《信号与线性系统》总复习14-05-23

合集下载

信号与线性系统总复习华科详解

信号与线性系统总复习华科详解

2021/3/19 信号与系统总复习
22
应用:理想低通滤波器
理想低通滤波器的频响
K
H(
j)
Ke
jt0
,
|
|
(截止频率) c
2021/3/19 信号与系统总复习
23
理想低通滤波器的单位冲激响应
h(t)
1
2
H ( j)e jtd
1
2
c
e jt0 e jt d
c
c
Sa[c (t
t0 )]
(t )
信号与系统
总复习
1.两大类 连续信号与系统 离散信号与系统 因果信号/因果系统 线性时不变系统
2.分析手段 时域分析 变换域分析
2021/3/19 信号与系统总复习
2
分析主线
信号 e(t) E( j) E(s)
系统
h(t) H ( j) H (s)
响应
r(t) R( j) R(s)
时域 频域 复频域
t
练习:推导出信号通过系统不失真的条件。
2021/3/19 信号与系统总复习
24
抑制载频调幅(AM-SC) 调 制
g(t) 相乘 g(t) cos0t
cos 0t
f (t) g(t) cos0t
G( j)
F ( j)
m m
2021/3/19 信号与系统总复习
0
0
F(
j)
1
2
G(
j) *[
(
0 )
不失真传输条件
理想抽样,抽样定理
2021/3/19 信号与系统总复习
7
冲激函数的性质
du(t) (t)
dt

《信号与线性系统》总复习(2024级)

《信号与线性系统》总复习(2024级)

信号与线性系统总复习信号分析一、 信号的时域分析1、 常见信号①单位冲激函数:)(t δ定义:抽样性:②单位阶跃函数:)(t ε定义:阶跃与冲激的关系:③斜变函数:)()(t t t R ε=斜变与阶跃的关系:④指数函数:)(t e t εα-⑤门函数:)(t G τ⑥余弦函数:t 0cos ω ⑦正弦函数:t 0sin ω⑧冲激序列:∑∞-∞=-=n T nT t t )()(δδ)(t f )(k f ⎩⎨⎧=01)(t ε00<>t t ⎪⎩⎪⎨⎧==⎰∞∞-0)(1)(t dt t δδ0≠t ⎪⎩⎪⎨⎧==⎰∞-t d t dt t d t ττδεεδ)()()()()()0()()(t f t t f δδ⋅=⋅)0()()0()0()()()(f dt t f dt f t dt t f t ==⋅=⋅⎰⎰⎰∞∞-∞∞-∞∞-δδδ⎪⎩⎪⎨⎧==⎰∞-t d t R dt t dR t ττεε)()()()(2、 信号的运算:3、 信号的变换: 移位:反折:展缩:倍乘:4、 卷积:性质:延时特性:)()()(212211t t t f t t f t t f --=-*-微积分特性:二、 信号的频域分析(傅立叶变换分析法)1、 定义:2、 性质:设)()(11ωj F t f ↔;)()(22ωj F t f ↔;)()(ωj F t f ↔①线性:)()()()(22112211ωωj F a j F a t f a t f a +↔+ ②对称性:)(2)(ωπf jt F ↔ ③延时:0)()(0t j e j F t t f ωω±↔± ④移频:)()(00ωωωj j F e t f t j ↔±⑤尺度变换:)(1)(a j F a at f ω↔;)(1)(aj F e a b at f a bj ωω-↔-⑥奇偶特性:若)(t f 为实偶函数,则)(ωj F 也为实偶函数; 若)(t f 为实偶函数,则)(ωj F 也为实偶函数;⑦时域微分:)()()(ωωj F j dtt df ↔;)()()(ωωj F j dt t f d n nn ↔ )(0t t f ±)(t f -)(at f )(t af ∑∞-∞=-=*i i k fi f k f k f )()()()(2121⎰∞∞--=*τττd t f f t f t f )()()()(2121⎰∞∞--=dt e t f j F tj ωω)()(⎰∞∞-=ωωπωd e j F t f t j )(21)()()(21t f t f ±)()(21t f t f •⎰∞-*=td f dtt df ττ)()(21)(])([21t f d f t *=⎰∞-ττ)()(21t f t f *⑧时域积分:)(1)()0()(ωωωδπττj F j F d f t+↔⎰∞- ⑨频域微分:ωωd j dF t f jt )()()(↔-;n n nd j F d t f jt ωω)()()(↔-⑩频域积分:⎰∞-↔-ωΩΩδπd F t f jtt f )()(1)()0(⑾卷积定理:)()()()(2121ωωj F j F t f t f ↔*)()(21)()(2121ωωπj F j F t f t f *↔⋅3、 常见信号的傅立叶变换 1)(↔t δωωπδεj t 1)()(+↔ )]()([cos 000ωωδωωδπω++-↔t )]()([sin 000ωωδωωδπω--+↔j tωαεαj t e t +↔-1)(22sin )2()(τωτωττωττ=↔Sa t Gωj t 2)sgn(↔2222sin )2(01)(⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡↔⎪⎩⎪⎨⎧><-=τωτωττωττττSa t t t t f Tn nT t t n n T πΩΩωδΩωδΩδδΩ2)()()()(=-=↔-=∑∑∞-∞=∞-∞= 4、 周期信号的频谱①性质:离散性,谐波性,收敛性②级数绽开:③频谱:n A •与)(Ωωn =之间的关系图称频谱图; n A 与)(Ωωn =之间的关系图称为振幅频谱图; n ϕ与)(Ωωn =之间的关系图称为相位频谱图;时域 频域周期 离散 离散 周期 时域有限 频域无限 时域无限 频域有限5、 帕色伐尔定理[]⎰⎰∞∞-∞∞-=ωωπd j F dt t f 22)(21)(6、 抽样定理①频带有限信号②满意关系:m s f f 2≥∑∞=++=1)sin cos (2n n n t n b t n a a ΩΩ)(t f ∑∞=-+=10)cos(2n n n t n A a ΦΩ∑∞-∞=•=n tjn n e A Ω21∑∞-∞==n tjn nec Ω⎰+=Tt t n tdt n t f T b 11sin )(2Ωtdt n t f Ta Tt t n Ωcos )(211⎰+=⎰+-•=Tt t tjn n dtet f TA 11)(2Ω⎰+-=Tt t t jn n dte tf Tc 11)(1Ωnj n n e A A φ-•=nn A c •=2122nn n b a A +=nn n a b arctg=φ三、 信号的复频域分析(拉普拉斯变换分析法)1、 定义:2、 性质:①线性: )()()()(22112211s F a s F a t f a t f a +↔+ ②时移:0)()()(00st e s F t t t t f -↔--ε ③频移:)()(00s s F e t f t s -↔ ④尺度变换:)(1)(as F a at f ↔⑤时域微分:)0()0()0()()()1(21--------'--↔n n n n nn f f s f s s F s dtt f d ⑥时域积分:)(1)(s F sd f t↔⎰∞-ττ ⑦复频域微积分: ds s dF t tf )()(-↔;⎰∞↔s ds s F t f t )()(1⑧初、终值定理:)(lim )0(s sF f s ∞→+=;()(s F 为真分式))(lim )(0s sF f s →=∞⑨卷积定理:)()()()(2121s F s F t f t f ↔* )()(21)()(2121s F s F jt f t f *↔⋅π 3、 常见信号的拉氏变换、收敛区 1)(↔t δ,st 1)(↔ε ,as t e t -↔1)(εα, 1!+↔n n s n t , 22sin ωωω+↔s t ,⎰∞-=0)()(dte tf s F st ⎰∞+∞-=j j stds e s F jt f σσπ)(21)(22cos ωω+↔s st4、 反变换a.部分分式绽开法nn s s k s s ks s k s F -++-+-=2211)( )()()(2121t e k e k e k t f t s n t s t s n ε+++=b.留数法∑==ni i s t f 1Re )(①单根i s 处的留数 Re [()()]i st i i s s s F s e s s ==-②p 重根i s 处的留数 111Re [()()](1)!i p st p i i s s p d s F s e s s p s-=-=-- 四、(离散)信号的Z 域分析1、 定义:∑∞-∞=-=K kzK F Z F )()(2、性质:① 线性线性:)()()()(22112211z F a z F a k f a k f a +↔+ ② 移序:单边z 变换∑-=--↔+1)()()(n k knnzk f zz F z n k f)()()(z F z n k n k f n -↔--ε双边z 变换)()(z F z n k f n ↔+ )()(z F z n k f n -↔-③ 尺度变换:)()(a zF k f a k ↔④ z 域微分特性:)()(z F dzdzk kf -↔⑤ 卷积定理:)()()()(2121z F z F k f k f ↔*)()(21)()(2121s F s F jt f t f *↔⋅π ⑥ 初、终值定理:)(lim )0(z F f z ∞→=)()1(lim )(1z F z f z -=∞→3、 常见序列的Z 变换 1)(↔k δ, 1)(-↔z zk ε , γγ-↔z zk , 2)1(-↔z zk4、 反Z 变换a. 长除法b. 部分分式法nn z B z B z B z B z z F γγγ-++-+-+= 22110)( nn z z B z zB z z B B z F γγγ-++-+-+= 22110)( )()()()(22110k B B B k B k f kn n k k εγγγδ++++=c. 留数法1()Re ni i f k s ==∑①单根i z 处的留数 1Re [()()]i k i i z z s F z z z z -==-②p 重根i z 处的留数 1111Re [()()](1)!i p k p i i z z p d s F z z z z p z--=-=--系统分析卷积+三大变换(时域、频域、复频域、Z 域)一、 系统的时域分析1、 描述:a. 连续系统--微分方程b. 离散系统—差分方程)()()()()()()()(0111101111t e b dt t de b dtt e d b dt t e d b t r a dt t dr a dt t r d a dt t r d m m m m m m n n n n n +++=++++------ )t )k e )()1()()()1()1()(01011k e b k e b m k e b k y a k y a n k y a n k y m n +++++=++++-+++-3、全响应的求解连续:离散:a. 零输入响应 )(t r zi 、)(k y zi 特征方程:特征根:零输入响应:代定常数C 由初始条件确定:)()()(t r t r t r zs zi +=)()()(k y k y k y zs zi +=00111=++++--a a c n n n λλλ 00111=++++--a a c n n n γγγ 0)())((21=---n λλλλλλ 0)())((21=---n γγγγγγ knn k k zi c c c k y γγγ+++= 221)(tn ttzi n ec ec ec t r λλλ+++= 2121)()1()1(),0(-n y y y )0()0(),0()1(-'n zi zi zi r r r nγγγ,,,21 n λλλ,,,21 ⎪⎪⎩⎪⎪⎨⎧+++=+++='+++=----1122111)1(221121)0()0()0(n n n n n n n n nc c c rc c c r c c c r λλλλλλ ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡'----n n n n n n n c c c rr r211121121)1(111)0()0()0(λλλλλλ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡'⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----)0()0()0(111)1(1112112121n n n n n n n rr r c c cλλλλλλnn ij A AA )(11=-b. 零状态响应 )(t r zs 、)(k y zs4、解的分解零输入响应+零状态响应 自然响应+受迫响应 暂态响应+稳态响应二、系统的频域分析 1、频域系统函数2、系统特性幅频特性:相频特性:3、信号通过线性系统不产生失真的条件时域:频域:三、系统的复频域分析法1、微分方程的拉氏变换分析法 利用拉氏变换的微分特性:)0()0()0()()()1(21--------'--↔n n n n nn f f s f s s F s dtt f d 把微分方程:011101)(a p a p a p b p b p b p H n n nm m +++++++=-- )(t h 011101)(a S a S a S b S b S b S H n n nm m +++++++=-- )(k h )()()(k e k h k y zs *=)()()(t e t h t r zs *=)()()(ωϕωωj e j H j H =)()()(ωωωj E j R j H zs =)(ωj H )(ωφ)()(0t t Ke t r -=0)(t j Ke j H ωω-=)()()()()()()()(0111101111t e b dt t de b dtt e d b dt t e d b t r a dt t dr a dt t r d a dt t r d m m m m m m n n n n n +++=++++------变为代数方程,其过程为: ①)()()0()0()0()()()1(21s P s R s r r s r s s R s dtt r d k k k k k k k k -=--'--↔------ )0()0()0()()1(21------++'+=k k k k r r s r s s P 是与初始条件有关的关于s 的k 次多项式②)()()0()0()0()()()1(21s Q s E s e e s e s s E s dtt e d l l l l l l l l -=--'--↔------ 0)0()0()0()()1(21=++'+=------l l l l e e s e s s Q因为)(t e 是有始信号:0)0()0()0()1(==='=----l e e e 所以:)()(s E s dtt e d l l l ↔ ③把以上结果代入微分方程得:)()()()()()()(01111111s R a s P a s sR a s P a s R s a s P s R s n n n n n n +-++-+-----)()()(01s E b s sE b s E s b m m +++=)()()()()(010111s E b s b s b s M s R a s a s a s m m n n n +++=-++++--)()()()()(s E s N s M s R s D =-其中:0111)(a s a s a s s D n n n ++++=--01)(b s b s b s N m m +++=)()()()(1111s P a s P a s P s M n n n +++=--)()()()()()()()(s R s R s D s M s E s D s N s R zi zs +=+= 可求得全响应:)()()(t r t r t r zs zi +=2、电路S 域模型等效法……3、系统函数与系统的稳定性011101)(a s a s a s b s b s b s H n n n m m +++++++=-- )())((2101n m m s s s b s b s b λλλ---+++= 若极点n λλλ 21,均在s 平面的左半平面,则系统稳定。

信号与系统_复习知识总结

信号与系统_复习知识总结

信号与系统_复习知识总结信号与系统是电子信息类专业中的一门重要课程,主要介绍信号与系统的基本概念、性质、表示方法、处理方法、分析方法等。

在学习信号与系统的过程中,我们需要掌握的知识非常多,下面是我对信号与系统的复习知识的总结。

一、信号的基本概念1.信号的定义:信号是随时间或空间变化的物理量。

2.基本分类:(1)连续时间信号:在整个时间区间内有无穷多个取值的信号。

(2)离散时间信号:只在一些特定时刻上有取值的信号。

(3)连续振幅信号:信号的幅度在一定范围内连续变化。

(4)离散振幅信号:信号的幅度只能取离散值。

二、信号的表示方法1.连续时间信号的表示方法:(1)方程式表示法:用数学表达式表示信号。

(2)波形表示法:用图形表示信号。

2.离散时间信号的表示方法:(1)序列表示法:用数学序列表示信号。

(2)图形表示法:用折线图表示离散时间信号。

三、连续时间系统的性质1.线性性质:(1)加性:输入信号之和对应于输出信号之和。

(2)齐次性:输入信号的倍数与输出信号的倍数相同。

2.时不变性:系统的输出不随输入信号在时间上的变化而变化。

3.扩展性:输入信号的时延会导致输出信号的时延。

4.稳定性:系统的输出有界,当输入信号有界时。

5.因果性:系统的输出只依赖于当前和过去的输入信号值。

6.可逆性:系统的输出可以唯一地反映输入信号的信息。

四、离散时间系统的性质1.线性性质:具有加性和齐次性。

2.时不变性:输入信号的时移会导致输出信号的相应时移。

3.稳定性:系统的输出有界,当输入信号有界时。

4.因果性:系统的输出只依赖于当前和过去的输入信号值。

五、连续时间系统的分类1.时不变系统:输入信号的时移会导致输出信号的相应时移。

2.线性时不变系统:具有加性和齐次性。

3.时变系统:输入信号的时移会导致输出信号的相应时移,并且系统的系数是时间的函数。

4.非线性系统:不具有加性和齐次性。

六、离散时间线性时不变系统的分类1.线性时变系统:输入信号的时移会导致输出信号的相应时移。

总复习(信号与线性系统必过知识点)

总复习(信号与线性系统必过知识点)
n 0,1,2, ,
( t0,t0 +T )
2)指数函数集 ejnt n 0,1,2, ,
( t0,t0 +T )
3.2 周期信号的傅里叶级数展开
(1) f(t)为奇函数 正弦分量
(2) f(t)为偶函数 (3) f(t)为奇谐函数 (4) f(t)为偶谐函数
余弦分量+直流分量 奇次谐波 偶次谐波+直流分量
rzi (0 ), r 'zi (0 ), rz(in1) (0 )
4) 将初值带入rzi(t)的通解表达式,求出待定系数。
例1:已知某系统激励为零,初始值r(0)=2, r’(0)=1,r”(0)=0,描述系统的传
输算子为 解:
H(
p)

2p2 8p 3 ( p 1)( p 3)2
当激励e(t)=3 ε(t) ,初始状态保持不变时,响应 r2(t)=(8e-2t -7e-3t) ε(t)。
求:(1)激励e(t)=0,初始状态x1(0-)=1, x2(0-)=2时的响应 r3(t)=? (2)激励e(t)=2 ε(t),初始状态为零时的响应r4(t)=?
解:
当激励e(t)= ε(t) ,初始状态x1(0-)=1, x2(0-)=2时, 响应
2
2
2
例2:计算
4
(2 4t)(t 2)dt
1
解:4 (2 4t)(t 2)dt 1
4 1 (t 1)(t 2)dt 0
14
2
注意积 分区间
1. 2 信号的运算
1)折叠:y(t)=f (-t) 2)时移:y(t)=f (t-to) 3)倒相:y(t)=-f (t) 4)展缩:y(t)=f (at) 其中:a>0

《信号与线性系统》总复习(信息)#优选.

《信号与线性系统》总复习(信息)#优选.

信号与线性系统总复习信号分析一、 信号的时域分析 1、 常见信号①单位冲激函数:)(t δ 定义:抽样性:②单位阶跃函数:)(t ε 定义:阶跃与冲激的关系:③斜变函数:)()(t t t R ε=斜变与阶跃的关系:④指数函数:)(t e tεα-)(t f )(k f ⎩⎨⎧=01)(t ε0<>t t ⎪⎩⎪⎨⎧==⎰∞∞-0)(1)(t dt t δδ0≠t ⎪⎩⎪⎨⎧==⎰∞-t d t dt t d t ττδεεδ)()()()()()0()()(t f t t f δδ⋅=⋅)0()()0()0()()()(f dt t f dt f t dt t f t ==⋅=⋅⎰⎰⎰∞∞-∞∞-∞∞-δδδ⎪⎩⎪⎨⎧==⎰∞-t d t R dt t dR t ττεε)()()()(⑤门函数:)(t G τ ⑥余弦函数:t 0cos ω ⑦正弦函数:t 0sin ω ⑧冲激序列:∑∞-∞=-=n T nT t t )()(δδ2、 信号的运算:3、 信号的变换: 移位:反折: 展缩: 倍乘:4、 卷积: 连续:离散:性质:(1)延时特性:连续:)()()(212211t t t f t t f t t f --=-*- 离散:112212()()()f k k f k k f k k k -*-=--(2)微积分特性:)(0t t f ±)(t f -)(at f )(t af ∑∞-∞=-=*i i k f i f k f k f )()()()(2121⎰∞∞--=*τττd t f f t f t f )()()()(2121)()(21t f t f ±)()(21t f t f •t t df )(121()[()]tdf t f d dt ττ-∞=*⎰)()(21t f t f *二、 信号的频域分析(傅立叶变换分析法) 1、 定义:2、 性质:设)()(11ωj F t f ↔;)()(22ωj F t f ↔;)()(ωj F t f ↔①线性:)()()()(22112211ωωj F a j F a t f a t f a +↔+ ②对称性:)(2)(ωπf jt F ↔③延时:0)()(0tj e j F t t f ωω±↔±④移频:)()(00ωωωj j F e t f t j ↔±⑤尺度变换:)(1)(a j F a at f ω↔;)(1)(aj F e a b at f a bj ωω-↔-⑥奇偶特性:若)(t f 为实偶函数,则)(ωj F 也为实偶函数;若)(t f 为实偶函数,则)(ωj F 也为实偶函数;⑦时域微分:)()()(ωωj F j dtt df ↔; )()()(ωωj F j dtt f d nnn ↔ ⑧时域积分:)(1)()0()(ωωωδπττj F j F d f t+↔⎰∞- ⎰∞∞--=dte tf j F t j ωω)()(⎰∞∞-=ωωπωd e j F t f t j )(21)(⑨频域微分:ωωd j dF t f jt )()()(↔-;nn nd j F d t f jt ωω)()()(↔-⑩频域积分:⎰∞-↔-ωΩΩδπd F t f jtt f )()(1)()0(⑾卷积定理:)()()()(2121ωωj F j F t f t f ↔* )()(21)()(2121ωωπj F j F t f t f *↔⋅3、 常见信号的傅立叶变换 1)(↔t δωωπδεj t 1)()(+↔)]()([cos 000ωωδωωδπω++-↔t)]()([sin 000ωωδωωδπω--+↔j tωαεαj t e t +↔-1)(22sin )2()(τωτωττωττ=↔Sa t Gωj t 2)sgn(↔2222sin )2(01)(⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡↔⎪⎩⎪⎨⎧><-=τωτωττωττττSa t t t t fTn nT t t n n T πΩΩωδΩωδΩδδΩ2)()()()(=-=↔-=∑∑∞-∞=∞-∞=4、 周期信号的频谱①性质:离散性,谐波性,收敛性 ②级数展开:∑∞=++=1)sin cos (2n n n t n b t n a a ΩΩ)(t f ∑∞=-+=10)cos(2n n n t n A a ΦΩ∑∞-∞=•=n tjn n e A Ω21∑∞-∞==n t jn n e c Ω⎰+=Tt t n tdt n t f T b 11sin )(2Ωtdt n t f T a Tt t n Ωcos )(211⎰+=⎰+-•=Tt t tjn n dtet f TA 11)(2Ω⎰+-=Tt t t jn n dte tf Tc 11)(1Ωnj n n e A A φ-•=nn A c •=2122nn n b a A +=nn n a b arctg=φ③频谱:n A •与)(Ωωn =之间的关系图称频谱图; n A 与)(Ωωn =之间的关系图称为振幅频谱图; n ϕ与)(Ωωn =之间的关系图称为相位频谱图;信号时域特性和频域特性关系:时域 频域 周期 离散 离散 周期 时域有限 频域无限 时域无限 频域有限5、 帕色伐尔定理[]⎰⎰∞∞-∞∞-=ωωπd j F dt t f 22)(21)(6、 取样定理 ①频带有限信号 ②满足关系:m s f f 2≥三、 信号的复频域分析(拉普拉斯变换分析法) 1、 定义:⎰∞-=)()(dte tf s F st⎰∞+∞-=j j st dse s F jt f σσπ)(21)(2、 性质:①线性: )()()()(22112211s F a s F a t f a t f a +↔+②时移:0)()()(00st e s F t t t t f -↔--ε ③频移:)()(00s s F et f ts -↔④尺度变换:)(1)(asF a at f ↔⑤时域微分:)0()0()0()()()1(21--------'--↔n n n n nn f f s f s s F s dtt f d ⑥时域积分:)(1)(s F sd f t↔⎰∞-ττ ⑦复频域微积分: ds s dF t tf )()(-↔;⎰∞↔s ds s F t f t)()(1⑧初、终值定理:)(lim )0(s sF f s ∞→+=;()(s F 为真分式))(lim )(0s sF f s →=∞⑨卷积定理:)()()()(2121s F s F t f t f ↔* )()(21)()(2121s F s F jt f t f *↔⋅π3、 常见信号的拉氏变换1)(↔t δ,st 1)(↔ε,a s t e t-↔1)(εα,1!+↔n nsn t ,22sin ωωω+↔s t ,22cos ωω+↔s st4、 反变换(1).部分分式展开法n n s s k s s k s s k s F -++-+-= 2211)()()()(2121t e k e k e k t f t s n t s t s n ε+++=(2).留数法∑==ni i s t f 1Re )(①单根is 处的留数 Re [()()]i stii s s s F s e s s ==- ②p 重根i s 处的留数111Re [()()](1)!i p st pi i s s p d s F s e s s p s-=-=--四、(离散)信号的Z 域分析1、 定义:∑∞-∞=-=K kz K F Z F )()( 2、 性质:① 线性线性:)()()()(22112211z F a z F a k f a k f a +↔+ ② 移序: 单边z 变换∑-=--↔+1)()()(n k k nn z k f zz F z n k f)()()(z F z n k n k f n-↔--ε双边z 变换)()(z F z n k f n ↔+ )()(z F z n k f n-↔-③ 尺度变换:)()(az F k f a k ↔ ④z 域微分特性:)()(z F dzdz k kf -↔ ⑤ 卷积定理:)()()()(2121z F z F k f k f ↔*)()(21)()(2121s F s F jt f t f *↔⋅π⑥ 初、终值定理:)(lim )0(z F f z ∞→= 3、 常见序列的Z 变换1)(↔k δ ,1)(-↔z zk ε ,γγ-↔z zk,2)1(-↔z zk4、 反Z 变换 (1) 长除法 (2) 部分分式法nn z B z B z B z B z z F γγγ-++-+-+= 22110)( nn z z B z zB z z B B z F γγγ-++-+-+= 22110)()()()()(22110k B B B k B k f kn n k k εγγγδ++++= (3) 留数法1()Re nii f k s ==∑①单根iz 处的留数 1Re [()()]i k ii z z s F z z z z -==- ②p 重根i z 处的留数 1111Re [()()](1)!i p k p i i z z p d s F z z z z p z--=-=--系统分析卷积+三大变换(时域、频域、复频域、Z 域)一、 系统的时域分析 1、 描述:(1) 连续系统--微分方程(2) 离散系统—差分方程)()()()()()()()(0111101111t e b dt t de b dtt e d b dt t e d b t r a dt t dr a dt t r d a dt t r d m m m m m m n n n nn +++=++++------ )t )k e )()1()()()1()1()(01011k e b k e b m k e b k y a k y a n k y a n k y m n +++++=++++-+++-3、全响应的求解连续: 离散:(1) 零输入响应 )(t r zi 、)(k y zi 特征方程:特征根:零输入响应:代定常数C 由初始条件决定:)()()(t r t r t r zs zi +=)()()(k y k y k y zs zi +=00111=++++--a a c n n n λλλ 00111=++++--a a c n n n γγγ 0)())((21=---n λλλλλλ 0)())((21=---n γγγγγγ knn k k zi c c c k y γγγ+++= 221)(tn ttzi n ec ec e c t r λλλ+++= 2121)()1()1(),0(-n y y y )0()0(),0()1(-'n zi zi zi r r r nγγγ,,,21 nλλλ,,,21 ⎪⎪⎩⎪⎪⎨⎧+++=+++='+++=----1122111)1(221121)0()0()0(n n n n n n n n n c c c r c c c r c c c r λλλλλλ ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡'----n n n n n n n c c c rr r211121121)1(111)0()0()0(λλλλλλ(2) 零状态响应 )(t r zs 、)(k y zs4、解的分解零输入响应+零状态响应 自然响应+受迫响应 暂态响应+稳态响应二、系统的频域分析1、频域系统函数2、系统特性011101)(a p a p a p b p b p b p H n n nm m +++++++=-- )(t h 011101)(a S a S a S b S b S b S H n n nm m +++++++=-- )(k h )()()(k e k h k y zs *=)()()(t e t h t r zs *=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡'⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----)0()0()0(111)1(1112112121n n n n n n n rr r c c cλλλλλλnnij A AA)(11=-)()()(ωϕωωj e j H j H =)()()(ωωωj E j R j H zs =幅频特性: 相频特性:3、信号通过线性系统不产生失真的条件时域:频域:三、系统的复频域分析法1、微分方程的拉氏变换分析法 利用拉氏变换的微分特性:)0()0()0()()()1(21--------'--↔n n n n nn f f s f s s F s dtt f d 把微分方程:变为代数方程,其过程为:①)()()0()0()0()()()1(21s P s R s r r s r s s R s dtt r d k kk k k k kk -=--'--↔------)0()0()0()()1(21------++'+=k k k k r r s r s s P是与初始条件有关的关于s 的k 次多项式②)(ωj H )(ωφ)()(0t t Ke t r -=0)(t j Ke j H ωω-=)()()()()()()()(0111101111t e b dt t de b dtt e d b dt t e d b t r a dt t dr a dt t r d a dt t r d m m m m m m n n n n n +++=++++------)()()0()0()0()()()1(21s Q s E s e e s e s s E s dtt e d l ll l l l ll -=--'--↔------0)0()0()0()()1(21=++'+=------l l l l e e s e s s Q因为)(t e 是有始信号:0)0()0()0()1(==='=----l e e e 所以:)()(s E s dtt e d l l l ↔③把以上结果代入微分方程得:)()()()()()()(01111111s R a s P a s sR a s P a s R s a s P s R s n n n n n n +-++-+----- )()()(01s E b s sE b s E s b m m +++=)()()()()(010111s E b s b s b s M s R a s a s a s m m n n n +++=-++++-- )()()()()(s E s N s M s R s D =-其中:0111)(a s a s a s s D n n n ++++=-- 01)(b s b s b s N m m +++=)()()()(1111s P a s P a s P s M n n n +++=-- )()()()()()()()(s R s R s D s M s E s D s N s R zi zs +=+=可求得全响应:2、电路S 域模型等效法3、系统函数与系统的稳定性011101)(a s a s a s b s b s b s H n n n m m +++++++=-- )())((2101n m m s s s b s b s b λλλ---+++= 若极点n λλλ 21,均在s 平面的左半平面,则系统稳定。

信号与线性系统课件 第 版 管致中 期末复习总结课件

信号与线性系统课件 第 版 管致中 期末复习总结课件

⎧2,
⎧2, k = −1
⎧3, k = 0
f1 (k )
=
⎪⎪3 , ⎪⎨6 ,
k k
=0 =1
f2
(k)
=
⎪⎪2 , ⎪⎨4 ,
k k
= =
1 2
⎪⎩0, k其他
⎪⎩0 , k其他
f1 (k) + f 2 (k) = ⎪⎪⎪⎨86,,
⎪⎪4, ⎧ 9 , k = 0 ⎪⎩0,
f1 (k) × f2 (k) = ⎪⎨12, k = 1
t
反转,得f (– 2t – 4)
o
2 4 6t
压缩,得f (2t – 4)
f (2t Biblioteka 4)1-3 -1 o t
o 123 t
1.4 系统的分类方法
1. 连续系统与离散系统 2. 动态系统与即时系统 3. 线性系统与非线性系统 4. 时不变系统与时变系统 5. 因果系统与非因果系统 6. 稳定系统与不稳定系统
Sa(t)是偶函数,t = ±π , ± 2π ,K 时,函数值为0。
Sa(t ) 具有以下性质:
∫0∞ Sa (t ) dt
=
π 2
∫−+∞∞ Sa ( t ) dt = π
1.3 信号的基本运算
一、信号的+、-、×运算
两信号f1(·) 和f2 (·)的相+、-、×指同一时刻两 信号之值对应相加减乘 。如
§2.2 系统数学模型的建立
1) 构成电路各个元件上的电压和电流的关系。由于 所讨论的电路系统最终可以等效为由理想元件电阻、 电容、电感所构成,因此应掌握这些元件电压与电流 的关系:
R:
uR = R⋅iR
L:
uL

《信号与系统》综合复习资料

《信号与系统》一、简答题1、dtt df t f t f x e t y t)()()()0()(+⋅=-其中x(0)是初始状态,为全响应,为激励,)()(t y t f 试回答该系统是否是线性的?2、已知描述LTI 连续系统的框图如图所示,请写出描述系统的微分方程。

3、若信号)(t f 的最高频率为20KHz ,则信号)3()2()(2t f t f t f +=的最高频率为___________KHz ;若对信号)(2t f 进行抽样,则奈奎斯特频率s f 为 ____________KHz 。

4、设系统的激励为()f t ,系统的零状态响应)(t y zs 与激励之间的关系为:)()(t f t y zs -=,判断该系统是否是时不变的,并说明理由。

5、已知信号()⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=8sin 4cos 2ππk k k f ,判断该信号是否为周期信号,如果是,请求其周期,并说明理由。

6、已知()1k+1 , 0,1,20 , k f k else ==⎧⎨⎩,()2 1 , 0,1,2,30 , k f k else ==⎧⎨⎩设()()()12f k f k f k =*,求()f k 。

7、设系统的激励为()f t ,系统的零状态响应)(t y zs 与激励之间的关系为:)1(*)()(-=k f k f k y zs ,判断该系统是否是线性的,并说明理由。

8、已知描述LTI 离散系统的框图如图所示,请写出描述系统的差分方程。

9、已知()f t 的频谱函数1,2/()0,2/rad sF j rad sωωω⎧≤⎪=⎨>⎪⎩,对(2)f t 进行均匀抽样的奈奎斯特抽样间隔N T 为:_______________s 。

10、若信号()f t 的最高频率为20KHz ,则信号(2)f t 的最高频率为___________KHz ;若对信号(2)f t 进行抽样,则奈奎斯特频率s f 为 ____________KHz 。

信号与系统复习资料总结


求得上图系统的微分方程为
y"(t) 5y'(t) 3y(t) 2 f '(t) 4 f (t)
写出系统的算子方程
( p2 5p 3) y(t) (4 2 p) f (t)
于是,得到系统的传输算子为
H( p)
42p p2 5p 3
利用P算子法,根据电路写出系统微分方程
P算子法
– 4 –2 O 2 4 6
τ
卷积图形计算
f1(τ) 2
• 卷积积分图解(积分3)
O2 4
τ
▫ 积分区间:
2<t<4
f2(t–τ) 1.5
▫ 计算积分:
t
f (t) 1.5(t )d t2
– 4 –2 O 2 t 4 6
τ
1.5t
0.75 2
t t2
3.0 f (t)
1.5
3
– 4 –2 O 2 4 6
变换域计算方法:根据时域卷积对应变换域乘积的性质, 分别求出2个变换域函数后相乘,对乘积结果再进行反 变换求出时域表达式。对2个指数型函数的卷积尤其简 单有效
时域求卷积(一)—根据定义
f (t) f1(t) f2 (t)
f1( ) f2 (t )d
时域求卷积(二)—根据图形
卷积图形计算法
▫ 关于全解:
全解为齐次解+特解。 将方程初始条件带入全解,求出齐次解的系数
微分方程的经典解例题
• 某 LTI 系统的微分方程及输入和初始条件分别为 y(t) 4 y(t) 4 y(t) f (t) f (t) etu(t) y(0) 2, y(0) 2
求系统的齐次解、特解和全解。
• (c) 伸缩: 若|a|>1,则将(b)得到的图以Y轴保 持不动,水平方向缩为原来1/|a|。若|a|<1,则将 (b)得到的图以Y轴保持不动,水平方向伸展为 原来1/|a|

信号与系统复习资料


时域积分
系统的方框图表示的积分器 s域微分 z域微分 主要应用:求反变换
初值与终值定理
对于因果序列 ,
基本的s变换对和z变换对
s反变换和z反变换的求解
当X(s) X(z)是有理的,首先用部分分式展开成低次分式之和,结合ROC求各低次分式的反变换的叠加等于x(t)x[n].
由定义式可以看出,X(z)是z的正幂和负幂的一个幂级数, 幂级数的系数就是序列x[n]的值. 可用长除法将X(z)展开为z的正幂和负幂的线性组合,展开时要考虑变换的收敛域(暂定不做考试要求)
分段法计算卷积和的步骤与卷积积分相似
利用卷积性质在某些情况下可以简化卷积计算。
因果LTI系统的数学模型
连续因果LTI系统线性常系数微分方程+初始松弛条件 离散因果LTI系统线性常系数差分方程+初始松弛条件
一个连续时间线性系统,满足因果性的充分必要条件是:对任何t0和任意的输入x(t),若t<t0,x(t)=0,则对应的输出y(t)在t<t0也必定为零.
采样定理
(在保持系统幅频特性不变的情况下,如何改变系统的极点,使之满足因果稳定的条件?由零极点图确定系统的幅频特性)
由零极点图对傅里叶变换进行几何求解
因果LTI系统的方框图表示
(直接型,级联型,并联型)
单边s变换和z变换
(s变换微分性质和z变换时间延迟性质的推导,具有非零初始条件的LTI系统零输入响应和零状态响应的求解)
一个具有有理系统函数的离散时间LTI系统,当且仅当它的系统函数ROC位于最外层极点的外边,且H(z)表示成z的多项式之比时其分子的阶次不能大于分母的阶次,该系统才是因果的。
当且仅当系统函数的ROC包含单位圆时,离散时间LTI系统稳定。

信号与线性系统分析复习题及答案

信号与线性系统复习题单项选择题;1. 已知序列3()cos()5f k k π=为周期序列,其周期为 C A . 2 B. 5 C. 10 D. 122. 题2图所示()f t 的数学表达式为 B图题2A .()10sin()[()(1)]f t t t t πεε=+- B. ()10sin()[()(1)]f t t t t πεε=-- C. ()10sin()[()(2)]f t t t t πεε=-- D. ()10sin()[()(2)]f t t t t πεε=+-3.已知sin()()()t f t t dt t πδ∞-∞=⎰,其值是 AA .π B. 2π C. 3π D. 4π4.冲激函数()t δ的拉普拉斯变换为 AA . 1 B. 2 C. 3 D. 45.为了使信号无失真传输,系统的频率响应函数应为 D A . ()djwt H jw e= B. ()djwt H jw e-= C. ()djwt H jw Ke= D. ()djwt H jw Ke-=6.已知序列1()()()3kf k k ε=,其z 变换为 B A .13z z + B.13z z - C.14z z + D.14z z -7.离散因果系统的充分必要条件是 AA .0,0)(<=k k h B. 0,0)(>=k k h C. 0,0)(<<k k h D. 0,0)(>>k k h8.已知()f t 的傅里叶变换为()F jw ,则(3)f t +的傅里叶变换为 C A .()jwF jw e B. 2()j wF jw eC. 3()j wF jw eD. 4()j wF jw e9.已知)()(k k f kεα=,)2()(-=k k h δ,则()()f k h k *的值为 BA .)1(1--k k εαB. )2(2--k k εαC. )3(3--k k εαD. )4(4--k k εα10.连续时间系统的零输入响应的“零”是指 A A. 激励为零 B. 系统的初始状态为零 C. 系统的冲激响应为零 D. 系统的阶跃响应为零 11. 已知序列kjek f 3)(π=为周期序列,其周期为A . 2 B. 4 C. 6 D. 812. 题2图所示()f t 的数学表达式为A .)1()1()(--+=t t t f εε B.)1()1()(-++=t t t f εε C. )1()()(--=t t t f εε D. )1()()(-+=t t t f εε13.已知)2()(),1()(21-=-=t t f t t f εδ,则 12()()f t f t *的值是 A .)(t ε B. )1(-t ε C. )2(-t ε D. )3(-t ε14.已知ωωj j F =)(,则其对应的原函数为A .)(t δ B. )('t δ C. )(''t δ D. )('''t δ15.连续因果系统的充分必要条件是 A . 0,0)(==t t h B. 0,0)(<=t t h C. 0,0)(>=t t h D. 0,0)(≠=t t h16.单位阶跃序列)(k ε的z 变换为A .1,1<+z z z B. 1,1>+z z z C. 1,1<-z z z D. 1,1>-z z z 17.已知系统函数ss H 1)(=,则其单位冲激响应()h t 为A .)(t ε B. )(t t ε C. )(2t t ε D. )(3t t ε18.已知()f t 的拉普拉斯变换为()F s ,则)5(t f 的拉普拉斯变换为tA .)5(s F B. )5(31s F C. )5(51s F D. )5(71s F 19.已知)2()(2-=-k k f k εα,)2()(-=k k h δ,则()()f k h k *的值为A .)1(1--k k εα B. )2(2--k k εαC. )3(3--k k εαD. )4(4--k k εα20.已知)(t f 的傅里叶变换为)(ωj F ,则)(jt F 的傅里叶变换为 A. )(ωπ-fB. )(ωπfC. )(2ωπ-fD. )(2ωπf21. 下列微分或差分方程所描述的系统是时变系统的是 A . )(2)()(2)(''t f t f t y t y -=+B. )()(sin )('t f t ty t y =+C. )()]([)(2't f t y t y =+D. )()2()1()(k f k y k y k y =--+22. 已知)()(),()(21t t f t t t f εε==,则)()(21t f t f *的值是 A .)(1.02t t ε B. )(3.02t t ε C. )(5.02t t ε D. )(7.02t t ε23.符号函数)sgn(t 的频谱函数为 A .ωj 1 B. ωj 2 C. ωj 3 D. ωj 424.连续系统是稳定系统的充分必要条件是 A . M dt t h ≤⎰∞∞-)( B. M dt t h ≥⎰∞∞-)(C.M dt t h ≤⎰∞∞-)( D.M dt t h ≥⎰∞∞-)(25.已知函数)(t f 的象函数)5)(2()6()(+++=s s s s F ,则原函数)(t f 的初值为A . 0 B. 1 C. 2 D. 3 26.已知系统函数13)(+=s s H ,则该系统的单位冲激响应为 A .)(t e tε- B.)(2t e tε- C.)(3t e tε- D. )(4t e tε-27.已知)2()(),1()(1-=-=-k k h k k f k δεα,则)()(k h k f *的值为A .)(k kεα B.)1(1--k k εα C.)2(2--k k εα D. )3(3--k k εα28. 系统的零输入响应是指 A.系统无激励信号 B. 系统的初始状态为零C. 系统的激励为零,仅由系统的初始状态引起的响应D. 系统的初始状态为零,仅由系统的激励引起的响应 29.偶函数的傅里叶级数展开式中A .只有正弦项 B.只有余弦项 C. 只有偶次谐波 D. 只有奇次谐波 10. 已知信号()f t 的波形,则)2(t f 的波形为 A .将()f t 以原点为基准,沿横轴压缩到原来的12B. 将()f t 以原点为基准,沿横轴展宽到原来的2倍C. 将()f t 以原点为基准,沿横轴压缩到原来的14D. 将()f t 以原点为基准,沿横轴展宽到原来的4倍 填空题1. 已知象函数223()(1)s F s s +=+,其原函数的初值(0)f +为___________________;2.()(2)t e t t dt δ∞--∞++=⎰____________________________;3.当LTI 离散系统的激励为单位阶跃序列()k ε时,系统的零状态响应称为_________________;4.已知函数4()23F s s =+,其拉普拉斯逆变换为____________________; 5.函数()f t 的傅里叶变换存在的充分条件是________________________;6. 已知11()10.5X z z -=+(0.5)z >,则其逆变换()x n 的值是______________;7.系统函数(1)(1)()1()2z z H z z -+=-的极点是___________________________;8.已知()f t 的拉普拉斯变换为()F s ,则00()()f t t t t ε--的拉普拉斯变换为_________________; 9.如果系统的幅频响应()H jw 对所有的ω均为常数,则称该系统为__________________________; 10. 已知信号)(t f ,则其傅里叶变换的公式为______________; 11. 已知象函数223()(1)s F s s +=+,其原函数的初值(0)f +为___________________; 12.()(2)t e t t dt δ∞--∞++=⎰____________________________;13.当LTI 离散系统的激励为单位阶跃序列()k ε时,系统的零状态响应称为_________________;14.已知函数4()23F s s =+,其拉普拉斯逆变换为____________________; 15.函数()f t 的傅里叶变换存在的充分条件是________________________;16. 已知11()10.5X z z-=+(0.5)z >,则其逆变换()x n 的值是______________; 17.系统函数(1)(1)()1()2z z H z z -+=-的极点是___________________________;18.已知()f t 的拉普拉斯变换为()F s ,则00()()f t t t t ε--的拉普拉斯变换为_________________; 19.如果系统的幅频响应()H jw 对所有的ω均为常数,则称该系统为__________________________; 20. 已知信号)(t f ,则其傅里叶变换的公式为______________; 21.)(63t e tε-的单边拉普拉斯变换为_________________________;22.=-⎰∞∞-dt t t t f )()(0δ ____________________________;23.)(5t δ的频谱函数为______________________;24.一个LTI 连续时间系统,当其初始状态为零,输入为单位阶跃函数所引起的响应称为__________响应; 25.序列)()21()(k k f kε=的z 变换为___________________________;26.时间和幅值均为______________的信号称为数字信号; 27.系统函数)6.0)(4.0()1()(+-+=z z z z z H 的极点是___________________________;28.LTI 系统的全响应可分为自由响应和__________________;29. 函数)(1t f 和)(2t f 的卷积积分运算=*)()(21t f t f _______________________; 30. 已知函数23)(+=s s F ,其拉普拉斯逆变换为____________________; 简答题.;1.简述根据数学模型的不同,系统常用的几种分类;2.简述稳定系统的概念及连续时间系统时域稳定的充分必要条件; 3.简述单边拉普拉斯变换及其收敛域的定义; 4.简述时域取样定理的内容; 5.简述系统的时不变性和时变性; 6.简述频域取样定理;7.简述-0时刻系统状态的含义;8. 简述信号拉普拉斯变换的终值定理;9.简述LTI 连续系统微分方程经典解的求解过程; 10.简述傅里叶变换的卷积定理;11.简述LTI 离散系统差分方程的经典解的求解过程;12.简述信号z 变换的终值定理;13.简述全通系统及全通函数的定义; 14.简述LTI 系统的特点; 15.简述信号的基本运算 计算题1.描述离散系统的差分方程为1)1(,0)1(9.0)(=-=--y k y k y ,利用z 变换的方法求解)(k y ; 2.描述某LTI 系统的微分方程为)(3)()(3)(4)(''''t f t f t y t y t y -=++ ,求其冲激响应)(t h ;3.给定微分方程 )(3)()(2)(3)(''''t f t f t y t y t y +=++,1)0(),()(==-y t t f ε,2)0('=-y ,求其零输入响应;4.已知某LTI 离散系统的差分方程为),()1(2)(k f k y k y =--)(2)(k k f ε=, y-1=-1,求其零状态响应;5.当输入)()(k k f ε=时,某LTI 离散系统的零状态响应为)(])5.1()5.0(2[)(k k y k k zs ε-+-=,求其系统函数;6.描述某LTI 系统的方程为),(3)()(3)(4)(''''t f t f t y t y t y -=++求其冲激响应)(t h ;7.描述离散系统的差分方程为 )1()(2)2(43)1()(--=---+k f k f k y k y k y ,,求系统函数和零、极点; 8. 已知系统的微分方程为)()(3)(4)('''t f t y t y t y =++,1)0()0('==--y y )()(t t f ε=,求其零状态响应;9.用z 变换法求解方程2)1(),(1.0)1(9.0)(=-=--y k k y k y ε的全解10.已知描述某系统的微分方程)(4)()(6)(5)(''''t f t f t y t y t y +=++,求该系统的频率响应).(jw H11.已知某LTI 系统的阶跃响应)()1()(2t e t g tε--=,欲使系统的零状态响应)()1()(22t te e t y t t zs ε--+-=,求系统的输入信号)(t f ;12.利用傅里叶变换的延时和线性性质门函数的频谱可利用已知结果,求解下列信号的频谱函数;13.若描述某系统的微分方程和初始状态为 )(4)(2)(4)(5)(''''t f t f t y t y t y -=++5)0(,1)0('==--y y ,求系统的零输入响应;14.描述离散系统的差分方程为 )2()()2(21)1()(--=-+--k f k f k y k y k y , 求系统函数和零、极点;15.若描述某系统的差分方程为)()2(2)1(3)(k k y k y k y ε=-+-+,已知初始条件5.0)2(,0)1(=-=-y y ,利用z 变换法,求方程的全解;信号与线性系统分析复习题答案单项选择题1. C2.B3.A4.A5.D6.B 7 .A 8.C 9.B 10.A 11. C 12.A 13. D 14.B 15.B 16. D17. A 18.C 19. D 20.C 21.B 22.C 23. B 24.A 25.B 26.C 27. D 28.C 29. B 30. B填空题1. 22. 22e - 3. 单位阶跃响应/阶跃响应 4. )(223t et ε- 5.()f t dt ∞-∞<∞⎰6.)()5.0(k k ε- 7.128. 0()st F s e - 9. 全通系统 10. dt e t f jw F jwt⎰∞∞--=)()( 11.卷积和 12. 1 13.)()(d t t kf t y -= 14. )()()()(3121t f t f t f t f *+* 15.齐次解和特解16. 系统函数分子 17. 2 18.63-z z 19.)(2w πδ 20.齐次 21.36+s 22.)(0t f - 23. 5 24. 单位阶跃响应 25. 122-z z26. 离散 27. 0.4,-0.6 28. 强迫响应 29.τττd t f f )()(21-⎰∞∞- 30. )(32t e t ε-简答题1.答:1加法运算,信号1()f ⋅与 2()f ⋅之和是指同一瞬时两信号之值对应相加所构成的“和信号”,即12()()()f f f ⋅=⋅+⋅2乘法运算,信号1()f ⋅与 2()f ⋅之积是指同一瞬时两信号之值对应相乘所构成的“积信号”,即12()()()f f f ⋅=⋅⋅3反转运算:将信号()f t 或()f k 中的自变量t 或k 换为t -或k -,其几何含义是将信号()f ⋅以纵坐标为轴反转;4平移运算:对于连续信号()f t ,若有常数00t >,延时信号0()f t t -是将原信号沿t 轴正方向平移0t 时间,而0()f t t +是将原信号沿t 轴负方向平移0t 时间;对于离散信号()f k ,若有整常数00k >,延时信号0()f k k -是将原序列沿k 轴正方向平移0k 单位,而0()f k k +是将原序列沿k 轴负方向平移0k 单位; 5尺度变换:将信号横坐标的尺寸展宽或压缩,如信号()f t 变换为()f at ,若1a >,则信号()f at 将原信号()f t 以原点为基准,将横轴压缩到原来的1a倍,若01a <<,则()f at 表示将()f t 沿横轴展宽至1a 倍2.答:根据数学模型的不同,系统可分为4种类型. 即时系统与动态系统; 连续系统与离散系统; 线性系统与非线性系统 时变系统与时不变系统3.答:1一个系统连续的或离散的如果对任意的有界输入,其零状态响应也是有界的则称该系统是有界输入有界输出稳定系统;2连续时间系统时域稳定的充分必要条件是()h t dt M ∞-∞≤⎰4.信号的单边拉普拉斯正变换为:dt e t f s F st ⎰∞-=)()(逆变换为:ds e s F j t f jwjwst ⎰+-=δδπ)(21)(收敛域为:在s 平面上,能使0)(lim =-∞→tt et f δ满足和成立的δ的取值范围或区域,称为)(t f 或)(s F 的收敛域;5.答:一个频谱受限的信号)(t f ,如果频谱只占据m m w w ~-的范围,则信号)(t f 可以用等间隔的抽样值唯一表示;而抽样间隔必须不大于mf 21m m f w π2=,或者说,最低抽样频率为m f 2; 6.答:如果系统的参数都是常数,它们不随时间变化,则称该系统为时不变或非时变系统或常参量系统,否则称为时变系统; 描述线性时不变系统的数学模型是常系数线性微分方程或差分方程,而描述线性时变系统的数学模型是变系数线性微分或差分方程;7.答:一个在时域区间),(m m t t -以外为零的有限时间信号)(t f 的频谱函数)(jw F ,可唯一地由其在均匀间隔)21(m s s t f f <上的样点值)(s jnw F 确定;)()()(ππn wt Sa t n j F jw F m n m -=∑∞-∞=,sm f t 21=8.答:在系统分析中,一般认为输入)(t f 是在0=t 接入系统的;在-=0t 时,激励尚未接入,因而响应及其导数在该时刻的值)0()(-j y与激励无关,它们为求得0>t 时的响应)(t y 提供了以往的历史的全部信息,故-=0t 时刻的值为初始状态;9.答:若)(t f 及其导数dt t df )(可以进行拉氏变换,)(t f 的变换式为)(s F ,而且)(lim t f t ∞→存在,则信号)(t f 的终值为)(lim )(0lim s sF t f s t →∞→=;终值定理的条件是:仅当)(s sF 在s 平面的虚轴上及其右边都为解析时原点除外,终值定理才可用;10.答:1列写特征方程,根据特征方程得到特征根,根据特征根得到齐次解的表达式 2 根据激励函数的形式,设特解函数的形式,将特解代入原微分方程,求出待定系数得到特解的具体值. 3 得到微分方程全解的表达式, 代入初值,求出待定系数 4 得到微分方程的全解11.答:1时域卷积定理:若)()(),()(2211ωωj F t f j F t f ↔↔,则)()()()(2121ωωj F j F t f t f ↔* 2 频域卷积定理:若)()(),()(2211ωωj F t f j F t f ↔↔,则)()(21)()(2121ωωπj F j F t f t f *↔12..答:1列写特征方程,得到特征根,根据特征根得到齐次解的表达式 2 根据激励函数的形式,设特解的形式,将特解代入原差分方程,求出待定系数, 得到特解的具体值. 3 得到差分方程全解的表达式, 代入初始条件,求出待定系数, 4 得到差分方程的全解 13.答:终值定理适用于右边序列,可以由象函数直接求得序列的终值,而不必求得原序列;如果序列在M k < 时,0)(=k f ,设∞<<↔z z F k f α),()(且10<≤α,则序列的终值为)(1lim)(lim )(1z F zz k f f z k -==∞→∞→或写为)()1(lim )(1z F z f z -=∞→上式中是取1→z 的极限,因此终值定理要求1=z 在收敛域内10<≤α,这时)(lim k f k ∞→存在;14.答 全通系统是指如果系统的幅频响应)(jw H 对所有的w 均为常数,则该系统为全通系统,其相应的系统函数称为全通函数;凡极点位于左半开平面,零点位于右半开平面,且所有的零点与极点为一一镜像对称于jw 轴的系统函数即为全通函数;15.答:当系统的输入激励增大α 倍时,由其产生的响应也增大α倍,则称该系统是齐次的或均匀的;若两个激励之和的响应等于各个激励所引起的响应之和,则称该系统是可加的;如果系统既满足齐次性又满足可加性,则称系统是线性的;如果系统的参数都是常数,它们不随时间变化,则称该系统为时不变系统或常参量系统;同时满足线性和时不变的系统就称为线性时不变系统LTI 系统;描述线性时不变系统的数学模型是常系数线性微分差分方程;线性时不变系统还具有微分特性;计算题1解:令)()(z Y k y ↔,对差分方程取z 变换,得 0)]1()([9.0)(1=-+--y z Y z z Y将1)1(=-y 代入上式并整理,可得 9.09.09.019.0)(1-=-=-z zz z Y 取逆变换得 )()9.0()(1k k y k ε+=2.解:令零状态响应的象函数为)(s Y zs ,对方程取拉普拉斯变换得:)(3)()(3)(4)(2s F s sF s Y s sY s Y s zs zs zs -=++于是系统函数为343)()()(2++-==s s s s F s Y s H zs )()23()(3t e e t h t t ε---=3.系统的特征方程为0232=++λλ特征根为:1,221-=-=λλ 所以,零输入响应为t zi tzi zi e C e C t y --+=221)(所以:22)0(1)0(21'21=--==+=++zi zi zi zi zi zi C C y C C y故:4321=-=zi zi C C所以:t t zi e e t y --+-=43)(24.解:零状态响应满足:2)1(2)(=--k y k y zs zs ,且0)1(=-zs y 该方程的齐次解为:kzs C 2设特解为p,将特解代入原方程有:22=-p p从而解得2)(-=k y p所以22)(-=k zs zs C k y 将2)0(=zs y 代入上式,可解得4=zs C故,)()224()(k k y k zs ε-⋅=5.解:1)(-=z z z F )5.1)(5.0)(1()5.02()(2+--+=z z z z z z Y zs 75.05.02)()()(22-++==z z z z F z Y z H zs 6.解:令零状态响应的象函数为)(s Y zs ,对方程取拉普拉斯变换得:)(3)()(3)(4)(2s F s sF s Y s sY s Y s zs zs zs -=++ 系统函数为:3312)()()(+++-==s s s F s Y s H zs 故冲激响应为)()23()(3t e e t h t t ε---=7. 解:对差分方程取z 变换,设初始状态为零;则:)()2()()431(121z F z z Y z z ----=-+于是系统函数)21)(23()12()()()(-+-==z z z z z F z Y z H 其零点为21,021==ζζ, 极点为21.2321=-=p p 8. 解: 方程的齐次解为:t zs t zs e C e C 321--+方程的特解为:31 于是:31)(321++=--t zs t zs zs e C e C t y 031)0(21=++=+zs zs zs C C y 03)0(21'=--=+zs zs zs C C y得61,2121=-=zs zs C C 于是:)()312161()(3t e et y t t zs ε+-=--9. 解:令)()(z Y k y ↔,对差分方程取z 变换,得11.0)]1()([9.0)(1-=-+--z z y z Y z z Y 将2)1(=-y 代入上式,并整理得 )9.0)(1()8.19.1()(---=z z z z z Y )(])9.0(1[)(1k k y k ε++=10.解:令)()(),()(jw Y t y jw F t f ↔↔,对方程取傅里叶变换,得 )(4)()()(6)()(5)()(2jw F jw F jw jw Y jw Y jw jw Y jw +=++ 654)()()(2++-+==jw w jw jw F jw Y jw H 11. 解:)(2)()(2t e dtt dg t h t ε-==22)(+=s s H 2)2(43)(++=s s s s Y zs 2211)()()(++==s s s H s Y s F zs )()211()(2t e t f t ε-+= 12 解:)(t f 可看作两个时移后的门函数的叠合;)2()2()(22-++=t g t g t f因为)(2)(2w Sa t g ↔所以由延时性和线性性有: )2cos()(4)(2)(2)(22w w Sa e w Sa e w Sa jw F w j w j =+=- 13.解:特征方程为:0452=++λλ 4,121-=-=λλt zi t zi zi e C e C t y 421)(--+=t zi t zi zi e C e C t y 421'4)(----=令,0=t 将初始条件代入上式中,得1)0(21=+=+zi zi zi C C y 54)0(21'=--=+zi zi zi C C y 可得: 2,321-==zi zi C C0,23)(4≥-+=--t e e t y t t zi14.解:对差分方程取z 变换,设初始状态为零,则 )()1()()211(221z F z z Y z z ----=+- 211)()()(22+--==z z z z F z Y z H 其零点1,121-==ζζ;极点21212,1j p ±= 15. 解:令)()(z Y k y ↔,对差分方程取z 变换,得112111)]2()1()((2)]1()([3)(----+=-+-++-++zy y z z Y z y z Y z z Y)1)(23()(22-++=z z z z z Y )(])2(32)1(2161[)(k k y k k ε---+=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f ( k n) z n F ( z )
k ③尺度变换: a f ( k ) F ( )
z a
d ④ z 域微分特性: kf ( k ) z dz F ( z )
⑤卷积定理: f1 ( k ) f2 ( k ) F1 ( z )F2 ( z )
9
信号与线性系统
2014.05.23



f1 ( ) f 2 ( t )d
(k i)
卷积和:
i
f (i) f
1

2
性质:延时特性: f1 ( t t1 ) f2 ( t t2 ) f ( t t1 t2 ) 微积分特性:
f1 ( t ) f2 ( t ) [ t f ( )d ] df 2 ( t ) 1 dt df1 ( t ) t f2 ( )d dt
⑦复频域微积分: tf ( t )
sF ( s) ; ⑧初、终值定理: f (0 ) lim ( F ( s ) 为真分式) s
f ( ) lim sF ( s )
s0
⑨卷积定理:
f1 ( t ) f2 ( t ) F1 ( s)F2 ( s)
f1 ( t ) f 2 ( t ) 1 F1 ( s) F2 ( s) 2j
⑥初、终值定理:
f (0) lim F ( z )
z
lim f (k ) lim ( z 1) F ( z )
k z 1
3、常见序列的 Z 变换
(k ) 1
(k )

z , z 1
k (k )
k ( k )
4、反 z z ,
z ( z 1)2
B B B F ( z ) B0 1 i n z z z 1 z i z n
F ( z ) B0
Bz Bz B1 z i n z 1 z i z n
z i
n
( t nT )
f1 ( t ) f2 ( t )
f1 ( t ) f2 ( t )

3、信号的变换:
移位: 反折: 展缩:
f ( t t0 )
f (t )
f ( at )
4、卷积: 卷积积分:
f1 ( t ) f 2 ( t )
f1 ( k ) f 2 ( k )
e t ( t )
1 j

2 ) sin

2
G ( t ) Sa(

2
s g nt ) (
t 1 f (t ) 0
2 j
2 sin 2 t Sa( ) 2 t 2

2 bn T An

t1 t1 T
1 cn An 2
2 2 An an bn
2 T

t1
t1
1 cn T
t1 T
dt
n arctg
bn an
③频谱:
An 与 ( n ) 之间的关系图称为频谱图;
An 与 ( n ) 之间的关系图称为振幅频谱图;
1 s F( ) a a
6
信号与线性系统
2014.05.23
d n f (t ) s n F ( s) s n1 f (0 ) s n 2 f (0 ) f ( n1) (0 ) n dt
⑥时域积分:

t

f ( )d
1 F ( s) s
dF ( s) 1 ; f ( t ) s F ( s)ds ds t
Kj Kp K p 1 K K1 n j p s s1 s sn s s1 s s1 s s p1
1 d p j p Kj F s s s 1 p j s s1 p j ! dz
d n F ( j ) ( jt ) f ( t ) d n
3
信号与线性系统
2014.05.23
⑩频域积分: f (0) ( t )
1 f (t ) jt



F ( )d
⑾卷积定理: f1 ( t ) f2 ( t ) F1 ( j )F2 ( j )
1 A n e jnt 2 n
an 2 T
n
c e
n

jnt

t1 T
t1 t 1 T
f ( t ) cos ntdt f ( t ) sin ntdt f ( t )e jnt dt f ( t )e
jnt
An An e jn
2、性质: ①线性: a1 f1 ( t ) a2 f2 ( t ) a1F1 ( s) a2 F2 ( s) ②时移: f ( t t0 ) ( t t0 ) F ( s )e
st ③频移: f ( t )e 0 F ( s s0 )
st0
④尺度变换: f ( at ) ⑤时域微分:
3、常见信号的拉氏变换
(t ) 1
(t )
1 s
e t ( t )
tn n! s n 1
1 sa
sin t
s2 2 s cost 2 s 2
4、反变换 ①部分分式展开法
7
信号与线性系统
2014.05.23
单极点
F (s)
K Kn K1 i s s1 s si s sn
Kj Kj ( j 1)! t j 1e s1t t
s s1
②.留数法
j
f ( t ) Re si
i 1
n
a. 单阶极点 si 处的留数
Re si [ F ( s)e st ( s si )]s si
b. p 重极点 si 处的留数
8
信号与线性系统
2
①频带有限信号 ②满足关系:
奈奎斯特取样时间间隔:
fs 2 fm
Ts
1 2 fm
1 2 fm
奈奎斯特取样频率: 2 f m
三、 信号的复频域分析(拉普拉斯变换分析法)
1、定义:
F ( s)
f (t )


0
f ( t )e st dt
1 j F ( s)e st ds 2j j
Bi
F ( z) ( z i ) z
k f (k ) B0 (k ) ( B11k Bi ik Bn n ) (k )




( t ) f ( t )dt ( t ) f (0)dt f (0) ( t )dt f (0)
②单位阶跃函数: (t ) 定义: ( t ) 1 0
t0 t0
( t ) t ( )d d ( t ) dt
0
⑤尺度变换:
1 j 1 f ( at ) F ( j ) ; f ( at b ) e a F ( j ) a a a a
b
⑥奇偶特性:若 f ( t ) 为实偶函数,则 F ( j ) 也为实偶函数; 若 f ( t ) 为实奇函数,则 F ( j ) 则为虚奇函数; ⑦时域微分:
s si
Ki F ( s ) ( s si )
f (t ) ( K1es1t Ki esit Knesnt ) (t )
有重极点
F s
F s
N s N s D s s s1 p s s p 1 s sn
k


f (k ) z k
f ( k n) z [ F ( z ) f ( k ) z k ]
n k 0
n 1
f ( k n) z [ F ( z ) f ( k ) z k ]
n k 1
n
双边 z 变换
f ( k n) z n F ( z )

F ( j )e jt d
①线性: a1 f1 ( t ) a2 f2 ( t ) a1F1 ( j ) a2 F2 ( j ) ②对称性: F ( jt ) 2 f ( )
jt ③延时: f ( t t0 ) F ( j )e 0
j t F ( j j 0 ) ④移频: f ( t )e
df ( t ) ( j )F ( j ) ; dt
d n f (t ) ( j ) n F ( j ) n dt
⑧时域积分: f ( )d F (0) ( ) ⑨频域微分: ( jt ) f ( t )
n
t
1 F ( j ) j
dF ( j ) ; d
信号与线性系统
2014.05.23
信号与线性系统总复习
第一篇
一、 信号的时域分析
1、常见信号 ①单位冲激函数: ( t ) 定义:
( t )dt 1 t0 ( t ) 0
信号分析
抽样性:
f ( t ) ( t ) f ( 0) ( t )

n 与 ( n ) 之间的关系图称为相位频谱图;
信号时域特性和频域特性对应关系 时域 周期 离散 时域有限 时域无限
5
频域 离散 周期 频域无限 频域有限
信号与线性系统
2014.05.23
5、帕色伐尔定理

6、取样定理
相关文档
最新文档