计算机组成原理第四章
计算机组成原理第4章指令系统课件

4.2 指令的格式
4.2.1 指令的编码格式
操作码OC
AC1
AC2
(1)把保存操作前原来操作数的地址称为源点地址(SS), 把保存指令执行结果的地址称为终点地址或目的地址(DD)。
(2)将源点与终点操作数进行操作码规定的操作后,将 结果存入终点地址。通常二地址指令又称为双操作数指令。
ADD R0,R1表示将R0寄存器的内容和R1寄存器的内容相加以
5 异或XOR
XOR指令对两个操作数进 行按位异或运算。
4.4 指令的种类
4.4.4 移位、循环类指令
CF
位移指令SAL/SHL操作示意图
CF
SAR操作示意图
CF 0
SHR操作示意图
4.4 指令的种类
4.4.4 移位、循环类指令
不带进位标志的循环左移指令ROL MSB 操作数 LSB
CF
不带进位标志的循环右移指令ROR MSB 操作数 LSB
例如:在IBM-PC指令系统中
MOV
AX,05FFH
4.3 寻址方式
4.3.2 常用的寻址方式
2.直接寻址方式
(1)含义: 是指地址字段直接指明操作数在存储器内的位置的寻址 方法。即形式地址等于有效地址。 (2)优缺点: A、优点:简单,不需要进行加法运算。 B、缺点:地址空间指令地址字段长度的限制。
4.2 指令的格式
4.2.3 指令助记符
通常采用一些符号来代表二进制数据,这些符号即指 令助记符。
指令助记符 ADD SUB MUL DIV
助记符示例
含义
指令助记符
相加
AND
相减
OR
相乘
LOAD
相除
STORE
计算机组成原理第四章存储系统(一)(含答案)

第四章、存储系统(一)4.1 存储系统层次结构随堂测验1、哈弗结构(Harvard Architecture)是指()(单选)A、数据和指令分别存放B、数据和指令统一存放C、指令和数据分时存放D、指令和数据串行存放2、如果一个被访问的存储单元,很快会再次被访问,这种局部性是()(单选)A、时间局部性B、空间局部性C、数据局部性D、程序局部性3、下列关于存储系统层次结构的描述中正确的是()(多选)A、存储系统层次结构由Cache 、主存、辅助存储器三级体系构成B、存储系统层次结构缓解了主存容量不足和速度不快的问题C、构建存储系统层次结构的的原理是局部性原理D、构建存储系统层次结构还有利于降低存储系统的价格4、下列属于加剧CPU和主存之间速度差异的原因的是()(多选)A、由于技术与工作原理不同,CPU增速度明显高于主存增速率B、指令执行过程中CPU需要多次访问主存C、辅存容量不断增加D、辅存速度太慢5、下列关于局部性的描述中正确的是()(多选)A、局部性包括时间局部行和空间局部性B、局部性是保证存储系统层次结构高效的基础C、顺序程序结构具有空间局部性D、循环程序结构具有时间局部性4.2 主存中的数据组织随堂测验1、设存储字长为64位,对short 变量长度为16位,数据存储按整数边界对齐,关于short 变量j 在主存中地址的下列描述中正确的是()(此题为多选题)A、j的物理地址mod 8 = 0B、j的物理地址mod 8 = 1C、j的物理地址mod 8 = 2D、j的物理地址mod 8 = 32、设存储字长为64位,对char 变量长度为8位,数据存储按整数边界对齐,关于char 变量j 在主存中地址的下列描述中正确的是()(此题为多选题)A、j的物理地址mod 8 = 0B、j的物理地址mod 8 = 1C、j的物理地址mod 8 = 2D、j的物理地址mod 8 = 33、下列关于大端与小端模式的描述中,正确的是()(此题为多选题)A、大端模式(Big-endian)是指数据的低位保存在内存的高地址中,而数据的高位,保存在内存的低地址中B、小端模式(Little-endian)是指数据的低位保存在内存的低地址中,而数据的高位保存在内存的高地址中C、0x12345678 按大端模式存放时,其所在存储单元最低字节单元存放的数据是0x12D、0x12345678 按小端模式存放时,其所在存储单元最高字节单元存放的数据是0x124、下列关于存储字长的描述中正确的是()(此题为多选题)A、主存一个单元能存储的二进制位数的最大值B、存储字长与所存放的数据类型有关C、存储字长等于存储在主存中数据类型包含的二进制位数D、存储字长一般应是字节的整数倍5、某计算机按字节编址,数据按整数边界存放,可通过设置使其采用小端方式或大端方式,有一个float 型变量的地址为FFFF C000H ,数据X = 12345678H,无论采用大端还是小段方式,在内存单元FFFF C001H,一定不会存放的数是()(此题为多选题)A、12HB、34HC、56HD、78H4.3 静态存储器工作原理随堂测验1、某计算机字长16位,其存储器容量为64KB,按字编址时,其寻址范围是()(单选)A、64KB、32KBC、32KD、64KB2、一个16K*32位的SRAM存储芯片,其数据线和地址线之和为()(单选)A、48B、46C、36D、39。
计算机组成原理完整第4章PPT课件

21
精选课件
2021/6/9
4.3 指令和数据的寻址方式
在存储器中,操作数或指令字写入或读出的方式, 有地址指定方式、相联存储方式和堆栈存取方式。
当采用地址指定方式时,寻找指令或操作数有效 地址的方式 指令寻址
顺序寻址 跳跃寻址
操作数寻址
PC存放下一条指令的地址
23
精选课件
2021/6/9
跳跃寻址
目标地址->PC
当程序中出现分支或循环时,就会改变程序的执 行顺序。此时对指令寻址就要采取跳跃寻址方式。
所谓跳跃,就是指下条指令的地址不是通过程序 计数器PC当前值获得的,而是由指令本身给出。
跳跃的处理方式是重新修改PC的内容。然后进入 取指令阶段。
11
精选课件
2021/6/9
4.2.2 地址码(AC)
(3)二地址指令 (A1) OP (A2) -> A1
(4)三地址指令 (A1) OP (A2) -> A3
A1为被操作数地址,也称源操作数地址; A2为操作数地址,也称终点操作数地址; A3为存放结果的地址。 A1,A2,A3可以是内存中的单元地址,也可以是运算器
n=2L 定长指令、变长指令(固定位数和可变位数)
9
精选课件
2021/6/9
4.2.2 地址码(AC)
地址码通常指定参与操作的操作数的地址或操作数本身 地址码包括被操作数,操作数,操作结果
三地址格式 操作码
二地址格式 操作码
一地址格式 零地址格式
操作码 操作码
A1
A2
A3
A1
A2
A1
10
精选课件
《计算机组成原理》教程第4章指令系统

4
二 指令的格式
即指令字用二进制代码表示的结构形式
包括 操作码:操作的性质 操作码 地址码:操作数(operand)的存储位置,即参加操作的 operand , 地址码 数据的地址和结果数的地址
操作码域(op) 地址码域(addr)
5
1.操作码 操作码
指令的操作码表示该指令应进行什么性质的操作。 组成操作码字段的位数一般取决于计算机指令系统的 规模。 固定长度操作码:便于译码,扩展性差 . 可变长度操作码:能缩短指令平均长度 操作码的的位数决定了所能表示的操作数,n位操 作码最多表示2n种操作
(2). 堆栈工作过程 .
(一)进栈操作 ① 建立堆栈,由指令把栈顶地址送入SP,指针 指向栈顶。 ② 进栈:(A)→Msp, (sp)-1→SP ;Msp:存储 器的栈顶单元 (二)出栈操作 (SP)+1→SP, (Msp)→A
22
五.指令类型
一个较完善的指令系统应当包括: 数据传送类指令: 例)move、load、store等 算术运算类指令: 例)add、sub、mult、div、comp等 移位操作类指令: 例) shl,shr,srl,srr 逻辑运算类指令: 例)and、or、xor、not等 程序控制类指令: 例)jump、branch、jsr、ret、int等 输入输出指令: 例)in、out等 字符串类指令: 例)如alpha中cmpbge、inswh、extbl等 系统控制类指令: 例)push、pop、test等
18
10) *段寻址方式 段寻址方式 Intel 8086 CPU中采用了段寻址方式(基址寻址的特例)。 由16位段寄存器和16位偏移量产生20位物理地址 11)*自动变址寻址 自动变址寻址 指在变址方式中,每经过一次变址运算时,都自动改变变址寄存 器的内容,以后在PDP-11中详讲.
计算机组成原理-第4章_指令系统

7. 段寻址方式(Segment Addressing)
方法:E由段寄存器的内容加上段内偏移地址而形成。
应用:微型机采用段寻址方式,20位物理地址为16位 段地址左移四位加上16位偏移量。
分类:① 段内直接寻址; ② 段内间接寻址; ③ 段间直接寻址; ④ 段间间接寻址;
9 堆栈寻址方式
堆栈:是一组能存入和取出数据的暂时存储单元。
*** 指令字长度
概念 指令字长度(一个指令字包含二进制代码的位数) 机器字长:计算机能直接处理的二进制数据的位数。 单字长指令 半字长指令 双字长指令
多字长指令的优缺点
优点提供足够的地址位来解决访问内存任何单元的寻址问题 ; 缺点必须两次或多次访问内存以取出一整条指令,降低了CPU的运 算速度,又占用了更多的存储空间。
*** 指令系统的发展与性能要求
*** 指令系统的发展
指令:即机器指令,要计算机执行某种操作的命令。
指令划分:微指令、机器指令和宏指令。
简单
复杂
指令系统:一台计算机中所有指令的集合;是表征
计算机性能的重要因素。
系列计算机:基本指令系统相同、基本体系结构相同 的一系列计算机。
*** 对指令系统性能的要求
(2)立即数只能作为源操作数,立即寻址主要用来给寄存 器或存储器赋初值。以A~F开头的数字出现在指令中时,前 面要加0。
(3)速度快(操作数直接在指令中,不需要运行总线周期)
(4)立即数作为指令操作码的一部分与操作码一起放在代 码段区域中。
(5)指令的长度(翻译成机器语言后)较长,灵活性较差。
【例】MOV AX, 10H 执行后(AX)=? 其中:这是一条字操作指令,源操作数为立即寻址 方式,立即数为0010H,存放在指令的下两个单元。
(完整word版)计算机组成原理(蒋本珊)第四章

第四章1.证明在全加器里,进位传递函数。
解:并行加法器中的每一个全加器都有一个从低位送来的进位和一个传送给较高位的进位。
进位表达式为欲证明,也就是要证明用卡诺图法,图4-10(a)和4-10(b)分别是两个逻辑表达式的卡诺图。
两个卡诺图相同,两个逻辑表达式就相等,则进位传递函数的两种形式相等。
2.某加法器采用组内并行、组间并行的进位链,4位一组,写出进位信号C6的逻辑表达式。
3.设计一个9位先行进位加法器,每3位为一组,采用两级先行进位线路。
4.已知X 和Y ,试用它们的变形补码计算出X +Y ,并指出结果是否溢出。
(1)X =0.11011,Y =0.11111(2)X =0.11011,Y =-0.10101(3)X =-0.10110,Y =-0.00001(4)X =-0.11011,Y =0.111105.已知X 和Y ,试用它们的变形补码计算出X -Y ,并指出结果是否溢出。
(1)X =0.11011,Y =-0.11111(2)X =0.10111,Y =0.11011(3)X =0.11011,Y =-0.10011(4)X =-0.10110,Y =-0.0000197.设下列数据长8位,包括1位符号位,采用补码表示,分别写出每个数据右移或左移2位之后的结果。
(1)0.1100100(2)1.0011001(3)1.1100110(4)1.00001118.分别用原码乘法和补码乘法计算X ×Y 。
(1)X =0.11011,Y =-0.11111(2)X =-0.11010,Y =-0.01110(2)X ×Y =0.0101101100,过程略。
9.根据补码两位乘法规则推导出补码3位乘法的规则。
解:先根据补码1位乘法推出补码2位乘法规则,再根据补码2位乘法推出补码3位乘法规则。
10.分别用原码和补码加减交替法计算X ÷Y 。
(1)X =0.10101,Y =0.11011(2)X =-0.10101,Y =0.11011(3)X =0.10001,Y =-0.10110(4)X =-0.10110,Y =-0.1101111.设浮点数的阶码和尾数部分均用补码表示,按照浮点数的运算规则,计算下列各题:12.设浮点数的阶码和尾数部分均用补码表示,按照浮点数的运算规则,计算下列各题:13.用流程图描述浮点除法运算的算法步骤。
计算机组成原理第4章

本章学习要求
• 掌握:定点补码加法和减法运算方法 • 理解:3种溢出检测方法 • 理解:补码移位运算和常见的舍入操作方法 • 了解:串行加法器与并行加法器 • 理解:进位产生和进位传递 • 掌握:定点原码、补码乘法运算方法 • 掌握:定点原码、补码加减交替除法运算方法 • 理解:浮点加减乘除运算 • 理解:逻辑运算 • 了解:运算器的基本结构及浮点协处理器
第4章 数值的机器运算
设操作数信号为4、3、2、1、(最低 位信号为1)。向最低位进位的信号为C0、 Gi、Pi 分别是各位的进位产生函数和进位 传递函数。
(1)完善第4位先行进位信号的逻辑表达 式。 C4=G4+P4G3+……
(2)基于操作数,试述表达式中各项的 实际含义。
第4章 数值的机器运算
[-Y]补=[[Y]补]变补
第4章 数值的机器运算
2.补码减法(续)
“某数的补码表示”与“变补”是两个不 同的概念。一个负数由原码转换成补码时,符 号位是不变的,仅对数值位各位变反,末位加 “1”。而变补则不论这个数的真值是正是负, 一律连同符号位一起变反,末位加“1”。[Y]补 表示的真值如果是正数,则变补后[-Y]补所表示 的真值变为负数,反之亦然。
第4章 数值的机器运算
16位单级先行进位加法器
S1 6~S1 3
S1 2~S9
S8~S5
S4~S1
C16 4位CLA C12 4位CLA C8 4位CLA C4 4位CLA
加法器
加法器
加法器
加法器
C0
A1 6~A1 3
A1 2~A9
B1 6~B1 3
B1 2~B9
A8~A5 B8~B5
计算机组成原理第4章(4.1,4.2,4.3,4.4,姜,19-春,版5)

• 为便于硬件实现,一般要求多字节数据在存储器 中采用“对准边界”的方式存储。不合要求则用 空白字节代替。
• 图示为字长32位计算机中数据按对准边界方式在 存储器中的存放示例。
直接(绝对):转移地址=形式地址 相对:转移地址=(PC)+形式地址 间接:转移地址=(形式地址)
0
源寄存器
目标寄存器
[解]: ① 单字长二地址指令。 ② 操作码字段OP可以指定128条指令。 ③ 源寄存器和目标寄存器都是通用寄存器(可分别指定16个), 所以是RR型指令,两个操作数均在寄存器中。 ④ 这种指令结构常用于算术逻辑运算类指令。
29
[例2] 指令格式如下所示,OP为操作码字段,试分析指令格式特点。
31
存储器
(十进制)地址
字(地址0)
0
字(地址4)
4
半字(地址10)
半字(地址8)
8
字节(地址15) 字节(地址14)
半字(地址12)
12
字节(地址19) 字节(地址18) 字节(地址17) 字节(地址16) 16
半字(地址22)
字节(地址21) 字节(地址20) 20
双字1(地址24)
24
双字1
A1:被操作数地址,也称源操作数地址; A2:操作数地址,也称终点操作数地址; A3:存放结果的地址。 A1,A2,A3可以是内存中的单元地址,也可以是运算器
中通用寄存器的地址。
16
5. 二地址指令格式的三种类型
二地址指令格式中,从操作数的来源,又可分为三 种类型:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.证明在全加器里,进位传递函数。
解:并行加法器中的每一个全加器都有一个从低位送来的进位和一个传送给较高位的进位。
进位表达式为欲证明,也就是要证明
用卡诺图法,图4-10(a)和4-10(b)分别是两个逻辑表达式的卡诺图。
两个卡诺图相同,两个逻辑表达式就相等,则进位传递函数的两种形式相等。
2.某加法器采用组内并行、组间并行的进位链,4位一组,写出进位信号C6的逻辑表达式。
3.设计一个9位先行进位加法器,每3位为一组,采用两级先行进位线路。
4.已知X 和Y ,试用它们的变形补码计算出X + Y ,并指出结果是否溢出。
(1) X =0.11011,Y =0.11111
(2) X =0.11011,Y =-0.10101
(3) X =-0.10110,Y =-0.00001(4) X =-0.11011,Y =0.11110
5.已知X 和Y ,试用它们的变形补码计算出X - Y ,并指出结果是否溢出。
(1) X =0.11011,Y =-0.11111
(2) X =0.10111,Y =0.11011
(3) X =0.11011,Y =-0.10011
(4) X =-0.10110,Y =-0.00001
7.设下列数据长8位,包括1位符号位,采用补码表示,分别写出每个数据右移或左移2位之后的结果。
(1)0.1100100
(2)1.0011001
(3)1.1100110
(4)1.0000111
8.分别用原码乘法和补码乘法计算X × Y 。
(1) X =0.11011,Y =-0.11111
(2) X =-0.11010,Y =-0.01110
(2) X × Y =0.0101101100,过程略。
9.根据补码两位乘法规则推导出补码3位乘法的规则。
解:先根据补码1位乘法推出补码2位乘法规则,再根据补码2位乘法推出补码3
位乘法规则。
10.分别用原码和补码加减交替法计算X ÷ Y 。
(1) X =0.10101,Y =0.11011
(2) X =-0.10101,Y =0.11011
(3) X =0.10001,Y =-0.10110
(4) X =-0.10110,Y =-0.11011
11.设浮点数的阶码和尾数部分均用补码表示,按照浮点数的运算规则,计算下列各题:
12.设浮点数的阶码和尾数部分均用补码表示,按照浮点数的运算规则,计算下列各题:
13.用流程图描述浮点除法运算的算法步骤。
14.设计一个1位5421码加法器。
解:设1位被加数为A4 A3 A2 A1,加数为B4 B3 B2 B 1。
5421码的校正关系如表4-4所示。