基于单片机的自动往返小车毕业设计

合集下载

基于51单片机的自动往返小车设计刘桐

基于51单片机的自动往返小车设计刘桐

参考文献......................................................................................................................20
2
忻州师院计算机系本科学士学位论文
基于 51 单片机的自动往返小车设计
3 自动往返小车硬件设计............................................................................................7 3.1 总体设计..............................................................................................................7 3.2 3.3 4 信号检测模块...................................................................................................7 主控电路...........................................................................................................8
摘 要:自动往返小车,是一种以电子汽车技术为背景,包含小车控制、传感技 术、电子技术、计算机、机械等多学科的科技创意性设计。主要组成模块有以下 几部分:路径识别、行驶时间控制及车速管制等模块组成。 该设计以 51 单片机为唯一主要控制模块,充分利用了自动检测技术、单片 机最小系统、模块电路,以及声光信号的管控、电机的驱动电路。通过 51 单片 机的仿真,通过实践调试与操作,实现小车在直线上的自动往返设计。综合应用 单片机技术、自动控制理论、检测技术等。使小车能在无人操作情况下,借助传 感器辨认路面环境,由单片机主控行进,完成初步的无人控制。 本设计以单片机为核心,附以外围电路,采用光电检测器进行检测信号实现 小车的自动加速、和循线运动。运用单片机的运算和处理能力来加速、减速、急 刹车、掉头、返回、显示行驶路程、行驶时间等智能控制系统。 关键词:51 单片机、检测技术、自动 Abstract : Automatic car back and forth, it is a kind of electronic automotive technology as the background, containing the car control, sensor technology, electronic technology, computer, machinery, and other multi-disciplinary science and technology creative design. Main composition module has the following several parts: path identification, time control, speed control module, etc. With 51 single-chip microcomputer as the main control module for the design, make full use of the automatic detection technology, module circuit, single chip microcomputer minimum system, as well as the acousto-optic signal control, the motor drive circuit. By 51 MCU simulation, debugging and through practice operation, from design to realize automatic car on a straight line. Integrated application of single-chip computer technology, automatic control theory, detecting technology, etc. Can make the car in the case of unattended operation, with the aid of sensors to identify the road environment, by single-chip microcomputer control, complete preliminary without control. This design with the single chip processor as the core, attached to the peripheral circuit, adopting photoelectric detector for testing signal to achieve the automatic acceleration, and followed the movement of the car. Using single chip microcomputer operation and processing power to acceleration, deceleration, brakes, turn around, return, show the intelligent control system such as travel, travel time. Keywords:51 single-chip microcomputer, automatic detection technology

基于单片机的自动往返小车毕业设计

基于单片机的自动往返小车毕业设计

基于单片机的自动往返小车毕业设计基于单片机的自动往返小车摘要:本设计以一片单片机STC89C52作为核心来控制自动往返小车,其中控制芯片L298N和单片机联合控制小车的前进与后退。

路面的黑带检测使用反射式红外传感器,并通过STC89C52对输入的信号进行处理;行驶距离使用霍尔元件进行检测。

最后以动态显示的形式通过一个LCD液晶显示即时黑带个数,运行时间,实时路程等。

关键词:微控制器 L298N电机控制霍尔检测液晶显示The Automatic round-trip car based on SCMAbstract:This design use a microcontroller STC89C52 as the core to control the automatic round-trip car, the control chip L298N and single chip microcomputer to control the car forward and backward together. The reflective infrared sensor detection the black belt on the road surface, then deal with input signal processing through the STC89C52. Using the hall element to test the distance. At last displaying instant black belt, running time, real-time distance, etc through a number of LCD liquid crystal in the form of dynamic displayKeywords:MCU L298N Motor control Hall detection LED display目录摘要 (I)关键字 (I)Abstract (I)Keywords (I)0绪论 (2)1.1 设计任务 (3)1.2方案介绍 (4)2.1 系统元器件的选择与介绍 (5)2.1.1 STC89C52R芯片 (5)2.1.2 L298N芯片 (11)2.1.3霍耳传感器(HD3020) (14)2.1.4液晶LCD (15)2.2电路模块的设计 (18)2.2.1检测系统 (18)2.2.2距离计算系统 (19)2.2.3显示系统 (20)2.2.4电机驱动以及正反转控制模块 (20)3.1主程序 (21)3.2中断程序 (22)3.2.1外部中断0 (22)3.2.2外部中断1 (23)3.2.3定时器中断0 (24)3.2.4定时器中断1 (24)4总结 (21)致谢 (21)参考文献 (21)附录 (21)0绪论当今社会,随着科技发展的日新月异,特别是计算机技术突飞猛进的发展,计算机技术带来了科研和生产的许多重大飞跃,同时计算机也越来越广泛的被应用到人们的生活、工作领域的各个方面。

基于单片机的自动往返小汽车的设计【开题报告】

基于单片机的自动往返小汽车的设计【开题报告】

开题报告电气工程及其自动化基于单片机的自动往返小汽车的设计一、综述本课题国内外研究动态,说明选题的依据和意义随着汽车工业的迅速发展,其与电子信息产业的融合速度也显著提高,汽车开始向电子化、多媒体化和智能化方向发展,使其不仅作为一种代步工具、同时能具有交通、娱乐、办公和通讯等多种功能。

关于汽车的研究也就越来越受人关注。

全国电子大赛和省内电子大赛几乎每次都有智能小车这方面的题目,全国各高校也都很重视该题目的研究。

可见其研究意义很大。

本设计就是在这样的背景下提出的,为了适应机电一体化的发展在汽车智能化方向的发展要求,提出简易智能小车的构想,目的在于:通过独立设计并制作一辆具有简单智能化的简易小车,获得项目整体设计的能力,并掌握多通道多样化传感器综合控制的方法。

设计的智能电动小车应该能够具有自动寻迹、小灯显示等功能。

由于单片机教学例子有限,因此,单片机智能车能综合学生课堂上的知识来实践,使学习者更好的了解单片机的发展。

通过此次的单片机寻轨车制作,使学生从理论到实践,初步体会单片机项目的设计、制作、调试和成功完成项目的过程及困难,以此学会用理论联系实际。

通过对实践中出现的不足与学习来补充教学上的盲点。

智能汽车是一种高新技术密集的新型汽车,是在网络环境下利用信息技术、智能控制技术、自动控制、模式识别、传感器技术、汽车电子、电气、计算机和机械等多个学科的最新科技成果,使汽车具有自动识别行驶道路、自动驾驶等先进功能.随着控制技术、计算机技术和信息技术的发展,智能车在工业生产和日常生活中已经扮演了非常重要的角色.近年来,智能车在野外、道路、现代物流及柔性制造系统中都有广泛运用,已成为人工智能领域研究和发展的热点。

二、研究的基本内容。

智能寻迹小车采用后轮驱动,左右后轮各用一个直流减速电机驱动,通过调制后面两个轮子的转速从而达到控制转向的目的在车体前部分别装有左中右三或者两个红外反射式传感器,当小车左边的传感器检测到黑线时,说明小车车头向右边偏移,这时主控芯片控制左轮电机减速,车体向左边修正同理当小车的右边传感器检测到黑线时,主控芯片控制右轮电机减速,车体向右边修正当黑线在车体的中间,中间的传感器一直检测到黑线,这样小车就会沿着黑线一直行走。

自动往返电动小汽车(毕业设计)

自动往返电动小汽车(毕业设计)

一. 毕业实践任务书无锡职业技术学院毕业实践任务书课题名称:自动往返电动小汽车指导教师:XXXXXXX 职称:讲师指导教师:职称:专业名称:XXXXXXXX 班组:XXXXXX学生姓名:XXXXXXX 学号:05一. 课题需要完成的任务:设计并制作一个能自动往返于起跑线与终点线间的小汽车。

允许用玩具汽车改装,但不能用人工遥控(包括有线和无线遥控)。

图1跑道顶视图跑道宽度0.5m,表面贴有白纸,两侧有挡板,挡板与地面垂直,其高度不低于20cm。

在跑道的B、C、D、E、F、G各点处画有2cm宽的黑线,各段的长度如图1所示。

设计要求1、车辆从起跑线出发(出发前,车体不得超出起跑线),到达终点线后停留10秒,然后自动返回起跑线(允许倒车返回)。

往返一次的时间应力求最短(从合上汽车电源开关开始计时)。

2. 达终点线和返回起跑线时,停车位置离起跑线和终点线偏差应最小(以车辆中心点与终点线或起跑线中心线之间距离作为偏差的测量值)。

D~E间为限速区,车辆往返均要求以低速通过,通过时间不得少于8秒,但不允许在限速区内停车。

二. 课题计划:2006.3.3~2006.3.6 熟悉课题,可行性方案分析及方案论述。

2006.3.7~2006.3.19 查阅资料,设计各部分硬件。

2006.3.19~2006.4.10 画原理图,印刷线路板。

2006.4.10~2006.4.20 编写程序验证部分硬件。

2006.4.21~2006.4.25 写出毕业论文。

计划答辩时间:4.21-4.28XXXXX 系(部、分院)2006年02年18日二.外文翻译VIDEOCASSETTEBefore the videocassette recorder there was the movie projector and screen. Perhaps you remember your fifth-grade teacher pulling down a screen—or Dad hanging a sheet on the wall, ready to show visiting friends the enthralling account of your summer vacation at the shore. Just as the film got started, the projector bulb often blew out.Those days did have one advantage, though: the screen was light, paper-thin and could be rolled into a portable tube. Compare that with bulky television and computer screens, and the projector screen invokes more than just nostalgia. Could yesterday's convenience be married to today's technology?The answer is yes, thanks to organic light-emitting materials that promise to make electronic viewing more convenient and ubiquitous. Used in displays, the organic materials are brighter, consume less energy and are easier to manufacture (thus potentially cheaper) than current options based on liquid crystals. Because organic light-emitting diodes (OLEDs) emit light, they consume significantly less power, especially in small sizes, than common liquid-crystal displays (LCDs), which require backlighting. OLEDs also offer several exciting advantages over common LEDs: the materials do not need to be crystalline (that is, composed of a precisely repeating pattern of planes of atoms), so they are easier to make; they are applied in thin layers for a slimmer profile; and different materials (for different colors) can be patterned on a given substrate to make high-resolution images. The substrates may be inexpensive glass or flexible plastic or even metal foil.In the coming years, large-screen televisions and computer monitors could roll up for storage. A soldier might unfurl a sheet of plastic showing a real-time situation map. Smaller displays could be wrapped around a person's forearm or incorporated into clothing. Used in lighting fixtures, the panels could curl around an architectural column or lie almost wallpaperlike against a wall or ceiling.LEDs currently have longer lifetimes than organic emitters, and itwill be tough to beat the widespread LED for use in indicator lamps. But OLEDs are already demonstrating their potential for displays. Their screens put out more than 100 candelas per square meter (about the luminance of a notebook screen) and last tens of thousands of hours (several years of regular use) before they dim to half their original radiance.Close to 100 companies are developing applications for the technology, focusing on small, low-power displays [see box on page 80]. Initial products include a nonflexible 2.2-inch (diagonal) display for digital cameras and cellular phones made jointly by Kodak and Sanyo, introduced in 2002, and a 15-inch prototype computer monitor produced by the same collaborative venture. The global market for organic display devices was about $219 million in 2003 and is projected to jump to $3.1 billion by 2009, according to Kimberly Allen of iSuppli/Stanford Resources, a market-research firm specializing in displays.一、What LED to OLEDCRYSTALLINE semiconductors—the forerunners of OLEDs—trace their roots back to the development of the transistor in 1947, and visible-light LEDs were invented in 1962 by Nick Holonyak, Jr. They were first used commercially as tiny sources of red light in calculators and watches and soon after also appeared as durable indicator lights of red, green or yellow. (When suitably constructed, LEDs form lasers, which have spawned the optical-fiber revolution, as well as optical data storage on compact discs and digital video discs.) Since the advent of the blue LED in the 1990s [see “Blue Chip,” by Glenn Zorpette; Scientific American, August 2000], full-color, large-screen television displays made from hundreds of thousands of LED chips have appeared in spectacular fashion on skyscrapers and in arenas [see “In Pursuit of the Ultimate Lamp,” by M. George Crawford, Nick Holonyak, Jr., and Frederick A. Kish, Jr.; Scientific American, February 2001]. Yet the smaller sizes used in devices such as PDAs (personal digital assistants) and laptops are not as practical.LEDs and OLEDs are made from layers of semiconductors—materials whose electrical performance is midway between an excellent conductorsuch as copper and an insulator such as rubber. Semiconducting materials, such as silicon, have a small energy gap between electrons that are bound and those that are free to move around and conduct electricity. Given sufficient energy in the form of an applied voltage, electrons can “jump” the gap a nd begin moving, constituting an electrical charge. A semiconductor can be made conductive by doping it; if the atoms added to a layer have a smaller number of electrons than the atoms they replace, electrons have effectively been removed, leaving positively charged “holes” and making the material “p-type.” Alternatively, a layer that is doped so that it has an excess of negatively charged electrons becomes “n-type” [see box on opposite page]. When an electron is added to a p-type material, it may encounter a hole and drop into the lower band, giving up an amount of energy (equal to the energy gap) as a photon of light. The wavelength depends on the energy gap of the emitting material.For the production of visible light, organic materials should have an energy gap between their lower and higher conduction bands in a relatively small range, about two to three electron volts. (One electron volt is defined as the kinetic energy gained by an electron when it is accelerated by a potential difference of one volt. A photon with one electron volt of energy corresponds to the infrared wavelength of 1,240 nanometers, and a photon of two electron volts has a wavelength half as much—620 nanometers—a reddish color.)二、A Surprising GlowORGANIC semiconductors are formed as aggregates of molecules that are, in the technologies being pursued, amorphous—a solid material, but one that is noncrystalline and without a definite order. There are two general types of organic light emitters, distinguished by “small” and “large” molecule sizes. The first practical p-n-type organic LED, based on small molecules, was invented in 1987 by Ching W. Tang and Steven A. Van Slyke of Eastman Kodak, after Tang noticed a surprising green glow coming from an organic solar cell he was working on. The duo recognized that by using two organic materials, one a good conductor of holes and the other a good conductor of electrons, they could ensure that photon emission would take place near the contact area, or junction, of the two materials, as in acrystalline LED. They also needed a material that held its electrons tightly, meaning that it would be easy to inject holes. For the light to escape, one of the contacts must be transparent, and the scientists benefited from the fortunate fact that the most widely used transparent conducting material, indium tin oxide, bound its electrons suitably for p-type contact material.The structure they came up with has not changed much over the years and is often called “Kodak-type,” because Kodak had the basic patent [see box on opposite page]. Beginning with a glass substrate, different materials are deposited layer by layer. This process is accomplished by evaporating the constituent materials and letting them condense on the substrate. The total thickness of the organic layers is only 100 to 150 nanometers, much thinner than that of a conventional LED (which is at least microns in thickness) and less than 1 percent of the thickness of a human hair. Because the molecules of the materials used are relatively lightweight—even lighter than a small protein—the Kodak-type OLEDs are referred to as “small molecule” OLEDs.After their initial insight, Tang and Van Slyke tinkered with the design to increase efficiency. They added a small amount of the fluorescent dye coumarin to the emitter material tris (8-hydroxy-quinoline) aluminum. The energy released by the recombination of holes and electrons was transferred to the dye, which emitted light with greatly increased efficiency. Deposition of additional thin layers of indium tin oxide and other compounds next to the electrodes altered the interaction of the thicker layers and also improved the efficiency of the injection of holes and electrons, thereby further upping the overall power efficiency of the fluorescent OLED.Organic LEDs of this small-molecule type are used to make red, green and blue light, with green light having the highest efficiency. Such green-emitting OLEDs can exhibit luminous efficiencies of 10 to 15 candelas per ampere—about as efficient as commercial LEDs today—and seven to 10 lumens per watt, values that are comparable to those for common incandescent lamps.录像机在卡匣式录像机出来之前,我们用的是电影放映机与屏幕。

89c52的单片机自动往返电动小汽车设计报告范文-图文

89c52的单片机自动往返电动小汽车设计报告范文-图文

89c52的单片机自动往返电动小汽车设计报告范文-图文1.设计任务:设计并制作了一个自动往返小汽车,其行驶路线满足所需的要求。

1.1要求:1.1.1基本要求:(1)分区控制:如(图1)所示:(图1)车辆从起跑线出发(出发前,车体不得超出起跑线)。

在第一个路程C~D区(3~6米)以低速行驶,通过时间不低于10;第二个路程D~E区(2米)以高速行驶,通过时间不得多于4秒;第三个路程E~F区(3~6米)以低速行驶,通过时间不低于8。

1.1.2.发挥部分(1)自动记录、显示一次往返时间(记录显示装置要求安装在车上)。

(2)自动记录、显示行驶距离(记录显示装置要求安装在车上)。

(3)其它特色与创新。

2.方案设计:根据设计任务要求,并且根据我们自己的需要而附加的功能,该电路的总体框图可分为几个基本的模块,框图如(图2)所示:555定时器控速模块路面检测测速模块AT89S51LCD显示模块(图2)2.1路面检测模块:路面黑线检测模块采用反射式红外发射--接收器,在车底的前部和中部安装了两个反射式红外传感器.2.2LCD显示模块:采用1602LCD,由单片机的总线模式连接。

为节约电源电量并且不影响LCD的功能,LCD的背光用单片机进行控制,使LCD的背光在小车行驶的过程中不亮,因为我们不必看其显示;在其它我们需要看显示的内容的时候LCD背光亮。

2.3测速模块:采用采用霍尔开关元器件A44E检测轮子上的小磁铁从而给单片机中断脉冲,达到测量速度的作用。

霍尔元件具有体积小,频率响应宽度大,动态特性好,对外围电路要求2简单,使用寿命长,价格低廉等特点,电源要求不高,安装也较为方便。

霍尔开关只对一定强度的磁场起作用,抗干扰能力强,因此可以在车轮上安装小磁铁,而将霍尔器件安装在固定轴上,通过对脉冲的计数进行车速测量。

其原理图接线如(图3)所示:(图3)2.4控速模块:采用由双极性管组成的H桥电路。

用单片机控制晶体管使之工作在占空比可调的开关状态,精确调整电机转速。

自动往返电动小汽车设计

自动往返电动小汽车设计

自动往返电动小汽车余密刘勇尹佳喜华中科技大学电工电子创新中心(武汉430074)摘要:本设计以凌阳16位单片机SPCE061A为核心,通过高灵敏度红外光电传感器检测路面上的黑线,并进行计数,从而控制不同路段的速度,以红外对管检测车轮转动周数,根据车轮周长计算出速度及小车行驶路程。

单片机对高灵敏度红外光电传感器检测得到的路面信息进行处理后产生PWM输出,从而控制小车前轮与后轮电机转速,也就控制了小车的速度。

到达终点后,电机端电压反向,则小车行驶方向反向,小车由原路倒退返回。

红外对管检测到的小车车速及行驶路程信息经单片机计算处理后由液晶显示。

关键字:PWM 光电传感器检测调速一方案论证与选择1 电机调速模块电机调速主要是控制小车的速度与行驶方向。

通过对前轮电机转速的控制可控制小车的行驶方向,对小车的行驶速度的控制通过对其后轮转速的控制实现。

此模块为本设计的核心部分。

(1)电机调速方案方案一:电枢回路串电阻调速。

如II-1-1所示,通过单片机控制继电器,这样可以控制接入电枢回路电阻的大小,从而实现串电阻调速。

此方案只能分级调速,而且,串入电阻造成能量损耗,而本设计采用电池供电,显然,需要节能的调速系统,故此方案不能达到要求。

图III-1-1 电机电枢回路串电阻调速电路图方案二:电枢回路串电感调速。

原理图与方案一相同,将电阻换为电感,这样可以减小能耗,但由于电感消耗无功功率,造成电源污染,故不能采用此方案。

方案三:采用弱磁调速,即改变电机气隙磁通。

此方案可以连续调速,而且,能耗小,可由额定转速向高速方向调节,也可由额定转速向低速方向调节。

但由于小车电机不为他励直流电机,故很难改变磁通大小,方案难以实现。

方案四:采用改变端电压调速。

根据直流电机机械特性方程n=U a/k eФ+(R a+R j)T/k e k TФ2=n0-βT Tn——电机转速;n0——电机空载转速;k e、k T——电机结构参数所确定的电机电势常数、转矩常数;Ф——气隙磁通;U a——电动机电枢电压;R a、R j——电机电枢电阻及串入电阻;T——负载转矩;βT——机械特性曲线斜率;由上述直流电动机机械特性知,改变电枢端电压,可以连续改变电动机转速。

89c52的单片机自动往返电动小汽车设计报告

89c52的单片机自动往返电动小汽车设计报告

1. 设计任务:设计并制作了一个自动往返小汽车,其行驶路线满足所需的要求。

要求:基本要求:(1)分区控制:如(图1)所示:(图1)车辆从起跑线出发(出发前,车体不得超出起跑线)。

在第一个路程C~D区(3~6米)以低速行驶,通过时间不低于10s;第二个路程D~E区(2米)以高速行驶,通过时间不得多于4秒;第三个路程E~F区(3~6米)以低速行驶,通过时间不低于8s。

发挥部分(1)自动记录、显示一次往返时间(记录显示装置要求安装在车上)。

(2)自动记录、显示行驶距离(记录显示装置要求安装在车上)。

(3)其它特色与创新。

2. 方案设计:(图2)路面检测模块:路面黑线检测模块采用反射式红外发射--接收器,在车底的前部和中部安装了两个反射式红外传感器.LCD显示模块:采用1602LCD,由单片机的总线模式连接。

为节约电源电量并且不影响LCD的功能,LCD的背光用单片机进行控制,使LCD的背光在小车行驶的过程中不亮,因为我们不必看其显示;在其它我们需要看显示的内容的时候LCD背光亮。

测速模块:采用采用霍尔开关元器件A44E检测轮子上的小磁铁从而给单片机中断脉冲,达到测量速度的作用。

霍尔元件具有体积小,频率响应宽度大,动态特性好,对外围电路要求简单,使用寿命长,价格低廉等特点,电源要求不高,安装也较为方便。

霍尔开关只对一定强度的磁场起作用,抗干扰能力强,因此可以在车轮上安装小磁铁,而将霍尔器件安装在固定轴上,通过对脉冲的计数进行车速测量。

其原理图接线如(图3)所示:(图3)控速模块:采用由双极性管组成的H桥电路。

用单片机控制晶体管使之工作在占空比可调的开关状态,精确调整电机转速。

这种电路由于工作在管子的饱和截止模式下,效率非常高;H桥电路保证了可以简单地实现转速和方向的控制;电子开关的速度很快,稳定性也很高,是一种广泛采用的调速技术。

其电路原理图如(图4)所示:(图4)3. 程序框图:单片机主程序框图、速度感应程序框图和铁片感应程序框图分别如(图7)所示。

毕业设计基于Arduino单片机的智能小车设计

毕业设计基于Arduino单片机的智能小车设计

江海职业技术学院毕业设计毕业设计题目:姓名学号:所在系(部):专业及班级:指导教师:完成日期:中文摘要智能车辆是集环境感知、规划决策、多等级辅助驾驶等功能于一体的综合系统,是智能交通系统的一个重要组成部分。

它在军事、民用、太空开发等领域有着广泛的应用前景。

随着电子工业的发展,智能技术广泛运用于各种领域,运用于智能家居中的产品更是越来越受到人们的青睐。

本系统在硬件设计方面,以Arduino单片机为控制核心,以超声波传感器检测前方障碍物,从而自动避障。

在软件方面,利用C语言进行编程,通过软件编程来控制小车运转。

根据家庭各种房间家具的布局不同而使用不同的路径,从而使得家居中常用到的智能清扫小车智能化,人性化。

该小车能自动避障,有一定的实用价值。

关键词:单片机;智能清扫小车;自动避障目录第一章绪论 (1)1.1 选题背景 (1)1.2 智能小车研究现状 (2)1.3 课题主要内容 (4)第二章智能小车总体结构 (5)2.1 方案综述 (5)2.2 主控单元方案比较与选择 (5)2.3 避障单元方案比较与选择 (6)2.4 “小车”的必要的信息 (7)第三章智能小车的触觉、眼睛 (8)3.1 智能小车内部检测原理 (8)3.2 电机电流、电压检测 (10)3.3 超声波测距 (11)第四章智能小车的脚 (23)4.1 轮系结构详述 (23)4.2 直流电机 H 桥驱动电路 (26)4.3 电机控制信号 (28)第五章智能小车的大脑 (29)5.1 Arduino单片机简介 (29)5.2 Arduino单片机引脚简介 (30)5.3 Arduino编程软件 (33)第六章智能小车控制流程及程序 (35)6.1 控制流程 (35)参考文献 (36)致谢 (37)第一章绪论随着科技进步,现代工业技术发展越来越体现出机电一体化的特征。

无论是在金属加工、汽车技术、工业生产等等方面,机器设备表现了所谓智能化、集成化、小型化、高精度化的发展趋势。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于单片机的自动往返小车毕业设计基于单片机的自动往返小车摘要:本设计以一片单片机STC89C52作为核心来控制自动往返小车,其中控制芯片L298N和单片机联合控制小车的前进与后退。

路面的黑带检测使用反射式红外传感器,并通过STC89C52对输入的信号进行处理;行驶距离使用霍尔元件进行检测。

最后以动态显示的形式通过一个LCD液晶显示即时黑带个数,运行时间,实时路程等。

关键词:微控制器 L298N电机控制霍尔检测液晶显示The Automatic round-trip car based on SCMAbstract:This design use a microcontroller STC89C52 as the core to control the automatic round-trip car, the control chip L298N and single chip microcomputer to control the car forward and backward together. The reflective infrared sensor detection the black belt on the road surface, then deal with input signal processing through the STC89C52. Using the hall element to test the distance. At last displaying instant black belt, running time, real-time distance, etc through a number of LCD liquid crystal in the form of dynamic displayKeywords:MCU L298N Motor control Hall detection LED display目录摘要 (I)关键字 (I)Abstract (I)Keywords (I)0绪论 (2)1.1 设计任务 (3)1.2方案介绍 (4)2.1 系统元器件的选择与介绍 (5)2.1.1 STC89C52R芯片 (5)2.1.2 L298N芯片 (11)2.1.3霍耳传感器(HD3020) (14)2.1.4液晶LCD (15)2.2电路模块的设计 (18)2.2.1检测系统 (18)2.2.2距离计算系统 (19)2.2.3显示系统 (20)2.2.4电机驱动以及正反转控制模块 (20)3.1主程序 (21)3.2中断程序 (22)3.2.1外部中断0 (22)3.2.2外部中断1 (23)3.2.3定时器中断0 (24)3.2.4定时器中断1 (24)4总结 (21)致谢 (21)参考文献 (21)附录 (21)0绪论当今社会,随着科技发展的日新月异,特别是计算机技术突飞猛进的发展,计算机技术带来了科研和生产的许多重大飞跃,同时计算机也越来越广泛的被应用到人们的生活、工作领域的各个方面。

单片微型计算机以其其体积小、功能强、速度快、价格低等优点,在数据处理和实时控制等应用中有着无以伦比的优越性,可广泛地嵌入到如玩具、家用电器、机器人、仪器仪表、汽车电子系统、工业控制单元、办公自动化设备、金融电子系统、舰船、个人信息终端及通讯产品中。

随着微控制技术(以软件代硬件的高性能控制技术)的日益完善和发展,单片机的应用必将导致传统控制技术发生巨大的变化。

单片微型计算机的应用广度和深度,已经成为一个国家科技水平的一项重要标志。

此论文的题目是自动往返小汽车。

要求设计一个能自动往返于起跑线与终点线间的小汽车。

车辆从起跑线出发到达终点线后停留10秒,然后自动返回起跑线。

在要求的跑道范围内完成快行、慢行、停车等功能。

停车后自动显示一次往返的时间和路程。

基于上述要求将设计分为以下几个模块:STC89C52RC、电机驱动、电机调速、里程检测、跑道标志检测、液晶显示模块。

控制系统采用STC89C52RC单片机;显示系统采用液晶显示里程数和时间;电机正反转采用桥式驱动控制,2档电压调速;里程记录采用霍尔传感器;跑道标志线采用光敏管检测;单片机、电机采用独立稳压电源供电。

本论文将详细介绍硬件设计和软件设计的思路及方法。

由于本人在单片机的设计方面还存在一些不足,在论文的写作和论证上尚存在一些不足之处,敬请各位老师批评指正。

1设计任务及方案介绍1.1 设计任务设计并制作一个能自动往返于起跑线与终点线间的小汽车。

跑道宽度0.5m,表面贴有白纸,和黑带。

在跑道的B、C、D、E、F、G各点处画有2cm宽的黑线,各段的长度如图1-1所示。

车辆从起跑线出发到达终点线后停留10秒,然后自动返回起跑线。

D~E间为限速区,车辆往返均要求以低速通过,通过时间不得少于8秒,但不允许在限速区内停车。

跑道顶视图如图1.1。

图1.1 跑道顶视图(一)基本要求(a)车辆从起跑线出发(出发前,车体不得超出起跑线),到达终点线后停留10秒,然后自动返回起跑线(允许倒车返回)。

往返一次的时间应力求最短(从合上汽车电源开关开始计时)。

(b)到达终点线和返回起跑线时,停车位置离起跑线和终点线偏差应最小(以车辆中心点与终点线或起跑线中心线之间距离作为偏差的测量值)。

(c)D~E间为限速区,车辆往返均要求以低速通过,通过时间不得少于8秒,但不允许在限速区内停车。

1.2方案介绍设计采用单片机STC89C52RC作为系统的控制中心。

电机电路采用两对互补三极管控制电机的驱动;检测电路采用光敏管来控制小车的快行,慢行,停止;用液晶实现对指定行程和所用时间的显示。

方案方框图如1.2所示。

图1.2方案方框图2. 系统的硬件设计与实现2.1 系统元器件的选择与介绍下面介绍STC89C52RC芯片、L298N芯片、霍尔传感器、液晶等器件。

2.1.1S TC89C52R芯片STC89C52是一种带8K字节闪烁可编程可檫除只读存储器(FPEROM-Flash Programable and Erasable Read Only Memory )的低电压,高性能COMOS8的微处理器,俗称单片机。

该器件采用ATMEL搞密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。

单片机总控制电路如下图2.1:图2.1单片机总控制电路1.时钟电路STC89C52内部有一个用于构成振荡器的高增益反相放大器,引脚RXD和TXD 分别是此放大器的输入端和输出端。

时钟可以由内部方式产生或外部方式产生。

内部方式的时钟电路如图2.2 (a) 所示,在RXD和TXD引脚上外接定时元件,内部振荡器就产生自激振荡。

定时元件通常采用石英晶体和电容组成的并联谐振回路。

晶体振荡频率可以在1.2~12MHz之间选择,电容值在5~30pF之间选择,电容值的大小可对频率起微调的作用。

外部方式的时钟电路如图2.2(b)所示,RXD接地,TXD接外部振荡器。

对外部振荡信号无特殊要求,只要求保证脉冲宽度,一般采用频率低于12MHz的方波信号。

片内时钟发生器把振荡频率两分频,产生一个两相时钟P1和P2,供单片机使用。

示,RXD接地,TXD接外部振荡器。

对外部振荡信号无特殊要求,只要求保证脉冲宽度,一般采用频率低于12MHz的方波信号。

片内时钟发生器把振荡频率两分频,产生一个两相时钟P1和P2,供单片机使用。

RXD接地,TXD接外部振荡器。

对外部振荡信号无特殊要求,只要求保证脉冲宽度,一般采用频率低于12MHz的方波信号。

片内时钟发生器把振荡频率两分频,产生一个两相时钟P1和P2,供单片机使用。

(a)内部方式时钟电路(b)外部方式时钟电路图2.2时钟电路2.复位及复位电路(1)复位操作复位是单片机的初始化操作。

其主要功能是把PC初始化为0000H,使单片机从0000H单元开始执行程序。

除了进入系统的正常初始化之外,当由于程序运行出错或操作错误使系统处于死锁状态时,为摆脱困境,也需按复位键重新启动。

除PC之外,复位操作还对其他一些寄存器有影响,它们的复位状态如表2.1所示。

表2.1 一些寄存器的复位状态寄存器复位状态寄存器复位状态PC 0000H TCON 00HACC 00H TL0 00HPSW 00H TH0 00HSP 07H TL1 00HDPTR 0000H TH1 00HP0-P3 FFH SCON 00HIP XX000000B SBUF 不定IE 0X000000B PCON 0XXX0000BTMOD 00H(2)复位信号及其产生RST引脚是复位信号的输入端。

复位信号是高电平有效,其有效时间应持续24个振荡周期(即二个机器周期)以上。

若使用颇率为6MHz的晶振,则复位信号持续时间应超过4us才能完成复位操作。

产生复位信号的电路逻辑如图2.3所示:图2.3复位信号的电路逻辑图整个复位电路包括芯片内、外两部分。

外部电路产生的复位信号(RST)送至施密特触发器,再由片内复位电路在每个机器周期的S5P2时刻对施密特触发器的输出进行采样,然后才得到内部复位操作所需要的信号。

复位操作有上电自动复位相按键手动复位两种方式。

上电自动复位是通过外部复位电路的电容充电来实现的,其电路如图2.4(a)所示。

这佯,只要电源Vcc的上升时间不超过1ms,就可以实现自动上电复位,即接通电源就成了系统的复位初始化。

按键手动复位有电平方式和脉冲方式两种。

其中,按键电平复位是通过使复位端经电阻与Vcc电源接通而实现的,其电路如图2.4(b)所示;而按键脉冲复位则是利用RC微分电路产生的正脉冲来实现的,其电路如图2.4(c)所示:(a)上电复位(b)按键电平复位(c)按键脉冲复位图2.4复位电路上述电路图中的电阻、电容参数适用于6MHz晶振,能保证复位信号高电平持续时间大于2个机器周期。

本系统的复位电路采用图2.4(b)上电复位方式。

STC89C52具体介绍如下:①主电源引脚(2根)VCC(Pin40):电源输入,接+5V电源GND(Pin20):接地线②外接晶振引脚(2根)XTAL1(Pin19):片内振荡电路的输入端XTAL2(Pin20):片内振荡电路的输出端③控制引脚(4根)RST/VPP(Pin9):复位引脚,引脚上出现2个机器周期的高电平将使单片机复位。

ALE/PROG(Pin30):地址锁存允许信号PSEN(Pin29):外部存储器读选通信号EA/VPP(Pin31):程序存储器的内外部选通,接低电平从外部程序存储器读指令,如果接高电平则从内部程序存储器读指令。

④可编程输入/输出引脚(32根)STC89C52单片机有4组8位的可编程I/O口,分别位P0、P1、P2、P3口,每个口有8位(8根引脚),共32根。

相关文档
最新文档