立体几何及三视图
7.1立体几何的结构特征及三视图直观图

(对应学生用书 P128)
几种常见的多面体的结构特征 (1)直棱柱:侧棱垂直于底面的棱柱.特别地,当底面是正 多边形时,叫正棱柱(如正三棱柱, 正四棱柱).
课前自主回顾
课堂互动探究
课时作业
高考总复习 · 课标版 · 数学(文)
(2)正棱锥:底面是正多边形,且顶点在底面的射影是底面 中心的棱锥.
课前自主回顾
【解析】 若为D选项,则主视图为: D选项.
【答案】 D
,故不可能是
课前自主回顾
课堂互动探究
课时作业
高考总复习 · 课标版 · 数学(文)
(1)空间几何体的三视图是该几何体在三个两两垂直的平面 上的正投影,并不是从三个方向看到的该几何体的侧面表示的 图形.(2)在画三视图时,重叠的线只画一条,能看见的轮廓线 和棱用实线表示,挡住的线要画成虚线.
高考总复习 · 课标版 · 数学(文)
课前自主回顾
课堂互动探究
课时作业
高考总复习 · 课标版 · 数学(文)
课前自主回顾
课堂互动探究
课时作业
高考总复习 · 课标版 · 数学(文)
对应学生用书 P127)
1.空间几何体的结构特征
(1)棱柱的侧棱都 平行且相等 ,上下底面是 全等 的多边形. 多 (2)棱锥的底面是任意多边形,侧面是有一个 公共点 面 的三角形. 体 (3)棱台可由 平行于棱锥底面 的平面截棱锥得 到,其上下底面是 相似 多边形.
高考总复习 · 课标版 · 数学(文)
【思路启迪】 利用有关几何体的概念判断所给命题的真 假.
【解析】 命题①符合平行六面体的定义,故命题①是正 确的.底面是矩形的平行六面体的侧棱可能与底面不垂直,故 命题②是错误的.因为直四棱柱的底面不一定是平行四边形, 故命题③是错误的.命题④由棱台的定义知是正确的.
第一章《立体几何初步》-----§3 三视图(3)

三、习题处理
13
9
8. . 用若干块相同的小正方体搭成一个几何体, 该几 用若干块相同的小正方体搭成一个几何体, 何体的三视图如图所示, 何体的三视图如图所示,则搭成该几何体需要的
6 小正方体的块数是________. . 小正方体的块数是
解析
由正视图和侧视图,知该几何体由两层小
正方体拼接成,由俯视图可知,最下层有 5 个小 正方体,由侧视图知上层仅有一个正方体,则共 有 6 个小正方体.
10
(三)解答题 9.画出如图所示的几何体的三视图. .画出如图所示的几何体的三视图.
解
三视图如图所示.
11
10.下图是一几何体的三视图,想象该几何体的几 .下图是一几何体的三视图, 何结构特征,画出该几何体的形状. 何结构特征,画出该几何体的形状.
ቤተ መጻሕፍቲ ባይዱ
解
由于俯视图有一个圆和一个四边
形,则该几何体是由旋转体和多面体 拼接成的组合体,结合左视图和主视 图,可知该几何体是由上面一个圆柱, 下面一个四棱柱拼接成的组合体.该 几何体的形状如图所示.
8
7.根据如图所示的俯视图,找出对应的物体. .根据如图所示的俯视图,找出对应的物体.
(1)对应 D 对应________;(2)对应 A 对应________;(3)对应 对应 ; 对应 ; 对应
E ________;(4)对应 C ; 对应 对应________;(5)对应 B 对应________. ; 对应 .
A.三棱锥 . C.四棱台 .
B.四棱锥 . D.三棱台 .
4
3.四个正方体按如图所示的方式放置, .四个正方体按如图所示的方式放置, 其中阴影部分为我们观察的正面, 其中阴影部分为我们观察的正面,则 该物体的三视图正确的为 ( B )
立体几何的结构特征及三视图直观图

主视图
01
主视图是物体正对着观察者时所 呈现的视图,通常放在最前面, 表示物体的高度和长度。
02
主视图反映了物体的前后、上下 关系,是三视图中最重要的一个 视图。
左视图
左视图是从物体的左侧观察得到的视 图,表示物体的宽度和深度。
左视图反映了物体的左右、上下关系 ,与主视图共同确定物体的前后关系 。
常见的空间几何体有长方体、 球体、圆柱体、圆锥体等。
每个几何体都有其特定的构成 方式和特点,如长方体由六个 面组成,球体是一个连续曲面 的几何体等。
几何体的度量属性
长度
面积
体积
角度
用于度量线段的长度。
用于度量平面图形的面 积。
用于度量三维空间中物 体所占的体积。
用于度量两条射线之间 的夹角。
03
俯视图
俯视图是从上往下观察得到的视图,表示物体的平面布局和 高度。
俯视图反映了物体的左右、前后关系,与主视图共同确定物 体的深度。
04
三视图与直观图的转换
三视图到直观图的转换方法
投影法
组合法
根据三视图中的投影关系,将三个视 图分别投射到三个相互垂直的平面上, 形成直观图。
结合投影法和坐标法,先根据投影关 系将三视图转换为平面图形,再通过 坐标法将平面图形转换为立体图形。
案例三
总结词:对比分析
详细描述:对于一些复杂的几何体,仅通过三视图可能难以完全理解其结构和形状,此时可以通过对 比分析三视图与直观图,更好地理解几何体的构造和特点。
感谢您的观看
THANKS
具有空间性和直观性,通过空间 想象和直观感知来研究几何对象源自之间的关系。立体几何的重要性
实际应用
(完整版)五年级立体几何拓展----三视图专属奥数讲义

学科教师辅导讲义班级:年 级: 五年级 辅导科目:小学思维学科教师:上课时间授课主题 立体几何拓展----三视图一.三视图在观察物体的时候,我们往往可以从不同的角度进行观察.角度不同,看到的风景就会不同.比如:我们可以从正面看,上面看,左面看,看到的图形分别称为正视图,俯视图和左视图.并且容易发现:正面看和后面看,上面看和下面看,左面看和右面看得到的图形是知识图谱错题回顾三视图知识精讲相同的.对于较复杂的立体图形,通过三视图法往往可以很方便地计算出表面积. 二.正方体的展开图我们采用不同的剪开方法,共可以得到下面11种展开图.三.长方体的展开图观察上图可以发现,长方体的展开图由6个长方形组成,相对面的面积相等,即上面=下面=长×宽,左面=右面=宽×高,前面=后面=长×高. 四.判断图形折叠后能否围成长方体或正方体的方法.判断一个图形折叠后能否围成正方体或长方体,首先,要依据它们各自展开图的特点判断;其次,可以运用空间想象或实际操作进一步判断.重难点:展开图、三视图及三视图求个数和表面积.上 后 前右左下 展开后由上、下、左、右、前、后六个正方形面组成,这六个正方形面的面积都相等.高宽长右面左面 后面下面 前面 上面三点剖析题模精选题模一:展开图与对立面例1.1.1 一个正方体的六个面上分别写着A ,B ,C ,D ,E ,F 六个字母.请你根据图中的三种摆放情况,判断每个字母的对面是______________,______________,______________【答案】 B 与D 相对,E 与A 相对,C 与F 相对 【解析】 由于正方体的6个面上写了6个不同的字母,那么每个字母在正方体的面上只能出现1次,如果2个字母在相邻的面上出现,那么它们一定不能相对.第一步,先看前2种摆放情况:在这2种摆放情况中,只有字母B 出现了2次,那么由第一种摆放可知,B 不与A 相对,也不与F 相对;由第二种摆放可知,B 不与C 相对,也不与E 相对.那么在所有的字母中,B 只能与D 相对.第二步,再看后2种摆放情况:在这2种摆放情况中,只有字母E 出现了2次,那么由第二种摆放可知,E 不与B 相对,也不与C 相对;由第三种摆放可知,E 不与D 相对,也不与F 相对.那么在所有的字母中,E 只能与A 相对.正方体有三个对面,因B 与D 相对,E 与A 相对,那么第三组对面上一定是C 与F 相对.例1.1.2 图中的四个正方体标字母的方式是完全相同的,请你利用图中已知的信息,判断A 、B 、C 的对面分别标的是哪个字母?【答案】 A 的对面标有D ,B 的对面标有F ,C 的对面标有E【解析】 由已知条件,标有C ,D 的两个面不能相对,那么或A 的对面标有D ,或B 的对面标有D .如果标有D ,A 的两个面相对,那么“标有C ,D 的两个面不能相对”,“标有E ,A 的两个面也不能相对”这两个条件都可以满足.注意到当D 在朝右的面,E 在朝上的面时,F 在朝前的面上,那么只能是标有E ,C 的两个面相对,而标有F ,B 的两个面相对.经检验,这种情况满足题目要求.如果标有D ,B 的两个面相对,那么由于标有E ,A 的两个面也不能相对,于是标有A 的对面就是标有F 的面,而标有C 的对面就是标有E 的面.此时D 在朝后的面上,E 在朝左的面上,F 在朝下的面上.我们把六面体旋转,把D 转到朝右的面,并把E 转到朝上的面,BFA EBC FED A BCD CCEAEF D此时朝前的面上标的是A ,而朝后的面上标的是F ,与题意不符.综上所述,满足题意的答案只有一个:A 的对面标有D ,B 的对面标有F ,C 的对面标有E .例1.1.3 如图,第1个方格内放着一个正方体木块,木块六个面上分别写着ABCDEF 六个字母.其中A 与D 相对,B 与E 相对,C 与F 相对.现在将木块标有字母A 的那个面朝上,标有字母D 的那个面朝下放在第1个方格内,然后让木块按照箭头指向,沿着图中方格滚动,当木块滚到21格时,木块向上的面上写的是哪个字母?【答案】 字母A【解析】 发现木块向左滚4格后,各个面上标的字母与初始时的情况完全一致.那么木块朝其它方向滚时也有类似的情况,即木块向任意方向连滚4格,它的各个面上标的字母不变. 所以木块向左滚4格到第5格时,各个面上标的字母与在第1格时的情况完全一致.再向下滚4格到第9格,再向右滚4格到第13格,再向下滚4格到第17格,最后向左滚4格到第21格,每次都是朝同一方向滚4格,因此在第5格,第9格,第13格,第17格,第21格木块向上的面上总是写的字母A .例1.1.4 如图,在一个正方体的表面上写着1~6这6个自然数,并且1对着4,2对着5,3对着6.现在将正方体的一些棱剪开,使它的表面展开图如图所示.如果只知道1和2所在的面,那么6应该在哪个面上(写出字母代号)?【答案】 A【解析】 对于立方体展开图,我们可以把任一个面当作底面,把它还原成立方体的表面.如图1,观察虚线圈住的部分,可以发现写有1,A ,B 的三个面两两相邻;再观察图2的虚线圈住的部分,发现写有A ,B ,C 的三个面也两两相邻.此时,写有1的面与A 面,B 面都相邻,C 面也与A 面,B 面都相邻,因此写有1的面与C 面相对,即C 面上写的是4.1 AB C 2D 3 121A B C 2D1A B C 2D1与C 相对,C 面上写的是421 5920 19观察图3中的虚线圈住的部分,容易看出写有2的面与B 面相对,因此B 面上写的是5.则立方体展开图就如图4所示.还剩下A 面与D 面上的数字没有确定,这两个面上分别写有3和6.由于写有1的面,写有5的面与A 面两两相邻,把这三个面还原到立方体中.在图2所示的立方体中,5与2相对,在立方体朝左的侧面上;1在朝前的侧面上.在展开图中以写有1的面为朝前的侧面,A 面为下底面,则写有5的面恰好在朝左的侧面上.此时写有1的面,写有5的面都对齐了,而原立方体中下底面写有数字6,因此A 面上就是6.例1.1.5 下图是正方体,四边形APQC 是表示用平面截正方体的截面,截面的线表现在展开图的哪里呢?把大致的图形在右面展开图里画出来.【答案】 见解析【解析】 截线在展开图中如图所示:例1.1.6 右图是一个立体图形的平面展开图,图中的每个小方格都是边长为1的正方形.现在将其沿实线...折叠,还原成原来的立体图形,那么立体图形的体积等于_________. 图3 1A B 4 2D2与B 相对, B 面上写的是5图41 A 54 2DBPEAD CB GHQFAEDCB HGFA . 3B . 4C . 5D . 6 【答案】B【解析】 根据实线还原,体积为4. 题模二:三视图求表面积例1.2.1 下图是由5个相同的正方体木块搭成的,从上面看到的图形是( ).A . A 图B . B 图C . C 图D . D 图【答案】C【解析】 5个在原图均已看到,易知C 符合要求.例1.2.2 右图是由18个棱长为1cm 的小正方形拼成的立体图形,它的表面积是( )平方厘米.A . 44B . 46C . 48D . 50【答案】C【解析】 从正面、左面、上面分别可看见8、7、9块,故表面积为()21879248cm ⨯++⨯=.例1.2.3 右图中的一些积木是由16块棱长为2cm 的正方体堆成的,它的表面积是________2cm .【答案】 200D .B .C .A .【解析】 从前到后的3面依次有2块、5块、7块,因此还剩162572---=块,为可看见的1块与其下方的1块.由此易知正视图、俯视图、左视图分别能看到7块、9块、8块,此外离我们最近的2块有两个面从6个方向均无法看到,综上共可看到()7982250++⨯+=个面,表面积为22250200cm ⨯=.例 1.2.4 图中的立体是由大小相同的若干单位正方体积木搭成的.这样的积木一共有多少【答案】 37;三视图如下图所示;102【解析】 将此图分为从左到右的5层,分别有16、9、5、6、1块,故共有16956137++++=块.三视图见答案,分别可看见17、15、16块,其中左视图有3块“被遮挡”,因此表面积为()17151632102+++⨯=⎡⎤⎣⎦.例1.2.5 图中的立体图形由11个棱长为1的立方块搭成,这个立体图形的表面积为_______.【答案】34【解析】 按一定的顺序,从不同的角度来看这个立体图形的表面的面积. 题模三:已知三视图反推个数例1.3.1 这个图形最少是由( )个正方体整齐堆放而成的.正视图 俯视图 左视图A.12B.13C.14D.15【答案】B【解析】从上面看下去,最少需要:122412113++++++=.例1.3.2此图是某几何体从正面和左面看到的图形.若该几何体是由若干个棱长为1的正方体垒成的,则这个几何体的体积最小是________.【答案】6【解析】根据正视图,理论上最少需要6块.而6块可以构造出来,例如,其俯视图如下图所示.因此,体积最小为3166⨯=.例 1.3.3一个立体图形,从前面,上面,右边三个方向看到的图形都如图所示,是一个样的,那么该立体图形最多由__________块小立方体组成.【答案】23【解析】按由上到下逐层分析,各层的小立方体数目分别不超过1个、4个、8个、10个,所以该立体图形最多由23个小立方体组成.例 1.3.4有一些大小相同的正方形木块堆成一堆,从上往下看是图3-1,从前往后看是图3-2,从左往右看是图3-3,那么这堆木块最多有多少块?最少有多少块?1412212从正面看从左面看【答案】16,13【解析】43416+⨯=块,424113+⨯+=块.这堆木块最多有16块,最少有13块.例1.3.5地上有一堆小立方体,从上面看时如图1所示,从前面看时如图2所示,从左边看时如图3所示.这一堆立方体一共有几个?如果每个小立方体的棱长为1厘米,那么这堆立方体所堆成的立体图形表面积为多少平方厘米?【答案】10个;42平方厘米【解析】采用在俯视图上标数的方法来求解,只要知道俯视图上的每格有几块小立方体,就可以很轻松的得到这堆立方体所形成的立体图形的样子.首先从俯视图很容易看出,有3个格子里是没有小立方体的,而其他6个格子里至少有一个小立方体.如下图,将所得信息填入俯视图中.结合俯视图和主视图,不难看出,有两格只有1块小立方体.将所得信息填入俯视图中.同样的,结合俯视图和左视图,又可以知道有一格只有1块小立方体.将所得信息填入俯视图中.图1 图2 图3从前面看1001我们来继续考虑,左视图中最左边一排有2块小立方体,所以俯视图左上角处有2块小立方体.将所得信息填入俯视图中.同理,主视图最右边一排有2块小立方体,所以俯视图最右边中间处有2块小立方体.将所得信息填入俯视图中.不难看出,俯视图中最后剩下的那块有3个小立方体,所以俯视图中每格的小立方体数如下:于是这一堆立方体一共有21321110+++++=个. 接着很容易得到这个立体图形的样子,如下图.上下各能看到6个面,前后各能看到6个面,左右各能看到6个面,同时注意到立体图形的中间共有6个会互相遮挡的面,所以表面积是()2666642⨯+++=平方厘米.从左边看1 0 0 012 1 0 0 012 1 0 0 2 0 112 1 03 0 2 011随练1.1将一正方体纸盒沿右图所示的粗实线剪开,展开成平面图,其展开图的形状为().A.A图B.B图C.C图D.D图【答案】B【解析】竖向只剪了1刀,故前、后、左、右四个面应在一条线上,排除A、D.易知上、下两面不在一条线上,排除C,故选B.随练1.2水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示.如下图,是一个正方体的平面展开图,若图中的“似”表示正方体的前面,“锦”表示右面,“程”表示下面.则“祝”、“你”、“前”分别表示正方体的________________________.【答案】后面、上面、左面【解析】易知你、程相对,前、锦相对,祝、似相对,因此“祝”、“你”、“前”分别表示正方体的后面、上面、左面.随练1.3小明把五颗完全相同的骰子拼摆成一排(如图),那么这五颗骰子底面上的点数之和是__________.【答案】16【解析】根据已知推出(4,5)(1,3)(2,6)互为对立面,所以这五颗骰子底面上的点数之和是6152216++++=.随练1.4右图是由八个相同的小正方体组成而成的几何体,则从正面观察,得到的平面图随堂练习形是__________.序号)【答案】 ②【解析】 从正面看到图②,从上面看到图①,从右面看到图③.所以正确答案是图②.随练1.5 由棱长为1的正方体搭成如图所示的图形,共有__________个正方体,它的表面积是__________.【答案】 10;34【解析】 第一层有8个,第二层有2个,共10个.其三视图分别能看到4、5、8个,故表面积为()11458234⨯⨯++⨯=.随练1.6 如图,有9个边长为1米的正方体,如图所示堆成一个立体图形.该立体图形的表面积等于__________平方米.【答案】 38【解析】 利用三视图.从前面、右面、上面看依次如图所示.所以该立体图形的表面积是()26672138++⨯⨯=平方米.随练1.7 如图6,用若干个棱长为1的小正方体堆成一个大的几何体,这个几何体的表面积(含底面积)是__________.① ② ③ ④【答案】90【解析】根据三视图,大的几何体的表面积等于正视图面积+俯视图面积+右视图面积的2倍,所以是()2++⨯⨯=.1415162190随练 1.8用棱长是1厘米的小立方体拼成如图所示的立体图形,这个图形的表面积是__________平方厘米.【答案】46平方厘米【解析】如图1,从立体图形上方和下方看去,看到的都是9块小正方形.面积是9平方厘米.图1图2从四个侧面看去,看到的是图2形式的7块小正方形,面积是7平方厘米.所以立体图形的表面积为927446⨯+⨯=平方厘米.随练1.9把若干个棱长为1厘米的小正方体木块搭成一个图形,从上面和前面看到的都是如图所示的情形,这个图形最多需要__________个这样的小正方体,最少需要__________个这样的小正方体.【答案】9;7【解析】由从上方看到的结果可知第一层必有5个,且第二层至多5个;由从前面看到的结果可知共有2层,且第二层至少2个.再结合两个视图可知第二层至多4个.综上,最多9个,最少7个.作业1一个数学玩具的包装盒是正方体,其表面展开图如下.现在每方格内都填上相应的数字.已知将这个表面展开图沿虚线折成正方体后,相对面的两数之和为“3”,则填在A、B、C内的三个数字依次是_____________.【答案】3,1,2【解析】正方体的平面展开图中,相对面之间一定隔着一个正方形,所以在此正方体上与“A”相对的面上的数是“0”.与“B”相对的面上的数是“2”.与“C”相对的面上的数是“1”.所以A、B、C内的三个数字依次是3,1,2.作业2把1至6各一个分别写在正方形的六个面上,每个面只写一个数字,且1与4相对,2与5相对,3与6相对,从某个角度看到的三个面上的数字如图(a)所示,从另一个角度看到的三个面如图(b)所示,那么图(b)中的“?”代表的数字是___________.A.2B.3C.4D.5【答案】A【解析】如图,4对面是1,所以在图a中把4翻到底面,顶部变成了1,如图b,而5C 2B 0A 1自我总结课后作业对面是2,所以当6转到正面时,5在左侧,右侧自然是2了,故答案是2..作业3下图由一个正五边形,五个长方形,五个等边三角形组成,它是一个立体图形的平面展开图,那么这个立体图形有__________条棱.【答案】20【解析】此立体图形,示意图如上:共20条棱.作业4用若干个棱长为1cm的小正方体码放成如图所示的立体,则这个立体的表面积(含下底面面积)等于___________2cm.【答案】60【解析】根据三视图,我们可知,此立体图形的前面与后面,左面与右面,上面与下面的表面积分别相等.所以我们只要知道前面有11个正方形,右面有8个正方形,上面有11个面,就可求出它露在外面的面共计()11811260++⨯=个正方形,所以它的表面积是2260160cm⨯=.作业5如图,把19个边长为1厘米正方体重叠起来堆成如图所示的立方体,这个立方体的表面积是______平方厘米.【答案】54【解析】从上下左右前后六个方向看,分别可以看到9、9、8、8、10、10个小正方形面,所以总的表面积为54平方厘米.作业6图中的立体是由大小相同的若干单位正方体积木搭成的.这样的积木一共有多少块?画出它的三视图,表面积是多少?【答案】30;三视图如下图所示;76【解析】将此图分为从左到右的4层,分别有11、7、5、7块,故共有1175730+++=块.三视图见答案,分别可看见13、12、11块,其中左视图有2块“被遮挡”,因此表面积为()1312112276+++⨯=⎡⎤⎣⎦.作业7由若干个相同的正方体木块搭成的立体,从正面和左面看到的图形都是右图,搭这样的立体,最少用()个这样的木块.A.4B.5C.6D.8【答案】A【解析】按如图方式摆放即可.正视图俯视图左视图作业8由若干个棱长为1的正方体堆成的立体图形,其正视图、俯视图和左视图如下所示,请问这个立体图形体积是________.正视图俯视图左视图【答案】5【解析】由正视图和左视图可知共两层,且顶层只有1块,由俯视图可知底层有4块,故共有5块,体积为5.作业9一仓库里堆放着若干个完全相同的正方体货箱,这堆货箱的三视图如图所示,这堆真方体货箱共有______________个.【答案】9【解析】俯视图确定基座,分析每块上的高度.。
立体几何篇(球、三视图)

立体几何篇(空间球专题)空间球:三个重要的模型三个重要的技巧三个重要的模型1、正方体模型2、正四面体模型3、长方体模型1、正方体模型正方体的常用结论(假设边长为a )(1)外接球a r 231=,棱切球a r 222=,内切球a r 213= (2)最大投影面积为23a ,最小投影面积为2a2、正四面体正四面体的常用结论(假设边长为b )(1)任何一个正四面体都对应一个正方体且a b 2=(2)外接球即为正方体的外接球b a r 46231==;棱切球即为正方体的内切球b a r 42222==; 内切球半径为外接球半径的31,b r r 1263113== 等体积331431r S h S V ••=•= h r h r 434113=•= 3113=r r b h 36= (3)正四面体的高等于b 36,且正四面体内任意一点到四个面的距离之和为定值(正四面体的高) (4)正四面体对棱互相垂直,对棱之间的距离为b 22; (5)最大投影面积为221b ,最小投影面积为242b例1、正三棱锥ABC S -的侧棱与底面边长相等,如果F E ,分别为AB SC ,的中点,那么异面直线EF 与SA 所成的角等于_______________________例2、已知ABC S -是一体积为72的正四面体,连接两个面的垂心F E ,,则线段EF 的长是_______________________3、长方体模型长方体的常用结论(c b a ,,为长方体的长、宽、高)(1)三边两两垂直或三面两两垂直,即称“墙角”可补成对应长方体,体对角线即为直径,即有22224R c b a =++;(2)具有公共斜边的直角三角形,斜边即为球的直径。
例3、(辽宁高考)已知点D C B A P ,,,,是球O 表面上的点,⊥PA 平面ABCD ,四边形ABCD 的边长为32正方形,若62=PA ,则OAB ∆的面积为___________例4、(浙江高考)如图,已知球O 点面上四点D C B A ,,,,⊥DA 平面ABC ,BC AB ⊥,3===BC AB DA ,则球O 的体积等于_______________4、空间球的三个重要的准则1、外接球的球心在底面三角形的外心向上作的垂线;2、常用垂径勾股定理;3、内切球常用等体积;4、复杂的可以建系求解。
立体几何初步知识点全总结

立体几何初步知识点全总结一、空间几何体的结构。
1. 棱柱。
- 定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。
- 分类:- 按底面多边形的边数分为三棱柱、四棱柱、五棱柱等。
- 直棱柱:侧棱垂直于底面的棱柱。
正棱柱:底面是正多边形的直棱柱。
- 性质:- 侧棱都相等,侧面是平行四边形。
- 两个底面与平行于底面的截面是全等的多边形。
- 过不相邻的两条侧棱的截面(对角面)是平行四边形。
2. 棱锥。
- 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。
- 分类:- 按底面多边形的边数分为三棱锥、四棱锥、五棱锥等。
- 正棱锥:底面是正多边形,且顶点在底面的射影是底面正多边形的中心的棱锥。
- 性质:- 正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高)。
- 棱锥的高、斜高和斜高在底面上的射影组成一个直角三角形;棱锥的高、侧棱和侧棱在底面上的射影也组成一个直角三角形。
3. 棱台。
- 定义:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台。
- 分类:由三棱锥、四棱锥、五棱锥等截得的棱台分别叫做三棱台、四棱台、五棱台等。
- 性质:- 棱台的各侧棱延长后交于一点。
- 棱台的上下底面是相似多边形,侧面是梯形。
4. 圆柱。
- 定义:以矩形的一边所在直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫做圆柱。
- 性质:- 圆柱的轴截面是矩形。
- 平行于底面的截面是与底面全等的圆。
5. 圆锥。
- 定义:以直角三角形的一条直角边所在直线为轴旋转,其余两边旋转所成的曲面所围成的几何体叫做圆锥。
- 性质:- 圆锥的轴截面是等腰三角形。
- 平行于底面的截面是圆,截面半径与底面半径之比等于顶点到截面距离与圆锥高之比。
6. 圆台。
- 定义:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台。
《高一立体几何三视图》课件

三视图在日常生活中的应用
产品描述
在购买产品时,三视图常用于展 示产品的外观和结构,帮助消费
者更好地了解产品的特点。
建筑设计
在建筑设计领域,三视图用于展 示建筑物的外观、内部布局和结构 设计,为建筑师与客户之间的沟通 提供便利。
模型制作
在制作各种模型时,如玩具、家具 或机器部件,三视图是制作精确模 型的关键工具。
建筑学
用于设计和建造建筑物,理解空间关 系和结构。
工程学
在机械、航空等领域,需要利用立体 几何知识进行设计和分析。
学习立体几何的未来发展
• 计算机图形学:在游戏开发、动画制作等领域,立体几何是构建三维场景的基础。
学习立体几何的未来发展
未来趋势
随着科技的发展,立体几何将在虚拟现实、增强现实等领域发挥更大的作用。
俯视图
从物体的上面方向观察,投影 到垂直于投影面的平面上所得 到的视图。
三视图之间的关系
相互依赖
方位关系
正视图、侧视图和俯视图之间是相互 依赖的,任何一个视图的变化都会影 响到其他两个视图。
通过三视图可以判断物体的左右、前 后、上下方位关系。
投影关系
正视图和侧视图之间、侧视图和俯视 图之间、正视图和俯视图之间都存在 投影关系,即“长对正、高平齐、宽 相等”。
《高一立体几何三视图》ppt 课件
目
CONTENCT
录
• 引言 • 三视图基础知识 • 立体几何图形的三视图 • 三视图的运用 • 练习与巩固 • 总结与展望
01
引言
课程简介
课程目标
帮助学生掌握三视图的基本概念和绘制技巧,培养 空间想象力和几何思维能力。
适用对象
高一学生,具备初步的几何知识和空间感知能力。
高中数学立体几何总结

高中数学立体几何总结立体几何是高中数学中一个重要的内容,大致内容包括立体几何基本概念、体积、体积计算公式、侧棱、正三棱柱、正四棱锥、正八棱锷、台面等等。
(一)立体几何基本概念1、三视图:即从三个不同的视角把物体有条不紊的绘出来的文字图形,可以根据它来确定物体的三维形状。
2、几何体:是由把平面图形几何关系组合而成的任何在空间中由一致点构成的物体。
3、棱:即立体几何中各几何体的侧面所围成的线段或面称为棱,如正三棱柱的侧棱。
(二)体积1、体积的定义:体积是立体图形的面积之和,反映物体内部空间的容积大小。
2、体积的计算公式:几何体的体积可用面积的乘积公式计算,比如正三棱柱的体积的表示公式:V=ah;正四棱锥的体积的表示公式:V=1/3bh;正八棱锷的表示公式为:V=1/3πr²h。
(三)正三棱柱1、正三棱柱,是一种方形底面,面积相同的三角柱体,它有三个直角,等边的三个棱,以及一个正方形的底部。
2、侧棱:正三棱柱的侧棱可以分别表示为a,b,c三条线段,表示a=b=c,它们在同一平面且互相垂直。
3、体积计算:正三棱柱的体积可以用面积乘积公式来计算:V=ah;其中,a表示正三棱柱的侧棱,h表示高度。
(四)正四棱锥1、正四棱锥是由正方形底面、顶面和棱构成的三角锥体,它有四个直角棱,棱之间相互垂直,底面和顶面也相互垂直。
2、侧棱:正四棱锥的侧棱只有一条,用a表示,它的四条边都要等于。
(五)正八棱锷1、正八棱锷是一种八个棱组成的几何体,其四条边中有三条边为互相垂直的折线,其余五条边为圆形弧线。
2、侧棱:正八棱锷有八个侧棱,用a1,a2,a3…a8表示,但它们互相之间不相等,作用上也不是等距的。
(六)台面1、台面,又称台体,是由一个小三角形共同构成的平面图形。
当该平面图形在三维空间中展开时,可以形成一个台体,它由三个等高的并列棱构成。
2、台体体积计算:台体的体积可以由其三角面积和三边长共同确定,台体的体积公式为:V=1/3(A1+A2+A3)H;其中,A1,A2,A3表示三个三角面积,H表示高度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何及三视图(四十八)
1.(优质试题·安徽东至二中段测)将一个等腰梯形绕着它的较长的底边所在直线旋转一周,所得的几何体包括()
A.一个圆台、两个圆锥B.两个圆台、一个圆柱
C.两个圆台、一个圆锥D.一个圆柱、两个圆锥
答案 D
解析把等腰梯形分割成两个直角三角形和一个矩形,由旋转体的定义可知所得几何体包括一个圆柱、两个圆锥.故选D.
2.以下关于几何体的三视图的论述中,正确的是()
A.正方体的三视图是三个全等的正方形
B.球的三视图是三个全等的圆
C.水平放置的正四面体的三视图都是正三角形
D.水平放置的圆台的俯视图是一个圆
答案 B
解析画几何体的三视图要考虑视角,但对于球无论选择怎样的视角,其三视图总是三个全等的圆.
3.如图所示,几何体的正视图与侧视图都正确的是()
答案 B
解析侧视时,看到一个矩形且不能有实对角线,故A,D排除.而正视时,有半个平面是没有的,所以应该有一条实对角线,且其对角线位置应为B中所示,故选B.
4.一个几何体的三视图如图,则组成该几何体的简单几何体为()
A .圆柱和圆锥
B .正方体和圆锥
C .四棱柱和圆锥
D .正方体和球
答案 C
5.(优质试题·沧州七校联考)三棱锥S -ABC 及其三视图中的正视图和侧视图如图所示,则棱SB 的长为( )
A .16 3 B.38 C .4 2 D .211
答案 C
解析 由已知中的三视图可得SC ⊥平面ABC ,且底面△ABC 为等腰三角形.在△ABC 中,AC =4,AC 边上的高为23,所以BC =4.在Rt △SBC 中,由SC =4,可得SB =4 2. 6.(优质试题·衡水中学调研卷)已知一个四棱锥的高为3,其底面用斜二侧画法所画的水平放置的直观图是一个边长为1的正方形,则此四棱锥的体积为( ) A .2 2 B .6 2 C .1 D. 2 答案 A
解析 因为底面用斜二侧画法所画的水平放置的直观图是一个边长为1的正方形,所以在直角坐标系中,底面是边长为1和3的平行四边形,且平行四边形的一条对角线垂直于平行四边形的短边,此对角线的长为22,所以该四棱锥的体积为V =1
3×22×1×3=2 2.
7.(优质试题·四川泸州模拟)一个正四棱锥的所有棱长均为2,其俯视图如图所示,则该正四棱锥的正视图的面积为( ) A. 2 B. 3 C .2 D .4 答案 A
解析由题意知,正视图是底边长为2,腰长为3的等腰三角形,其面积为1
2×2×
(3)2-1= 2.
8.(优质试题·湖南郴州模拟)一只蚂蚁从正方体ABCD-A1B1C1D1的顶点A出发,经正方体的表面,按最短路线爬行到顶点C1的位置,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图的是()
A.①②B.③④
C.①③D.②④
答案 D
解析由点A经正方体的表面,按最短路线爬行到达顶点C1的位置,共有6种路线(对应6种不同的展开方式),若把平面ABB1A1和平面BCC1B1展到同一个平面内,连接AC1,则AC1是最短路线,且AC1会经过BB1的中点,此时对应的正视图为②;若把平面ABCD和平面CDD1C1展到同一个平面内,连接AC1,则AC1是最短路线,且AC1会经过CD的中点,此时对应的正视图为④.而其他几种展开方式对应的正视图在题中没有出现.故选D.
9.某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是()
答案 D
解析依题意,此几何体为组合体,若上、下两个几何体均为圆柱,则俯视图为A;若上边的几何体为正四棱柱,下边几何体为圆柱,则俯视图为B;若上边的几何体为底面为等腰直角三角形的直三棱柱,下边的几何体为正四棱柱时,俯视图为C;若俯视图为D,则正视图
中还有一条虚线,故该几何体的俯视图不可能是D,故选D.
10.(优质试题·江西上馓质检)点M,N分别是正方体ABCD-A1B1C1D1的棱A1B1,A1D1的中点,用过平面AMN和平面DNC1的两个截面截去正方体的两个角后得到的几何体如图,则该几何体的正(主)视图,侧(左)视图、俯视图依次为()
A.①②③B.②③④
C.①③④D.②④③
答案 B
解析由直视图可知,该几何体的正(主)视图、侧(左)视图、俯视图依次为②③④,故选B. 11.(优质试题·四川宜宾期中)某几何体的三视图如图所示,则该几何体最长棱的长度为()
A.4 B.3 2
C.2 2 D.2 3
答案 D
解析由三视图可知,该几何体为如图所示的四棱锥P-ABCD,由图
可知其中最长棱为PC,因为PB2=PA2+AB2=22+22=8,所以PC2=
PB2+BC2=8+22=12,则PC=23,故选D.
12.(优质试题·北京东城区期末)在空间直角坐标系O-xyz中,一个四面体的顶点坐标分别为(0,0,2),(2,2,0),(0,2,0),(2,2,2).画该四面体三视图中的正视图时,以xOz 平面为投影面,则得到的正视图可以为()
答案 A
解析 设S(2,2,2),A(2,2,0),B(0,2,0),C(0,0,2),则此四面体S -ABC 如图①所示,在xOz 平面的投影如图②所示.
其中S ′是S 在xOz 平面的投影,A ′是A 在xOz 平面的投影,O 是B 在xOz 平面的投影,SB 在xOz 平面的投影是S ′O ,并且是实线,CA 在xOz 平面的投影是CA ′,且是虚线,如图③. 13.(优质试题·江西宜春模拟)某四面体的三视图如图所示,正视图、俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则此四面体的四个面中面积最大为( )
A .2 2
B .4
C .2 3
D .2 6
答案 C
解析 由三视图知该几何体为棱锥S -ABD ,其中SC ⊥平面ABCD ,将其放在正方体中,如图所示.四面体S -ABD 的四个面中△SBD 的面积最大,三角形SBD 是边长为22的等边三角形,所以此四面体的四个面中面积最大为
3
4×8=2 3.故选C.
14.(优质试题·江苏张家港一模)若将一个圆锥侧面沿一条母线剪开,其展开图是半径为2 cm 的半圆,则该圆锥的高为________cm. 答案
3
解析 设圆锥的底面圆半径为r cm ,则2πr =2π,解得r =1 cm ,∴h =
22-1= 3 cm.
15.(优质试题·成都二诊)已知正四面体的俯视图如图所示,其中四边形ABCD 是边长为2的正方形,则这个四面体的正视图的面积为________.
答案 2 2
解析 由俯视图可得,原正四面体AMNC 可视作是如图所示的正方体的一内接几何体,则该正方体的棱长为2,正四面体的正视图为三角形,其面积为1
2×2×22=2 2.
16.(优质试题·上海长宁区、嘉定区质检)如图,已知正三棱柱的底面边长为2,高为5,一质点自A 点出发,沿着三棱柱的侧面绕行两周到达A 1点的最短路线的长为________. 答案 13
解析 将正三棱柱ABC -A 1B 1C 1沿侧棱AA 1展开,再拼接一次,如图所示,
在展开图中,最短距离是六个矩形形成的大矩形对角线的长度,也即为三棱柱的侧面上所求距离的最小值.
由已知求得矩形的长等于6×2=12,宽等于5,由勾股定理得d =
122+52=13.
17.某几何体的正(主)视图和侧(左)视图如图1,它的俯视图的直观图是矩形O 1A 1B 1C 1如图2,其中O 1A 1=6,O 1C 1=2,则该几何体的侧面积为________.
答案96
解析由俯视图的直观图可得y轴与C1B1交于D1点,O1D1=22,故OD=42,俯视图是边长为6的菱形,则该几何体是直四棱柱,侧棱长为4,则侧面积为6×4×4=96.
1.(课本习题改编)如图为一个几何体的三视图,则该几何体是()
A.四棱柱B.三棱柱
C.长方体D.三棱锥
答案 B
解析由几何体的三视图可知,该几何体的直观图如图所示,即为一个平放
的三棱柱.
2.(优质试题·山东泰安模拟)某三棱锥的三视图如图所示,其侧视图为直角三角形,则该三棱锥最长的棱长等于()
A.4 2 B.34
C.41 D.5 2
答案 C
解析根据几何体的三视图,得该几何体是底面为直角三角形,有两个侧面垂直于底面,高为5的三棱锥,最长的棱长等于25+16=41,故选C.
3.(优质试题·安徽毛坦厂中学月考)已知一个几何体的三视图如图所示,则这个几何体的直观图是()
答案 C
解析A项中的几何体,正视图不符,侧视图也不符,俯视图中没有虚线;B项中的几何体,俯视图中不出现虚线;C项中的几何体符合三个视图;D项中的几何体,正视图不符.故选C.
4.(优质试题·山东德州质检)如图是正方体截去阴影部分所得的几何体,则该几何体的侧视图是()
答案 C
解析此几何体的侧视图是从左边往右边看,故其侧视图应选C.
5.(优质试题·广东汕头中学摸底)如图是一正方体被过棱的中点M,N,顶点
A及过N,顶点D,C1的两个截面截去两角后所得的几何体,该几何体的
正视图是()。