第四章 活性污泥法

合集下载

国家精品课程《水污染控制工程》3-活性污泥法

国家精品课程《水污染控制工程》3-活性污泥法
水污染控制工程(下)
第四章、污水的生物处理
教学要求
1、掌握活性污泥法的基本原理及其反应机理 2、理解活性污泥法的重要概念与指标参数:如活性 污泥、剩余污泥、MLSS、MLVSS、SV、SVI、Qc、 容积负荷、污泥产率等。 3、理解活性污泥反应动力学基础及其应用。 4、掌握活性污泥的工艺技术或运行方式; 5、掌握曝气理论。 6、熟练掌握活性污泥系统的计算与设计; 时间安排 20h(其中机动2h)
7
后生动物(主要指轮虫),捕食菌胶团和原生动物,是水质稳 定的标志。因而利用镜检生物相评价活性污泥质量与污水处 理的质量。
• 思考题:后生动物的出现反映了处理水质较好,因此能否说 明出水氨氮较低,氨氮在生物处理过程中被硝化?
③微生物增殖与活性污泥的增长:
a、微生物增值:在污水处理系统或曝气池内微生物的增殖规 律与纯菌种的增殖规律相同,即停滞期(适应期),对数期, 静止期(也减速增殖期)和衰亡期(内源呼吸期)。
③泥龄(Sludge age)Qc:生物固体平均停留时间或活性污泥在 曝气池的平均停留时间,即曝气池内活性污泥总量与每日排 放污泥量之比,用公式表示:θc=VX/⊿X=VX/QwXr 。式中: ⊿X为曝气池内每日增长的活性污泥量,即要排放的活性污泥 量。
Qw为排放的剩余污泥体积。 Xr为剩余污泥浓度。其与SVI的关系为(Xr) max=106 /SVI • Qc是活性污混处理系统设计、运行的重要参数,在理论上也 具重要意义。因为不同泥龄代表不同微生物的组成,泥龄越 长,微生物世代长,则微生物增殖慢,但其个体大;反之, 增长速度快,个体小,出水水质相对差。 Qc长短与工艺组合 密切相关,不同的工艺微生物的组合、比例、个体特征有所 不同。污水处理就是通过控制泥龄或排泥,优选或驯化微生 物的组合,实现污染物的降解和转化。

活性污泥法

活性污泥法

2 活性污泥法有效运行的基本条件
① 废水中含有足够的可溶性易降解有机物; ② 混合液含有足够的溶解氧; ③活性污泥连续回流,使混合液保持一定浓度的活 性污泥,及时排除剩余污泥; ④ 活性污泥在池内呈悬浮状态; ⑤ 无有毒有害的物质流入。
3 活性污泥的基本性质
物理性能:“菌胶团”、“生物絮凝体”; 颜色:褐色、(土)黄色、铁红色; 气味:泥土味(城市污水); 比重:略大于1(1.0021.006); 粒径:0.020.2 mm; 比表面积:20100cm2/ml; 含水率:99.299.8%。
活性污泥微生物增长曲线
内源呼吸期

污泥浓度 氧利用率
BOD浓度
对数增长期 减速增长期
时间
四个生长阶段特点
(1)迟缓期:表示细菌适应新环境需要的时间, (2)对数增长期:由于营养物浓度超过细菌的需 要量,生长不受限制,生物量以对数速度增加, (3)减速增长期:由于营养物浓度随细菌的消 耗逐渐下降,细菌繁殖世代时间增长,毒性代 谢产物逐渐增高,当营养物浓度达到生长限度 时,细菌即进入减速生长期。 (4)内源呼吸期:串长阶段到内源呼吸期时, 营养物耗尽,迫使细菌代谢自身的原生质,生 物量逐渐减少。
活性污泥净化反应过程
活性污泥去除水中有机物,主要经历三 个阶段: 吸附阶段 氧化阶段 絮凝体形成与凝聚沉淀阶段
吸附阶段:
污水与活性污泥接触后的很短时间内水中有 机物(BOD)迅速降低,这主要是吸附作用引 起的。 由于絮状的活性污泥表面积很大(约200010000m2/m3混合液),表面具有多糖类粘液 层,污水中悬浮的和胶体的物质被絮凝和吸 附迅速去除。活性污泥的初期吸附性能取决 于污泥的活性。
4 活性污泥中的微生物

第四章 第一节-活性污泥法

第四章 第一节-活性污泥法

活性污泥降解污水中有机物的过程
污水与污泥混合曝气后BOD的变化曲线
对活性污泥法曝气过程中污水中有机物的变化分析得到结论:
废 水 中 的 有 机 物
残留在废 水中的有 机物
微生物不能利用的有机物
微生物能利用的有机物
微生物能利用而尚未 利用的有机物 (吸附量) 从废水中 去除的有 机物 微生物不能利用的 有机物 微生物已利用的有机 物(氧化和合成) 增殖的微生物体
二是废水中的有机物,它是处理对象,也是 微生物的营养食料;
三是溶解氧,没有充足的溶解氧,好氧微生物 既不能生存,也不能发挥氧化分解作用。
城市污水处理工艺基本流程: 污水→格栅→沉砂池→初沉池
→活性污泥曝气池→二沉池→消毒
高碑店污水处理厂的工艺流程图
活性污泥系统
高碑店污水处理厂的工艺流程与平面布置
第一节 活性污泥法
一、基本概念与流程 二、活性污泥形态与微生物 三、活性污泥净化反应过程 四、活性污泥法主要影响因素与控制指标
第二节 生物膜法
一、生物膜法概述 二、生物膜的形成及净化过程 三、生物膜法载体 四、生物膜法特征 五、生物膜反应器
Your site here
二沉池 曝气池 初沉池
初沉池
二期 曝气池 二沉池
活 性 污 泥 法 的 基 本 流 程
活性污泥处理系统的组成
1.曝气池: 2.二沉池:
微生物降解有机物的反应场所 泥水分离
3.污泥回流系统: 确保曝气池内生物量稳定 4.曝气系统: 为微生物提供溶解氧,同时起到 搅拌混合的作用。
活性污泥法处理系统有效运行的基本条件
净化污水的主要的第一的承担者细菌净化污水的第二承担者原生动物指示性生物原生动物通过显微镜镜检是对活性污泥质量评价的重要手段之一原生动物在活性污泥中大约为103个ml01mm原生动物钟虫小口钟虫草履虫盖纤虫肾形虫变形虫后生动物线虫轮虫微生物的生长规律复习适应期对数期平衡期衰老期培养时间微生物生长速率微生物生长速率微生物量的对数微生物量的对数培养时间总菌数活细菌数微生物生长曲线线死细菌数4

第4章活性污泥法 共185页

第4章活性污泥法 共185页
按McKinney的分析:
混合液悬浮固体:MLSS=Ma+Me+Mi+Mii 式中:Ma——有活性的微生物;
Me——微生物自身氧化残留物,即内源代谢残留的微生物
有机体;
Mi——有机污染物,吸附在污泥上未被降解; Mii——无机悬浮固体,吸附在污泥上。
有活性的微生物存在形态——菌胶团: 由细菌分泌的多糖类物质将细菌等包覆成的粘性团块。
15
污泥体积指数:SVI(污泥指数、污泥容积指数
曝气池出口处出混合液,经30分钟静沉后,每g干泥所形成的 湿污泥的体积,简称污泥指数,单位为mL/g。
1L混合液沉淀30min的活性污泥体积(mL) SV(mL/L)
SVI=
=
1升混合液中悬浮固体干重(g)
MLSS(g/L)
反映污泥的凝聚、沉降性能。 SVI应在100~150(有说70~100)。 影响SVI的最重要的因素是微生物群体所在的增殖期。 太高,沉降性能差,可能膨胀; 太低,可能处在内源呼吸期,泥粒细小而紧密,易沉降,活 性差,无机物多。 实际运行中,一般用SV了解SVI,因为曝气池MLSS变化不大。
• 深井曝气法中,活性污泥经受压力变化较大,实践表明这时 微生物的活性和代谢能力并无异常变化,但合成和能量分配有 一定的变化。
活性污泥中细菌含量一般在107~108个/mL;原生动物103个/mL,原生动物 中以纤毛虫居多数,固着型纤毛虫可作为指示生物,固着型纤毛虫如钟虫、等 枝虫、盖纤虫、独缩虫、聚缩虫等出现且数量较多时,说明培养成熟且活性良 好。
2、干固体和水分
含水98%~99% 干固体1%~2%
MLSS
12
3、 活性污泥的组成:
35
序批式活性污泥法(SBR法)

第四章活性污泥法

第四章活性污泥法
(经验:油分>20%VSS时,AS被油分浸渍,降低去油能力)
(三)活性污泥法对进水水质的要求
(c)溶微生物可生存(耐受), 故以此为标准进行稀释处理可解决问题。
盐浓度高,丝状菌成块状,沉降性显著改善; 钙离子浓度高,与代谢产物CO2生成CaCO3,增
• ⑤水量、水质变化;
• 有机负荷高,使出水残留量增加;引起AS系统污泥膨 胀;
• 水量过大,二沉池表面负荷增大,沉降分离效果 差;
• 水量波动大,影响二沉池污泥分离。
解决方法: 设置均化调节池。
(三)活性污泥法对进水水质的要求
• ⑥其它:
(a)悬浮物质:
✓ 过高使剩余活性污泥量增大,Biofilm异常增殖,且 MLVSS/MLSS降低;
(三)活性污泥法对进水水质的要求
③水温
• 过高:40C,蛋白变质,微生物失去活性;
• 过低:降低微生物的活性;设计时使处理装置充分适 应低温处理的要求。
④进水浓度:
对于高浓度、危害微生物活性的有机物;采用先稀 释、驯化,或多点进水;
Biofilm法采用处理水循环,以稀释原水。
(三)活性污泥法对进水水质的要求
3、初级沉淀池的运行管理
(3)正常管理 ①水面监视
监视水面可以很容易地发现异常污水的流入;
②设备的维护
检查除渣设备、刮泥机、污泥计量装置、污泥泵、 自控装置等是否正常;
③刮泥机
应根据构造、控制方法、污泥发生量等决定运行方法; ④排泥
排泥量(m³/d)=进水量(m³/d)/10000·(进水SS-出水SS) mg/L
③操作人员应经常检查初次沉淀池浮渣斗和排渣管道的排渣 情况,并及时清除浮渣。清捞出的浮渣应妥善处理;
④刮泥机待修或长期停机时,应将池内污泥放空;

第四章___活性污泥法全解

第四章___活性污泥法全解

将上式取倒数的得:
上式中V /Q为水力停留时间,用t表示,则上式变为:
气体传递原理和曝气设备
(一)曝气方式及原理
曝气类型:鼓风曝气、机械曝气(表面曝气、潜水曝气、 卧轴式曝气)、鼓风机械曝气 鼓风曝气:将鼓风机提供的压缩空气,通过管道系统送入 曝气池中空气扩散装置上,并以气泡形式扩散 到混合液中。(例如:微气泡扩散器) 鼓风机械曝气:采用鼓风装置将空气送入水下,用机械搅 拌的方法使空气和污水充分混合,本方法 适用于有机物浓度较高的污水。
(2)推导曝气池内微生物浓度与污泥泥龄的关系: 在稳态条件下,根据曝气池底物的物料平衡,有:
整理得:
将式③代入式②可得:
从上式解出X并整理得:
V /Q=t,上式中Q /V可替换成1/t 从上式可以看出,曝气池中的活性污泥浓度与进出 水水质、污泥泥龄和曝气时间等都相关。
(3)推导回流比R与污泥泥龄θc的关系: 对曝气池内生物量进行物料衡算⑥⑤:
(1)推导出水水质与污泥泥龄的关系 在稳态条件下,由系统活性污泥的物料守恒,有:
X0 — 进水中微生物浓度,gVSS /m3;
Xe — 出水中的污泥浓度,g/m3; XR — 排出的剩余污泥中的污泥浓度,g/m3; X — 曝气池中污泥浓度,gVSS /m3; V — 曝气池容积,m3; Q — 进水流量,m3/d;长、有机物降解、污泥沉淀性能 以及需氧量的重要因素,也是进行工艺设计的主要参数。 污泥膨胀与污泥 负荷有重要关系,一 般在低负荷和高负荷 都不会出现污泥膨胀, 而在1.0左右的中间负 荷时SVI值很高,属 于污泥膨胀区,在设 计或运行时避免采用 这一区域的负荷值。
(2)水温
一般二沉池沉淀效果良好时,出水中的SS小于15 mg/L,因 此,随出水排出的污泥量对污泥泥龄的影响相比剩余污泥对污 泥泥龄的影响小很多,一般可以忽略,因而污泥泥龄可简化为:

第四章 活性污泥法课件

第四章 活性污泥法课件
特点:DO和污泥浓度高,占地面积小。井壁腐蚀或受 损时可能污染地下水。
9.纯氧曝气法(P115):
图12-18 纯氧曝气池结构简图 纯氧代替空气,曝气时间短,MLSS较高;设备需密
封,结构要求高。
11.吸附-生物附池
A级 沉淀池
B级 曝气池 沉淀池 出水
⑷污泥体积指数(SVI):指曝气池混合液沉淀30min后, 每克干污泥形成的湿污泥体积,单位 mL/g。
SVI沉M 淀L( 污 S g/L S m ) 泥 /lL)体 MS积 L V (g 1S /( L 0S )
如:SV=30%,MLSS=3000mg/L,求
SVSVI=I反10映0m污L泥/的g。沉降性能和活性。城市污水SVI正
MLVSS,又称活性污泥浓度,指曝气池中单位体积混 合M液L悬SS浮、固M体LV中S有S都机是物微的生质物量浓,度包近括似M值a、,MMeL、VSMSi更。
接近活性微生物的浓度。生活污水
MLVSS/MLSS=0.7~0.8。
⑶污泥沉降比(SV):曝气池混合液静置30min后沉
淀污泥的体积分数,单位:%。
4.活性污泥评价方法(P103)
⑴生物相观察:观察活性污泥中微生物的种类、数量、 优势度及代谢情况。
⑵混合液悬浮固体浓度(MLSS)和混合液挥发性悬浮 固体浓度(MLVSS) MLSS,又称污泥浓度,指曝气池中单位体积混合液悬 浮固体的质量,包括Ma、Me、Mi、Mii。单位: mg/L或g/L。
利用率不均,
能耗较高。
需氧曲线
供氧曲线
图12-10 推流式供氧和需氧率曲线
2.渐减曝气法
特点:供氧沿池长逐 渐递减,节能。
3.阶段曝气法(分段进水法)
进水

活性污泥法

活性污泥法

第 4 章污水的生物处理(一)---活性污泥法(Biological Treatment of Wastewater:The Activated Sludge Process)水体自净,氧化塘自然条件下土壤自净,土地处理好氧处理人工条件下活性污泥法生物处理生物膜法厌氧处理自然条件下:高温堆肥、厌氧塘人工条件下厌氧处理技术污泥消化(Aerobic/AnaerobicSuspended-Growth Treatment ProcessesAttached-Growth Treatment Processes)4.1.1. 活性污泥处理法的基本概念与流程Excess sludge4.1.2 活性污泥的形态与活性污泥微生物1.活性污泥的形态: 颜色,味,形状,比重,含水率表面积20-100cm2/ml;有机(75-85%)/无机成分,活性污泥组成:Ma +Me+Mi+Mii微生物惰性有机物无机物自身氧化残留物2.活性污泥微生物(Ma)及其在活性污泥反应中作用细菌:产碱干菌属,芽胞干菌属,动胶杆菌属,假单胞菌属,大肠杆菌属,无色杆菌属等(增殖世代时间20-30min);数量:107-108个/mL 真菌:丝状菌,霉菌;净化能力与不利影响原生动物:肉足虫类:如变形虫、滴虫,鞭毛虫类,:豆形虫、肾形虫、草履虫;纤毛虫类:钟虫、等枝虫、盖纤虫原生动物------ 细菌的捕食者后生动物:轮虫;水质良好的标志微生物量图:原生动物在活性污泥反应过程中数量和种类的增长与递变模式3.活性污泥微生物的增殖与活性污泥的增长多种属的活性污泥微生物增殖规律与纯种微生物增殖规律相似微生物增殖==活性污泥增殖活性污泥的增殖受活性污泥能含量的控制F/M—有机物量/活性污泥量---有机负荷量适应期X静态培养条件下,活性污泥增长曲线、有机物降解和氧利用速率4.活性污泥絮体的形成意义与作用活性污泥絮凝体形成的骨干---菌胶团活性污泥形成机制:能含量---F/M;电斥力与范德华引力细菌种类:分泌粘着物的细菌:动胶杆菌、黄杆菌、蜡状芽孢杆菌等4.1.3 活性污泥净化反应过程有机物污染物净化---有机物被微生物摄取、代谢与利用1、 初期吸附去除初期:5-10 min 30min 内BOD 去除率达到70% 活性污泥强吸附能力的产生源:1) 具有很大的表面积:2000-10000m 2/m 3混合液2) 多糖类粘质层吸附能力影响因素:1)微生物的生理状态 处于饥饿状态的微生物具有最强吸附能力2)反应器中流态吸附不等于降解,吸附能力是有限的,提高吸附能力—污泥曝气2、 微生物代谢小分子有机物---细胞壁—微生物体内—内酶—代谢大分子有机物—水解酶—小分子—细胞壁—微生物体内… 有机物的氧化方程:H O H y x C O O z y x O H C z y x ∆++→-++2222)24(新细胞的合成:H O H y n CO x n NO H C O z y x n nNH O H nC n z y x ∆--+-+→--+++2227523)4(2)5()()524(微生物自身氧化:H O nH nCO nO NO H C n ∆++→+222275255)(分解代谢与合成代谢模式图:,NH有机物 +O 2 +能量 20%4.2 活性污泥净化反应影响因素与主要设计、运行参数4.2.1 活性污泥净化反应影响因素1. 营养物质平衡:C :N :P= 100:5:1其他微量元素:钠、钾、钙、镁、铁…2. 溶解氧含量: DO ≥2mg/L3. PH 值 6.5-8.54. 水温 适宜:10-450C 最佳:15-350C5. 有毒物质:重金属、酚类、甲醛经过培养驯化后, 微生物对有毒物质有适应与降解能力 (表4-4 p105)4.2.2活性污泥处理系统的控制指标与设计、运行操作参数 使活性污泥系统正常、高效运行的基本条件:∙适当的污水水质、水量∙具有活性和足够量的活性污泥生物量∙满足微生物需要的溶解氧∙良好的流态,气、液、固充分接触控制指标(设计、运行操作参数)1、 表示及控制混合液中活性污泥微生物量的指标(1)Mixed liquor suspended solids (MLSS)(2)Mixed liquor volatile suspended solids (MLVSS) f=MLVSS/MLSS 0.752、 活性污泥的沉降性能及其评价指标(1) 30min 污泥沉降比(%) ~30%Settling Velocity / Sludge (settling ) Volume (SV )(2)污泥容积指数,Sludge Volume Index (SVI ) 定义:曝气池出口处混合液经过30min 沉降后,每克干污泥所形成的沉淀污泥所占有的容积(mL/g ):)()()悬浮固体干重()静沉形成的污泥容积(L g MLSS SV L g L mL SVI /10%//min 30⨯==♣SVI 的意义:SVI ↓沉降性能↑;SVI ↑沉降性能↓♣SVI 正常范围:SVI=70-100(120) 城市和生活污水 SVI <100 沉降性能好;100<SVI <200 一般;SVI >200,不好♣SVI与BOD-污泥负荷的关系(城市污水):300100BOD-污泥负荷(kgBOD/kgMLSS.d) BOD-污泥负荷(kgBOD/kg.d)BOD-污泥负荷与SVI之间的关系3.污泥龄(Sludge age,Mean cell—residence time)污泥增长与剩余污泥的产生与排出剩余污泥产量:∆X=Q W X r+(Q-Q W)X e(g/d)污泥龄:曝气池内活性污泥总量与每日排放污泥量之比XVX∆=θ(d)rWewrWXQVXXQQXQVX≈-+=)(θ当二沉池处于最佳沉淀状态下:10001000/110)(6max⨯==⇒=LmgmLggmLSVIXr污泥龄的重要性:系统控制参数,生物种类控制4.BOD-污泥负荷F/M —Food-to-microorganism ratioXVQS N M F a s == kgBOD/kgMLSS.d X=MLSS ; Q=进水流量; S a =BOD in ;V=曝气池体积 ♣BOD 容积负荷VQS N a v = kgBOD/m 3.d ♣BOD 负荷对有机物降解与活性污泥增长以及污泥沉降性能的影响(生物处理过程中的两个重要关系):5.有机物降解与活性污泥增长活性污泥的增殖⇐有机物的降解活性污泥的增殖=合成反应-内源代谢活性污泥增长基本方程:污泥净增长速率=合成速率-内源代谢速率es g dt dX dt dX dt dX ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛ 合成速率与有机物利用有关:us dt dS Y dt dX ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛ Y-产率系数 内源代谢速率与生物量有关:v d e X K dt dX =⎪⎭⎫ ⎝⎛ K d-衰减系数d -1v d ug X K dt dS Y dt dX -⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛ (霍克来金 Heukelekian 方程)净增长速率以天(d )计时:v d e a VX K Q S S Y X --=∆)(S a -BODin ;S e -BODout ;X v -MLVSSOr : bVX Q aS X r -=∆ S r =S a -S e ;X=MLSS ♦a ,b---Y , K d (Y=0.5-0.65;K d =0.05-0.1) ♦污泥泥龄与BOD 污泥去除负荷的关系的推导: 由:v d e a VX K Q S S Y X --=∆)(两边同以X V V 除: d v r VK V X YQS V X X -=∆ 令:V X S S Q V X QS N ve a v r rs )(-== BOD 污泥去除负荷(kg/kg.d ) 而根据泥龄的定义:X VX ∆=θ ⇒cv V X X θ1=∆则推导出:d rs c K YN -=θ1思考题:推导出水BOD 浓度与污泥泥龄的关系 (城市污水20O C :Y=0.4-0.8 mgVSS/mgBOD ;0.25-0.4mgVSS/mgCOD K d =0.04-0.075 d -1) 6. 有机物降解与需氧v r VX b QS a O ''2+=kg O 2/d ;a '- kg O 2/kgBOD去除 ;b '- kg O 2/kg 污泥自身氧化由以上式子也可导出两个重要关系:☞单位重量活性污泥需氧量与BOD 污泥去除负荷: v r VX b QS a O ''2+=''''2b N a b VX QS a V X O rs v r V +=+= ☞每降解1kgBOD 的需氧量与BOD 污泥去除负荷:rs r v r N b a QS V X b aQS O 1''''2+=+=a '=0.42-0.53;b '=0.188-0.11 (生活污水)系数 Y ,K d ,a ,b ,;a ',b ' 的确定:d v r V K V X YQS V X X -=∆ ∆X/X Vb VX aQS XV X r -=∆ K O 2/X V●''2b VX QS a V X O v r V += QS r /X V V4.3 活性污泥反应动力学基础♑活性污泥反应:活性污泥对有机物的代谢;活性污泥的增长;活性污泥微生物对氧的利用等生化反应♑活性污泥反应动力学主要研究活性污泥生化反应速率及其影响因素.主要内容:☜有机物降解速率与有机物浓度、活性污泥生物量☜活性污泥增殖速率与有机物浓度、活性污泥生物量 4.3.2 Monod 方程式1.基本方程由描述酶(纯酶)促反应的米-门公式----描述纯种微生物在单一基质上增殖速率的Monod方程μMAXμ=μMAXSS S=KS米-门关系曲线 Monod 曲线E + S ES E+ P μ--微生物比增殖速度,t-1酶基质复合物酶产物μmax--微生物最大比增殖速度,t-1[][]mK S S V V +=max V-基质降解速度 s K S S +=max μμ K m 饱和常数 进一步应用到污水处理过程(混合的活性污泥菌群)中: − 因为微生物的比增殖速度(μ)与有机物的比降解速度(v )成正比: μ∝ v则有机物比降解速度也可以用米门公式描述:sK S Sv v +=max v max-有机物的最大比降解速度,t -1有机物比降解速度的定义:Xdt S S d dt dS X v )(10-=-= S 0,S 进出水有机物浓度t 反应时间所以: s K S Sv dt dS X v +=-=max 1 s K S XS v dt dS +=-max有机物降解速度X=MLVSS当 2max v v = ; 2max max max2212v v s s s s S K S K S K S SK S S v v ==⇒+=⇒+=⇒+=2. Monod 方程式的两点推论(在两种极限有机物浓度下,Monod 方程式的两种简化表示式) (1) S >> K S⇒+=-s K S XS v dt dS max 忽略K S X k X v SXS v dt dS 1max max ===-零级反应(2) S << K S⇒+=-s K S XSv dt dS max 分母中S 忽略不计 XSk XS K v K XS v dt dS ss 2max max ===- 一级反应 VV maxS 在大多数污水生物处理中,用一级反应动力学表示有机物的降解速率是适当的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ห้องสมุดไป่ตู้✓ 判断标准:悬浮物浓度是否超过BOD浓度。
(b)油脂类和油分:
✓ 动植物性油脂类:可生物降解;但曝气池内形成油膜, 影响处理效果低温时凝固成球,分解极缓慢;
✓ 石油类的油分:生物分解缓慢;部分以油滴状态混入活 性污泥排出系统外。
因此:AS除油分时,要求有相对油分5~10倍的BOD量, 且在规定的标准以下;
二、初次沉淀池
(一)处理技术
废水处理的原则:将废水中的污染物质,无论 是无机的还是有机的,都变成不溶于水的悬浮物, 通过沉淀与水分离。
沉淀分为普通沉淀和混凝沉淀。 普通沉淀无须混凝剂,直接沉淀,又称自然沉 淀。 典型普通沉淀:AS法中的初沉池。
二、初次沉淀池
1 池形与池数 初次沉淀池的形状与池数,考虑以下各项确 定: ①形状有长方形、正方形或圆形;按水流 方向有平流、辐流和竖流;平流式采用长方 形或正方形,辐流式和竖流式采用圆形。 ②长方形池,长与宽之比在3:1以上,池 宽按刮泥机确定; ③池数,原则上两池以上。
(二)主要生物种类
②原生动物:能吞食污水中的有机物、细菌, 并在体内迅速氧化分解。是单细胞的好氧 性生物。
③藻类:是植物,含有叶绿素。当叶绿素进 行光和作用时会放出大量的氧气于水中。
④后生动物:由多细胞构成,体内还有各种 器官。参与污水处理的后生动物,包括从 体型较小的轮虫到栖息于生物滤池中的甲 壳虫、昆虫幼虫等。
• (三)活性污泥法对进水水质的要求
活性污泥法对进水水质的要求主要有以下几项:
①营养源
必需的营养盐:C, N, P, etc; 痕量元素(无机盐):Na、K、Ca、Fe…; BOD5100mg/L,BOD5:N:P=100:5:1;
营养盐不足会引起水质恶化、污泥膨胀;营养 盐过量,又会使出水不达标;COD浓度高的有机 废水,有时需投加无机盐。是否投加无机盐,通 过实验确定。
(三)活性污泥法对进水水质的要求
③水温
• 过高:40C,蛋白变质,微生物失去活性; • 过低:降低微生物的活性;设计时使处理装置充
分适应低温处理的要求。
④进水浓度:
对于高浓度、危害微生物活性的有机物;采用 先稀释、驯化,或多点进水;
Biofilm法采用处理水循环,以稀释原水。
(三)活性污泥法对进水水质的要求
2
一、活性污泥法概述
基本内容与要求:
(1)活性污泥法基本工艺流程 (2)活性污泥主要生物种类 (3)活性污泥法对进水的要求
3
一、概述
(一)活性污泥处理系统基本工艺流程
向生活污水注入空气进行曝气,持续一段时间后污水中即 生成一种絮凝体。这种絮凝体主要由大量繁殖的微生物群体 所构成,它有巨大的表面积和很强的吸附性能,称为活性污 泥(activated sludge)。
• (二)主要生物种类
参与废水生物处理的生物种类很多,主要及常见的 有以下几种:
①细菌类;②原生动物; ③藻类; ④后生动物。
①细菌类:菌胶团、球衣细菌、硝化菌、脱氮菌、聚 磷菌等。
菌胶团是好氧生物处理中形成生物絮体和生物膜的 主要生物,在胶质中含有无数菌体。
球衣细菌:菌体排成一列呈丝状,在AS中大量繁 殖会使活性污泥膨胀。
活性污泥,是由微生物、微生物所分泌的黏性物质以及吸 附的污水中杂质所构成的絮凝团,又叫菌胶团,呈褐色或黄 褐色,具有良好的絮凝性。菌胶团相互凝聚就形成活性污泥。 活性污泥含水率高达99%以上,具有较大的比表面积,有利 于微生物和有机污染物之间的充分接触,从而促进微生物对 有机污染物的吸收和降解。
活性污泥中有机成分主要由微生物及其代谢产物构成。这 些微生物群体构成了一个相对稳定的微型生态系统。
(经验:油分>20%VSS时,AS被油分浸渍,降低去油能力)
(三)活性污泥法对进水水质的要求
(c)溶解盐类:使微生物渗透压增加。
✓海水盐浓度3%左右,微生物可生存(耐受), 故以此为标准进行稀释处理可解决问题。
✓盐浓度高,丝状菌成块状,沉降性显著改善; ✓钙离子浓度高,与代谢产物CO2生成CaCO3,增
• ⑤水量、水质变化;
• 有机负荷高,使出水残留量增加;引起AS系统污 泥膨胀;
• 水量过大,二沉池表面负荷增大,沉降分离效果 差;
• 水量波动大,影响二沉池污泥分离。
解决方法: 设置均化调节池。
(三)活性污泥法对进水水质的要求
• ⑥其它: (a)悬浮物质:
✓ 过高使剩余活性污泥量增大,Biofilm异常增殖,且 MLVSS/MLSS降低;
活性污泥法使微生物群体根据需要在反应体系内不断循环,通 过人为地控制多余部分排除系统外,使反应池内的底物和微生 物的比值保持一定的水平,并在溶解氧存在的条件下,使底物 和有不同种群微生物所形成的絮体充分接触而进行微生物代谢 和有机物分解。是城市污水及有机工业废水最有效的生物处理 法。
活性污泥系统工艺流程
加AS的无机成分、导致生物滤池的阻塞。
(d)重金属:
微生物的繁殖需要微量元素,但超过一定限度对
微生物有害;重金属对微生物有害,会在微生物 体内浓缩,污泥农用时,随食物链传递。
(四)高效活性污泥的特征
①活性污泥具有很强的吸附能力; ②活性污泥具有很强的降解有机物的能力; ③活性污泥具有良好的沉降性能。
(三)活性污泥法对进水水质的要求 ②pH
• 生物处理装置内的pH宜在中性值范围6.0~8.5;需 要对装置内pH监测,并设置中和措施,以应付异 常情况的发生。
• CO2的生成,使碱性废水pH降低; • 有机酸被分解,使酸性废水pH提高;
因此,生物处理有自动调节、保持pH在中性 范围,故不一定将原废水的pH事先调到6.0~8.5.
在显微镜下观察活性污泥,可以见到大量 的细菌(可形成菌胶团),还有真菌(主要是霉 菌,一般呈丝状),原生动物(肉足虫、鞭毛虫、 纤毛虫)、藻类和后生动物(轮虫、线虫),它 们组成了一个特有的生态系统。正是这些微 生物(主要是细菌)以污水中的有机物为食 料,进行代谢和繁殖,才降低了污水中有机 物的含量。
第四章 活性污泥法 Activated Sludge Processes
第四章 活性污泥法
➢重点:活性污泥法的基本工艺流程、机理 与各控制参数、曝气的运行管理与维护。 ➢难点:曝气的运行管理与维护、各类控制 参数的测量。
一、活性污泥法概述 (1)活性污泥法基本工艺流程 (2)活性污泥主要生物种类 (3)活性污泥法对进水的要求
相关文档
最新文档