上海大学-运算放大器电路仿真

合集下载

上海大学年电子技术课程设计模拟部分

上海大学年电子技术课程设计模拟部分

电子技术课程设计报告——高保真音频功率放大器上海大学机自学院自动化系电气工程及其自动化姓名:XXX学号:指导老师:徐昱琳2015年6月26日目录目录目录........................................................... 1任务及要求.................................................. 2方案特点.................................................... 3组成部分及其工作原理........................................3.1输入级.................................................3.2中间放大级.............................................3.3输出级.................................................3.4反馈回路............................................... 4单元电路设计与调试..........................................4.1电源电压...............................................4.2输出级(功率级)的计算.................................4.3推动级(中间级)的计算.................................4.4输入级计算.............................................4.5负反馈设计.............................................4.6电路指标的验算......................................... 5逻辑图...................................................... 6仿真结果及分析..............................................6.1静态调试...............................................6.2动态调试输出功率Po....................................6.3灵敏度测试.............................................6.4电源消耗功率...........................................6.5输入电阻...............................................6.6频率响应............................................... 7实习小结....................................................1任务及要求1.用中、小型规模集成电路设计所要求的电路;2.在 EDA 软件上完成硬件系统功能的仿真;3.写出设计、调试、总结报告。

运算放大器的设计与仿真

运算放大器的设计与仿真

集成运算放大器放大电路仿真设计1集成运算放大器放大电路概述集成电路是一种将“管”和“路”紧密结合的器件,它以半导体单晶硅为芯片,采用专门的制造工艺,把晶体管、场效应管、二极管、电阻和电容等元件及它们之间的连线所组成的完整电路制作在一起,使之具有特定的功能。

集成放大电路最初多用于各种模拟信号的运算(如比例、求和、求差、积分、微分……)上,故被称为运算放大电路,简称集成运放。

集成运放广泛用于模拟信号的处理和产生电路之中,因其高性价能地价位,在大多数情况下,已经取代了分立元件放大电路。

2 电路原理分析 2.1 电路如图1所示1此电路为反向比例运算电路,这是电压并联负反馈电路。

输入电压V1通过电阻R1作用于集成运放的反相输入端,故输出电压V0与V1反相。

图2 仿真结果图其中1//2R RF R =2.2电路如图3所示3此电路为反相求和运算电路,其电路的多个输入信号均作用于集成运放的反相输入端,根据“虚短”和“虚断”的原则,0==p N u u ,节点N 的电流方程为F i i i =+31 所以)1231(0R Ui R Ui RF U +-= 图4 仿真结果图其中RF R R R //3//12= 2.3电路如图5所示5此电路为电压跟随器电路,此电路输出电压的全部反馈到反相输入端,电路引入电压串联负反馈,且反馈系数为1,由于N P u u u ==0,故输出电压与输入电压的关系为I O u u =图6 仿真结果图2.4 电路如图7所示7从对比例运算电路和求和运算电路的分析可知,输出电压与同相输入端信号电压极性相同,与反相输入端信号电压极性相反,因而如果多个信号同时作用于两个输入端时,就可以实现加减运算。

21O O O U U U +=,111i O U R RF U -=,223i O U R RFU =图8 仿真结果图2.5 电路如图9所示9此电路为积分运算电路,利用积分运算电路可以实现方波—三角波的波形变换和正弦—余弦的移相功能。

上海大学-运算放大器电路仿真

上海大学-运算放大器电路仿真

上海大学-运算放大器电路仿真————————————————————————————————作者:————————————————————————————————日期:模拟电子技术课程实践项目运算放大器的仿真分析与传输特性测绘二极管、稳压管的仿真模型与正反向特性测试姓名:何其孟学号:院系:机自学院自动化系运算放大器的仿真分析与传输特性测绘[元件原理]in R →∞根据理想运放的特点,0R 0→和A →∞,可以得到以下两条规则:(1)“虚断”:由于理想运放in R →∞,则0,0,a b i i ≈≈故输入端口的电流约为零,可近似视为断路,称为“虚断”。

(2)“虚短”:由于理想运放A →∞,0u 为有限量,则0u 0b b u u A -=≈,即两输入端间电压约等于零,可近似视为断路,称为“虚短”。

[仿真分析] 1、 不同运算放大器的增益分析反向比例器:电压并联负反馈。

因为有负反馈,利用虚短和虚断,u + =0,u -=u +=0(虚地),由f o1i R u R u -=得:电压放大倍数为:1f i o R R u u A -==同相比例器:电压串联负反馈。

因为有负反馈,利用虚短和虚断,u -= u += u i ,i 1=i f (虚断),由可得:电压放大倍数为:1f i o 1R R u u A +==电压跟随器:因为有负反馈,利用虚短和虚断:u i =u += u -= u o 故有:电压放大倍数A u =1。

f o i 1i 0R u u R u -=-加法运算电路0==-+u u ,i 1 + i 2= i f ,f o 2i21i1R u R u R u -=+,)(i22f i11f o u R R u R R u +-= 若R 1 =R 2 =R , )(i2i1f o u u RR u +-=积分电路:Ru i i =∴虚地 t i C u u d 1C C O ⎰-=-= t u RCd 1i ⎰-=微分电路:u -= u += 0 ,dt du C i i C =,C i i =,R i u -=O ,dtdu RC u i o -= 2、运算放大器传输特性测绘利用U (有效值)=30V 的正弦波作为激励源测绘经过放大器的波形,可以发现波形最低和最高峰分别为-20V 和+20V ,当激励源电压回到0V 附近时输出波形有一小段斜线下落,可以得出此运算放大器的传输特性为:其中Uo=20V 。

运算放大器的测量和仿真

运算放大器的测量和仿真

运算放大器的测量和仿真1.概述仿真是运放设计的一项重要内容,运放的仿真与运放的应用环境是不可分割的,在仿真之前一定要首先确定运放的实际负载,包括电阻、电容负载,还应包括电流源负载,只有负载确定之后,仿真出的结果才是有意义的:不同的应用场合对运放的性能指标要求也不一样,并不需要在任何时候都要将运放的所有指标都进行仿真,所以,在仿真之前要明确应该要仿真运放的哪几项指标,哪几项指标是可以不仿真的。

在仿真时,要对不同的指标分别建立仿真电路,这样有利于电路的检查;DC、AC分析是获得电路某一性能指标信息的一种手段,它需要一些相关的条件来支持,当我们忽略了某一条件或根本没有弄清还有哪些条件时,DC、AC分析的结果就可能与实际情况不一致,导致错误的发生。

瞬态仿真则是反映出电路工作的现象,只有瞬态仿真通过,才能说明电路具备了相应的能力。

如:我们在仿真运放的频率特性时,所设计的仿真电路是建立在输入源的输出电阻为零(或很小,几百ohm以下)的基础之上,此时仿真出的运放稳定性很好,但如果实际电路前级的输出电阻不为零(此时应考虑运放输入级的寄生电容),这时,在做实际电路的瞬态仿真时,会发现输出有较大的过冲,瞬态仿真必不可少!而且,每一个AC、DC分析结果都可以用瞬态仿真加以验证。

以下仿真电路,只画出了电阻、电容负载,没有给出电流源负载,在进行电路的仿真时,要根据实际情况,酌情考虑电流源负载的影响(实际上电路动态工作时,一定有输出电流)。

一般情况下,电阻、电容负载是相对于共模电压的(不是GND),不会引入静态电流,但在某些场合,如输出驱动电路,其电阻负载是对地的,此时会引入静态电流,这些东西在实际仿真时都是要考虑的。

运算放大器的测量和仿真类别包括:开环增益、开环频率响应(包括相位裕度)、输入失调电压、共模增益、电源抑制比、共模输入输出范围、开环输出电阻和瞬态响应(包括摆率)。

AC相当于小信号仿真,步骤是先进行直流工作点仿真再进行小信号仿真,对于直流电源相当于短路DC可以仿真工作点,范围等相当于现实物理模型的仿真,接近真实情况表1 MOS运算放大器技术指标总表2.概述总体电路:Symbol:3.双端输入、单端输出运放性能参数仿真规范3.1 直流参数仿真3.11 失调电压(voltage offset )的仿真差分放大器性能一个重要的方面就是所能检测到的最小直流和交流差模电压。

5、运算放大器仿真设计(一)

5、运算放大器仿真设计(一)

将原理图实例化,绘制如上电路图,在输入端加 上2.5V的直流电压,查看输出端out的电压
仿真后,在Analog Design Environment界 面选择Tools->Results Browser,通过结果 浏览器来看仿真的输出结果
双击dc0p-dc,右击out,选择Table,可以看出,当 同相端和反向端接入2.5V电压时,输出电压为 3.44v,说明运放可以正常工作
其版图设计从平面布局到各器件的几何图形的设计都要十 分的“讲究”,需要考虑的问题往往比数字集成电路多得 多。
如果在电路级上而不是在逻辑级上来考虑和优化一个数字 集成电路的性能,这将与模拟集成电路有许多共同点,对 高速数字集成电路的设计尤其如此。
性能指标要求
低频小信号放大倍数、单位增益带宽、相 位裕度、输出摆幅、共模抑制比、电源电 压抑制比、功耗等
瞬态分析
对电路中各节点电压和支路电流等变量进行 时域分析,对时间变量的响应,以得到电路 的失真度、延迟、转换速率和建立时间
参数扫描分析
用于仿真电路中某个元件的参数在一定取值 范围内变化时,对电路直流工作点、瞬态特 性、交流频率特性的影响
CMOS两级运放的电路结构(见课本P167页)
运放性能指标
Check and Save一下,可能有两个警告,可 以先忽略(不要删除错误符号),接下来采用 spectre对电路进行仿真
• 仿真的时候选择dc,并保存直流工作点信 息
仿真结果没有波形信号,只能查看各点电压、 电流
可以按如下操作修改一下显示参数,在原理 图上显示id,vds,vgs和MOS管的四个端点电 压
运算放大器仿真设计(一)
模拟集成电路 设计流程图

运放仿真方法整理

运放仿真方法整理

运放仿真方法整理运算放大器的仿真包括直流工作点仿真(OP)、直流扫描仿真(DC)、交流小信号仿真(AC)、瞬态仿真(TRAN)等等。

DC仿真又包括共模输入和输出范围、输入失调电压仿真;AC仿真包括开环增益、带宽、相位裕度、共模抑制比、电源抑制比等等;TRAN仿真包括大、小信号摆率、过冲、建立时间等等。

1直流扫描仿真1.1输入失调电压(V OS)仿真图1-1所示为运放输入失调电压的实际测量方法。

将运放接成单位负反馈的形式,并在正输入端加一个合适的直流电平V CM。

只要运放开环增益足够大则输出端电压即为输入直流电平加上输入失调电压。

由此可很方便地测量得到V OS。

实际CMOS运放的V OS约为mV量级,由非无限大开环增益引入的正、负输入端的压差为V CM/(1+A),因此对于增益大于10000(80dB)的运放该误差对V OS测量造成的影响可以忽略。

图1-1运放输入失调电压测量结构必须注意的是,仿真得到的V OS仅由偏置失配造成,属于系统失调。

实际运放的输入失调电压的主要影响因素为元器件失配,而仿真器中会假设所有器件完全相同,因此仿真得到的失调电压并不能准确表征实际情况。

1.2共模输入范围(ICMR)和输出摆幅(SW)仿真将运放接成如图1-2(a)所示的单位负反馈的形式,将正输入端的电压从0至V DD进行直流扫描,观察输出端的电压变化曲线,即可观察该单位缓冲器的线性范围。

在运放的线性工作区域内,直流扫描曲线的斜率为45°,即输出能够良好跟随输入;在线性范围之外,则曲线发生弯曲,如图1-2(b)所示。

(a)仿真电路结构(b)输出随输入变化曲线图1-2输入共模范围仿真用该结构仿真得到的线性范围同时受到输入共模范围和输出摆幅的限制,因此无法用该结构精确测得ICMR。

对于一般的运放,输出摆幅范围通常大于输入共模范围,故该方法能够大致预估输入共模范围。

图1-3(a)所示的反相电压放大器增益为-10。

上海大学模拟电子技术实验报告

上海大学模拟电子技术实验报告

上海大学模拟电子技术实验报告模拟电子技术基础报告上海大学模拟电子技术课外项目运算放大器学号: XXXXXXX姓名: XX教师: 徐昱琳日期: 2014.12.3运算放大器【摘要】:运算放大器(简称“运放”)是具有很高放大倍数的电路单元。

在实际电路中,通常结合反馈网络共同组成某种功能模块。

由于早期应用于模拟计算机中,用以实现数学运算,故得名“运算放大器”。

作为电子电路中的基本电路单元,我们应当有所了解,于是通过查阅相关书籍、资料,上网查阅等方式,初步了解了运算放大器。

知道了运放是一个从功能的角度命名的电路单元,可以由分立的器件实现,也可以实现在半导体芯片当中。

随着半导体技术的发展,大部分的运放是以单芯片的形式存在。

运放的种类繁多,广泛应用于电子行业当中。

【关键词】:运算放大器,理想运算放大器【正文】:运算放大器特点:(1)理想运算放大器的模型运算放大器的符号,如下图所示:理想运算放大器的参数为:(1)差模信号的开环电压增益为无穷大,即Av=∞;(2)差动输入电阻为无穷大,即Rid=∞;(3)输出电阻为零,即Rout=0;(4)开环频带宽度为无穷大,即BW =∞;(5)当输入同相端(“+”)与反相端(“-”)的电压相等时,输出电压Vout =0(针对双电源供电)。

上述条件下,运算放大器的两输入端之间为零端口化,即所谓“虚短虚断”状态,它的电压和电流同时为零,其特性可表示为V1=V2,I1=I2。

(2)非理想运算放大器的模型实际的运算放大器只能十分接近上述的理想放大器,或者说在理想运算放大器中增加一系列的模型参数,使其更接近实际情况。

下图是非理想运算放大器的一种模型:Rid、Cid 表示差动输入电阻、差动输入电容;Rout表示输出电阻;Ricm 、Cicm表示共模输入电阻、共模输入电容;Vos表示输入失调电压;Ios表示输入失调电流,它是在运放用两个相同的电流源驱动时,使输出电压为0的电流值,所以Ios可定义为两个输入偏置电流IB1和IB2之差;CMRR 是共模抑制比;V1/CMRR表示受控电压源;运放的等效噪声电压和等效噪声电流,它们以均方电压和均方电流表示,并认为它们是相互独立的。

运算放大器的设计与仿真

运算放大器的设计与仿真

运算放大器的设计与仿真设计要求:1.增益稳定性:运算放大器的增益应该能够在所需的频率范围内保持稳定。

2.输入阻抗:运算放大器应具备较高的输入阻抗,以减少对输入信号的干扰。

3.输出阻抗:运算放大器应具备较低的输出阻抗,以减小对外界负载的影响。

4.带宽:运算放大器应具备较宽的带宽,以满足对高频信号的放大需求。

5.稳定性:运算放大器应具备较高的稳定性,以避免产生自激振荡或输入偏移。

电路结构:差分输入级:差分输入级是运算放大器的核心部分,用于接受差分输入信号。

它由两个差分对组成,每个差分对由两个晶体管连接而成。

差分输入级的输入阻抗较高,能够减小对输入信号的干扰,提高共模抑制比。

共模放大级:共模放大级用于放大输入信号的共模部分。

它由一对电流镜电路和一个差分放大电路组成。

共模放大级的放大倍数影响运算放大器的共模抑制比和输入选择性。

输出级:输出级用于提供对外的放大信号。

它由输入级的晶体管、电源和输出级负载组成。

输出级应具备较低的输出阻抗,以便与外界负载匹配。

参数选择:参数选择是运算放大器设计的重要环节。

下面是几个常见参数的选择方法:增益:增益可以根据具体应用需求来设定。

一般来说,增益越高,对输入信号的放大效果越好,但也容易引入噪声和干扰。

带宽:带宽取决于应用的特定频率范围。

选择较高的带宽可以满足对高频信号的放大需求,但也可能引入频率抖动和畸变。

输入阻抗:输入阻抗应根据信号源的特性来选择。

如果信号源的输出阻抗较高,则需要选择较低的输入阻抗以保证信号传输。

输出阻抗:输出阻抗应根据负载的特性来选择。

如果负载的输入阻抗较高,则需要选择较低的输出阻抗以提供足够的电流输出。

稳定性:稳定性可以通过选择合适的电容和电阻来提高。

一般来说,通过增加补偿电容和添加反馈电阻可以提高运算放大器的稳定性。

仿真:对于运算放大器的设计,可以使用电子设计自动化软件进行仿真验证。

主要包括以下步骤:1.输入基本电路参数,如晶体管的参数、电源电压等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海大学-运算放大器电路仿真
反向比例器:电压并联负反馈。

因为有负反馈,利用虚短和虚断,u + =0,u -=u +=0(虚地),由f
o 1i
R u R u -=得:
电压放大倍数为:
1
f
i o R R u u A -
==
同相比例器:电压串联负反馈。

因为有负反馈,利用虚短和虚断,u -= u += u i ,i 1=i f (虚断), 由 可得:
电压放大倍数为:
1
f i o 1R R u u A +
==
f
o
i
1i
0R u
u R u -=
-
电压跟随器:
因为有负反馈,利用虚短和虚断:u i=u+= u-= u o 故有:
电压放大倍数A u=1。

加法运算电路
==-+u u ,i 1 + i 2= i f ,f
o
2i21
i1R u R u R
u
-=+
,)(
i22
f i11f o
u R R
u R R u
+-=
若R 1 =R 2 =R , )(i2i1f
o
u u R
R u +-
=
积分电路:R
u i i =
∴虚地
t i C u u d 1
C C O ⎰
-
=-=
t u RC d 1
i ⎰
-
=
微分电路:u -= u += 0 ,dt
du C
i
i C
=,C
i
i =,R i u -=O

dt
du RC
u i o -=
2、运算放大器传输特性测绘
利用U(有效值)=30V的正弦波作为激励源测绘经过放大器的波形,可以发现波形最低和最高峰分别为-20V和+20V,当激励源电压回到0V 附近时输出波形有一小段斜线下落,可以得出此运算放大器的传输特性为:
End.。

相关文档
最新文档