掌握所学的知识,正确的进行化简.15.16【分析】根据二次根式有意义的条件求得x的值再求出y的值再代入求解即可【详解】∵要使有意义∴2-x≥0x-2≥0∴x=2∴y=4把x=2y=4代入=故答案为:16【点睛】考查了二次根式有意义的条件解析:16【分析】根据二次根式有意义的条件求得x的值,再求出y的值,再代入求解即可.【详解】∵∴2-x≥0,x-2≥0,∴x=2,∴y=4,=.把x=2,y=4代入y x=4216故答案为:16.【点睛】考查了二次根式有意义的条件,解题关键是根据二次根式有意义的条件求得x=2.16.【分析】根据二次根式的有意义的条件得出x值进而求出y代入计算即可【详解】解:要使有意义则:∴∴∴∴的平方根为故答案为:【点睛】本题考查了二次根式的有意义的条件解题的关键是掌握被开方数大于或等于零解析:4±【分析】根据二次根式的有意义的条件得出x值,进而求出y,代入计算即可.【详解】解:要使4y =有意义,则:2020x x -≥⎧⎨-≥⎩, ∴2x =,∴4y =,∴=4=±,∴y x 的平方根为4±,故答案为:4±.【点睛】本题考查了二次根式的有意义的条件,解题的关键是掌握被开方数大于或等于零. 17.6【分析】根据二次根式有意义的条件可得关于x 的不等式组进而可求出xy 然后把xy 的值代入所求式子计算即可【详解】由题意得:所以x=2当x=2时y=3所以故答案为:6【点睛】本题考查了二次根式有意义的条解析:6【分析】根据二次根式有意义的条件可得关于x 的不等式组,进而可求出x 、y ,然后把x 、y 的值代入所求式子计算即可.【详解】由题意得:2020x x -≥⎧⎨-≥⎩,所以x=2, 当x=2时,y=3,所以236xy =⨯=.故答案为:6.【点睛】本题考查了二次根式有意义的条件、代数式求值和一元一次不等式组,属于基础题目,熟练掌握基本知识是解题的关键.18.-5【分析】(1)直接利用二次根式的性质化简求出即可;(2)首先化简二次根式进而合并求出即可;【详解】故答案为:【点睛】此题主要考查了二次根式的运算正确掌握二次根式的性质是解题关键解析:-5【分析】(1)直接利用二次根式的性质化简求出即可;(2)首先化简二次根式,进而合并求出即可;【详解】210155=-=-故答案为:-【点睛】此题主要考查了二次根式的运算,正确掌握二次根式的性质是解题关键.19.【分析】把平方后得到取算数平方根即可求解【详解】∵∴∴(舍负)故答案为:【点睛】此题考查了完全平方公式熟练掌握完全平方公式是解决此题的关键【分析】平方后,得到13aa+=,取算数平方根即可求解.【详解】∵13aa+=,∴212325aa=++=+=,∴=.【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解决此题的关键.20.【分析】先根据数轴的定义可得从而可得再化简绝对值和二次根式然后计算整式的加减即可得【详解】由数轴的定义得:则因此故答案为:【点睛】本题考查了数轴绝对值二次根式整式的加减熟练掌握数轴的定义是解题关键解析:2a-【分析】先根据数轴的定义可得0a b<<,从而可得0,0a b a b-<+<,再化简绝对值和二次根式,然后计算整式的加减即可得.【详解】由数轴的定义得:0a b<<,则0,0a b a b-<+<,因此()a b b a a b-=-+--,b a a b=---,2a=-,故答案为:2a -.【点睛】本题考查了数轴、绝对值、二次根式、整式的加减,熟练掌握数轴的定义是解题关键.三、解答题21.(1);(2)﹣【分析】(1)先化为最简二次根式,然后根据二次根式的运算法则即可求出答案.(2)根据完全平方公式以及平方差公式即可求出答案.【详解】解:(1)==(2)21)-=5﹣6﹣(5﹣)=﹣1﹣(6﹣=﹣1﹣=﹣【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.22.5【分析】先根据二次根式的意义求出取值范围,再根据绝对值和二次根式的性质进行化简合并即可.【详解】2x -⋅=2030x x -≥⎧∴⎨+≥⎩, 32x ∴-≤≤,20x ∴-≤,30x +≥,|2|x ∴-(2)(3)x x =--++23x x =-+++5=.【点睛】(0)0(0)(0)a aa aa a>⎧⎪==>⎨⎪->⎩是解题的关键.23.(1)-;(2)43)16;(4)-.【分析】(1)先化简二次根式,再进行二次根式的加减运算即可.(2)先化简二次根式,再进行二次根式的乘除运算,最后进行二次根式的加减运算即可.(3)先利用绝对值,零指数幂,负整数指数幂、立方根计算出各项,再进行加减运算即可.(4)先利用完全平方式和平方差公式展开,再化简二次根式,最后进行二次根式加减乘除混合运算即可.【详解】(124333=⨯⨯⨯==-(22=4=4=+(3)21|5|1)3-⎛⎫--+-⎪⎝⎭5193=-++16=(4)2-22222=--+612202=--+4=-⨯=-【点睛】本题考查实数的混合运算,掌握去绝对值,零指数幂、负整数指数幂和求立方根的计算,二次根式的混合运算是解答本题的关键.24.【分析】化简平方根、去绝对值符号,再合并即可.【详解】解:原式21=+=.【点睛】本题主要考查实数的运算,熟练掌握运算法则和运算顺序是解题的关键.25.+1x x 【分析】先根据平方差公式,完全平方公式和分式的运算法则对原式进行化简,然后将x 1代入即可.【详解】 解:2221111x x x x -+⎛⎫÷- ⎪-⎝⎭=()()()21111x x x x x--÷+- =()()()21111x x x x x -+--× =+1x x当x 1时,原式=22-. 【点睛】 本题考查了分式的化简求值,掌握平方差公式,完全平方公式和分式的运算法则是解题关键.262.【分析】利用二次根式的乘除法则,再化为最简式并合并同类二次根式即可.【详解】原式2=,2=,2=,=.2【点睛】本题考查二次根式的混合运算.掌握二次根式的乘除法则是解答本题的关键.。

相关文档
最新文档