集成运算放大器Multisim仿真

合集下载

multisim仿真教程

multisim仿真教程

Multisim软件简介二极管电路基本功放差分放大器电路负反馈放大器集成运算放大器信号运算处理电路互补对称(OCL)功率放大器信号产生与转换电路可调三端集成直流稳压电源电路13.1 Multisim用户界面和基本操作在此处插入图片说明13.1.1 Multisim用户界面在许多EDA仿真软件中,Multisim软件具有友好的界面,强大的功能,易于学习和使用,受到电气设计和开发人员的青睐。

Multisim是一种虚拟仿真软件,用于通过软件方法对电子元器件进行虚拟设计和电路测试。

Multisim来自交互式图像技术(IIT)的基于Windows的仿真工具,以前称为EWB。

1988年,IIT公司推出了用于电子电路仿真和设计的EDA工具软件,电子工作台(EWB),它以其直观的界面,便捷的操作,强大的分析功能以及易于学习和使用而迅速普及和使用。

IIT在1996年推出了EWB5.0版本。

ewb5之后。

在X版本和EWB6.0版本中,IIT 将EWB更改为Multisim(多功能模拟软件)。

IIT被美国国家仪器公司Ni收购后,其软件更名为Ni Multisim。

第9版之后,Multisim 经历了多个版本的升级,包括Multisim2001,Multisim7,Multisim8,Multisim9,Multisim10等。

增加了单片机和LabVIEW虚拟仪器的仿真和应用。

下面以Multisim10为例介绍其基本操作。

图13.1-1显示了Multisim10的用户界面,包括菜单栏,标准工具栏,主工具栏,虚拟仪器工具栏,组件工具栏,仿真按钮,状态栏,电路图编辑区域等。

图13.1-1 Multisim10用户界面菜单栏类似于Windows应用程序,如图13.1-2所示。

图13.1-2 Multisim菜单栏其中,选项菜单下的全局首选项和工作表属性可用于个性化界面设置。

Multisim10提供了两组电气元件符号标准:ANSI:美国国家标准协会,美国标准,默认为标准,本章采用默认设置;丁:德国国家标准协会,欧洲标准,与中国符号标准一致。

模拟电子电路multisim仿真(很全-很好)【范本模板】

模拟电子电路multisim仿真(很全-很好)【范本模板】

仿真1。

1.1 共射极基本放大电路按图7。

1-1搭建共射极基本放大电路,选择电路菜单电路图选项(Circuit/Schematic Option )中的显示/隐藏(Show/Hide)按钮,设置并显示元件的标号与数值等。

1.静态工作点分析选择分析菜单中的直流工作点分析选项(Analysis/DC Operating Point)(当然,也可以使用仪器库中的数字多用表直接测量)分析结果表明晶体管Q1工作在放大状态。

2.动态分析用仪器库的函数发生器为电路提供正弦输入信号Vi(幅值为5mV,频率为10kH),用示波器观察到输入,输出波形。

由波形图可观察到电路的输入,输出电压信号反相位关系。

再一种直接测量电压放大倍数的简便方法是用仪器库中的数字多用表直接测得。

3。

参数扫描分析在图7。

1-1所示的共射极基本放大电路中,偏置电阻R1的阻值大小直接决定了静态电流IC的大小,保持输入信号不变,改变R1的阻值,可以观察到输出电压波形的失真情况。

选择分析菜单中的参数扫描选项(Analysis/Parameter Sweep Analysis),在参数扫描设置对话框中将扫描元件设为R1,参数为电阻,扫描起始值为100K,终值为900K,扫描方式为线性,步长增量为400K,输出节点5,扫描用于暂态分析。

4。

频率响应分析选择分析菜单中的交流频率分析项(Analysis/AC Frequency Analysis)在交流频率分析参数设置对话框中设定:扫描起始频率为1Hz,终止频率为1GHz,扫描形式为十进制,纵向刻度为线性,节点5做输出节点。

由图分析可得:当共射极基本放大电路输入信号电压VI为幅值5mV的变频电压时,电路输出中频电压幅值约为0.5V,中频电压放大倍数约为-100倍,下限频率(X1)为14.22Hz,上限频率(X2)为25.12MHz,放大器的通频带约为25。

12MHz.由理论分析可得,上述共射极基本放大电路的输入电阻由晶体管的输入电阻rbe限定,输出电阻由集电极电阻R3限定。

Multisim模拟电路仿真实例

Multisim模拟电路仿真实例
同时R3还将Vo反馈到运放U1的同相输入端,作为滞回比较器的 输入, 构成闭环。
滞回比较器
UREF 为参考电压;输 出电压 uO 为 +UZ 或 -UZ;uI 为输入电压。
当 u+ = u- 时,输出电压 的状态发生跳变。
u
RF R2 RF
U REF
R2 R2 RF
uO
UT-
比较器有两个不同的门限电平,
故传输特性呈滞回形状。
uO
+UZ
UT+
O
uI
-UZ
若 uO = UZ ,当 uI 逐渐增大时,使 uO 由 +UZ 跳变为
-UZ 所需的门限电平 UT+
UT
Байду номын сангаас
RF R2 RF
U REF
R2 R2 RF
UZ
若 uO= UZ ,当 uI 逐渐减小时,使 uO 由 UZ 跳变 为 UZ 所需的门限电平 UT
图5-25 乙类互补对称功放电路
运行仿真: 从中可以发现输出信号的波形有明显的交越失真。
其失真原因
当输入信号较小时,达不到三极 管的开启电压,三极管不导电。
因此在正、负半周交替过零处会出 现非线性失真,即交越失真。
输入波形
输出波形
其失真范围如何呢? 下面进行直流扫描分析,以便确定其交越失真的范围。
图5-24 波特图仪显示结果
若将信号源的频率分别修改为200Hz 和1MHz ,再次启动仿真,其输出电 压有何变化?
200Hz
1KHz
适当修改参数R1、R2、R3、R4和C1、C2,观察通带电压放大倍数和通带
截止频率的变化?
增如大果RR11输太出大波, 形输幅出度会增?大

最详细最好的Multisim仿真教程【范本模板】

最详细最好的Multisim仿真教程【范本模板】

第13章Multisim模拟电路仿真本章Multisim10电路仿真软件,讲解使用Multisim进行模拟电路仿真的基本方法。

目录1。

Multisim软件入门2. 二极管电路3. 基本放大电路4。

差分放大电路5。

负反馈放大电路6. 集成运放信号运算和处理电路7。

互补对称(OCL)功率放大电路8。

信号产生和转换电路9. 可调式三端集成直流稳压电源电路13。

1 Multisim用户界面及基本操作13。

1。

1 Multisim用户界面在众多的EDA仿真软件中,Multisim软件界面友好、功能强大、易学易用,受到电类设计开发人员的青睐.Multisim用软件方法虚拟电子元器件及仪器仪表,将元器件和仪器集合为一体,是原理图设计、电路测试的虚拟仿真软件。

Multisim来源于加拿大图像交互技术公司(Interactive Image Technologies,简称IIT公司)推出的以Windows为基础的仿真工具,原名EWB。

IIT公司于1988年推出一个用于电子电路仿真和设计的EDA工具软件Electronics Work Bench(电子工作台,简称EWB),以界面形象直观、操作方便、分析功能强大、易学易用而得到迅速推广使用。

1996年IIT推出了EWB5.0版本,在EWB5。

x版本之后,从EWB6.0版本开始,IIT对EWB进行了较大变动,名称改为Multisim(多功能仿真软件)。

IIT后被美国国家仪器(NI,National Instruments)公司收购,软件更名为NI Multisim,Multisim经历了多个版本的升级,已经有Multisim2001、Multisim7、Multisim8、Multisim9 、Multisim10等版本,9版本之后增加了单片机和LabVIEW虚拟仪器的仿真和应用。

下面以Multisim10为例介绍其基本操作.图13。

1-1是Multisim10的用户界面,包括菜单栏、标准工具栏、主工具栏、虚拟仪器工具栏、元器件工具栏、仿真按钮、状态栏、电路图编辑区等组成部分。

基于Multisim的集成运放运算电路仿真实现

基于Multisim的集成运放运算电路仿真实现

• 19•本文针对引入负反馈后的高增益集成运放电路,通过调整负反馈参数比例实现多种数学运算电路,使用Multisim仿真软件平台,对运算电路中的典型加法器、减法器、微分器、积分器进行了电路仿真,通过灵活的参数调节观测电路仿真结果,对达到深度负反馈的运算电路进行仿真分析,验证运算电路理论的同时,直观的了解运算电路中负反馈条件的改变对电路形成的不同影响,表明了Multisim电路仿真软件在电子技术仿真中的应用具有良好的实时性和可观测性,说明Multisim软件对电子技术的学习有较为良好的教学及实验效果。

1 引言集成运放电路具有较高的增益,通过调整负反馈参数即可实现多种数学运算电路,如加法运算、减法运算、积分运算、微分运算、乘法运算、对数运算等(杨栓科,模拟电子技术:高等教育出版社,2003)。

Multisim仿真软件具有上千种虚拟元器件及虚拟仪器,并且具备可扩展元器件库(黄智伟,基于NI Multisim的电子电路计算机仿真设计与分析:电子工业出版社,2011),其良好的交互式设计可以满足电路设计者各种设计需求,借助Multisim仿真软件实现电路设计的同时,通过调整电路参数,即可获得实时数据,直观的了解电路的变化(刘昕,马虎山,刘健,陈晨,基于Multisim的运算放大器及滤波电路仿真:电子世界,2016),这对学习电子技术有着重要的意义。

本文借助Multisim仿真软件设计实现了加法器、减法器、微分器、积分器等多种运算电路,通过仿真验证了运算电路的理论结果。

2 运算电路仿真实现2.1 反相加法器仿真及结果分析加法器的输入信号可以由同相端或反相端引入。

信号由反相端引入的加法器电路,称之为反相加法器,是指加法器的输入信号由反相端引入,输出结果一般为信号之和的反极性电压,其电路结构及仿真如图1所示。

图1 反向加法器仿真电路在理想运放条件下,电路引入负反馈电阻R F后,流入运放的输入电流趋近于0,即电路视为虚断,则输出电压U0为:(1-1)当R1=R2=R F时,电路实现加法运算,其仿真结果如图2所示。

基于Mulitisim的集成运算放大器应用电路仿真

基于Mulitisim的集成运算放大器应用电路仿真

电子课程实验报告题目:基于Mulitisim的集成运算放大器应用电路仿真设计目的1、集成运算放大电路当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系,在线性应用方面,可组成比例、加法、减法、积分、微分等模拟运算电路。

2、本课程设计通过Mulitisim编写程序几种运算放大电路仿真程序,通过输入不同类型与幅度的波形信号,测量输出波形信号对电路进行验证,并利用Protel软件对实现对积累运算放大电路的设计,并最终实现PC板图形式。

二、电路的理论知识1.反相放大器图1中所示的电路是最常见的运放电路,它显示出了如何在牺牲增益的条件下获得稳定,线性的放大器。

标号为R f的反馈电阻用于将输出信号反馈作用于输入端,反馈电阻连接到负输入端表示电路为负反馈连接。

输入电压V1通过输入电阻R1产生了一个输入电路i1。

电压差△V加载在+、—输入端之间,放大器的正输入端接地。

图1利用回路公式计算传输特性:输入回路:V R i V ∆+=111 (2)反馈回路:V R i V f f out ∆+-= (3)求和节点in f i i i +-=1 (4)增益公式:V A V out ∆•-= (5)由以上4个式子可以得到输出:Z R V Z i V in out /)/(/11-= (6)式中,闭环阻抗Z=1/R f +1/AR f +1/R f 。

反馈电阻和输入电阻通常都较大)(Ωk 级,并且A 很大(大于100000),因此Z=1/R f 。

更进一步,△V 通常很小(几微伏)且放大器的输入阻抗Z in 很大(大约ΩM 10),那么输入输入电流(I in =△V/Z in )非常小,可以认为为零。

则传输曲线变为:111)()/(V G V R R V f out -=-= (7)式中,R f /R 1的比值称为闭环增益G ,负号表示输出反向。

闭环增益可以通过选择两个电阻R f 和R 1来设定。

基于Multisim的集成运放应用电路仿真分析

基于Multisim的集成运放应用电路仿真分析

www�ele169�com | 75电子基础集成运算放大器简称集成运放,是集成电路中应用极为广泛的一种。

由于这种放大器早期是在模拟计算机中实现数学运算,故名运算放大器。

现在它的应用已远远超出了模拟计算的范畴,在信号处理、在信号运算以及在振荡电路中都得到了十分广泛的应用。

无论对于哪种应用电路,用传统方法精确分析都是十分困难的,而用Multisim 软件则可灵活方便的进行仿真分析。

下面用Multisim 仿真软件对由集成运放构成的应用电路进行仿真分析。

1 RC 正弦波振荡电路图1是RC 正弦波振荡电路,当接通振荡电路的电源时,在电路中会激起一个微小的扰动信号,这是起始信号。

它是个非正弦信号,含有一系列频率不同的正弦分量,为了得到单一频率的正弦输出信号,电路中必须有选频环节;为了让它幅值增大,振荡电路中必须有放大和正反馈环节;为了不让它无限增长而逐渐趋于稳定,电路中还必须有稳幅环节。

因此,正弦波振荡电路需包含放大、正反馈、选频和稳幅四个主要部分。

从1u >F A 到1u =F A ,这就是自激振荡的建立过程。

欲使振荡电路能自行建立振荡,就必须使电路满足1u >F A 的条件。

这样,在接通电源后,振荡电路才有可能自行起振,并经过稳幅最后趋于稳定持续振荡状态。

稳幅环节利用前面学过的二极管,如果振幅相对较小时,说明两个二极管都处在截止状态,此时二极管将会呈现出非常大的电阻,电路起振后,由于正反馈的作用,增幅振荡便开始在电路中产生,随着振荡幅度的逐步增加,二极管流过的电流也会随之增加,当二极管逐渐开始导通之后,等效电阻也会逐渐减少,那么A 也会跟着自动减少,从而生产自动稳幅的效果。

输出正弦波形如图2所示。

当电阻1122 3.2R R k ==Ω,1122100C C nF ==时,根据公式12f RCπ=,理论计算值498f Hz =,实测频率483f Hz =,分析产生误差的原因,在计算中 3.14π=,搭建实际电路时,选取的电阻也存在误差。

模拟电子技术实验-集成运算放大器的非线性应用电路

模拟电子技术实验-集成运算放大器的非线性应用电路

实验: 集成运算放大器的非线性应用电路一、实验目的1.掌握单限比较器、滞回比较器的设计、测量和调试方法。

2.掌握电压比较器应用电路电压传输特性的测试方法。

3.学习集成电压比较器在电路设计中的应用。

二、实验内容CCV+87651234OE IN-IN+CCV-LM311OCBAL/STRB BAL图1 741Aμ和LM311的引脚图1. 电压比较器(SPOC实验、Multisim仿真实验)(1)学习SPOC实验内容,利用Multisim仿真软件,按图2接好电路,电阻R1=R2=10kΩ,电阻R3为5.1kΩ。

由函数信号发生器调出1000Hz,峰峰值为5V,偏移量为0V的正弦交流电压加至iu端。

按表中给定数值改变直流信号源输入电压U R。

利用示波器通道1测量输入iu电压波形,通道2测量输出ou端的矩形波波形如图3所示。

其中稳压管VS选取:“DIODE”→“ZENER”→“1N5233B”iuou图2 电压比较器图3 输出电压波形(2)按表1中给定值调节U R的大小,用示波器观察输出矩形波的变化,测量测量HT和T的数值,并记入表1中。

表1电压比较器的测量0 1000 492.518 0.5 1000 945.454 11000 436.052截图仿真电路图:当U R =1V 时,截取输入i u 和输出o u 的电压波形:2. 反相滞回比较器电路(SPOC 实验、Multisim 仿真实验)1) 学习SPOC 实验内容,利用仿真软件,按图4所示的电路选择电路元件,接好电路。

其中稳压管VS 选取:“DIODE ”→“ZENER ” →“1N5233B ”-++81R iu ou 2R FR 3R 10k Ω10k Ω100k Ω5.1k ΩVS图4 反相滞回比较器仿真电路图截图:2) i u 接频率为1kHz ,峰峰值为2V 的正弦信号,观察并截取输入i u 和输出o u 的波形。

要求示波器的通道1接输入电压波形,通道2接输出电压波形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集成运算放大器Multisim仿真
Multisim是一款集成仿真软件,可以用来创建、测试和设计各种电子电路。

它可以为复杂的系统提供模拟、仿真和分析功能。

它还具有强大的图形界面,可以帮助用户快速编写代码,并且可以自动化复杂任务。

Multisim也可以对运算放大器进行仿真。

例如,用户可以使用Multisim 来设计一个具有特定输入和输出的运算放大器。

Multisim 还可以用来检查运算放大器在特定情况下的性能,从而帮助用户找到最佳的设计方案。

另外,Multisim也可以用来模拟不同的环境,以便查看运算放大器的表现情况。

相关文档
最新文档