山东省临沂市2019年中考数学模拟试卷(一)

合集下载

山东省临沂市2019年中考数学模拟试题(含答案)

山东省临沂市2019年中考数学模拟试题(含答案)

山东省临沂市2019年中考数学模拟试题一、选择题(本大题共14小题,每小题3分,共42分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号涂在答题卡上.) 1.3-的倒数是 A .3B .3-C .13D .13-2.为积极转化奥运会、残奥会志愿者工作成果,完善和健全志愿者服务体系及长效机制,北京市将力争实现每年提供志愿服务时间11000万小时. 11000万小时用科学记数法表示为A .61011.0⨯万小时B .5101.1⨯万小时 C .4101.1⨯万小时 D .31011⨯万小时3. 下列运算正确的是A .42263·2x x x =B .13222-=-x xC .2223232x x x =÷ D . 422532x x x =+ 4. 某市2008年4月的一周中每天最低气温如下:13,11,7,12,13,13,12,则在这一周中,最低气温的众数和中位数分别是 A. 13和11 B. 12和13 C. 11和12 C. 13和12 5.一个几何体是由一些大小相同的小正方块摆成的,其俯视图与主视图如图所示,则组成这个几何体的小正方块最多..有 A .4个 B .5个 C .6个 D .7个6.不等式组240,321x x -<⎧⎨-<⎩的解集为A .1<xB .21><x x 或C .2>xD .21<<x7.估计40值A.在3到4之间B.在4到5之间C.在5到6之间D.在6到7之间俯视图 主视图 (第5题)8.将点A (4,0)绕着原点O 顺时针方向旋转30°角到对应点B ,则点的B 坐标是 A .(32,2) B .(32,-2) C .(4,-2)D .(2,-32)9.如图,△ABE 和△ACD 是△ABC 分别沿着AB ,AC 边翻折180°形成的,若∠BAC =150°,则∠θ的度数是 A .60° B .50° C .40°D .30°10.如图,自行车每节链条的长度为2.5cm ,交叉重叠部分的圆的直径为0.8cm ,如果一辆22型自行车的链条(没有安装前)共有50节链条组成,那么链条的总长度是( )A .75 cmB .85.8 cmC .85 cmD .84.2 cm11.将如图所示的圆心角为90的扇形纸片AOB 围成圆锥形纸帽,使扇形的两条半径OA 与OB 重合(接缝粘贴部分忽略不计),则围成的圆锥形纸帽是12.某火车站的显示屏,每隔4分钟显示一次火车班次的信息,显示时间持续1分钟,某人到达该车站时,显示屏上正好显示火车班次信息的概率是A .16B.15 C.14D .13 13.如图,为了测量河两岸A 、B 两点的距离,在与AB 垂直的方向上取点C ,测得AC =a ,∠ACB =α,那么AB 等于A .αsin ⋅aB .cos a α⋅C .αtan ⋅aD .cot a α⋅11题图 A . B . C . D . 1节链条 2节链条 50节链条A BC a 第4题图(第13题)14.小亮用作图象的方法解二元一次方程组时,在同一直角坐标系内作出了相应的两个一次函数的图象l 1、l 2,如图所示,他解的这个方程组是A .22112y x y x =-+⎧⎪⎨=-⎪⎩ B . 22y x y x =-+⎧⎨=-⎩C .38132y x y x =-⎧⎪⎨=-⎪⎩ D . 22112y x y x =-+⎧⎪⎨=--⎪⎩ 二、填空题(本大题共5小题,每小题3分,共15分.不需写出解答过程,请把最后结果填在题中横线上.) 15.分解因式:24(3)x --= .16.如果方程042=+-c x x 的—个根是32+.那么此方程的另一个根是 .17.刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a ,b)进入其中时,会得到一个新的实数:a 2+b -1,例如把(3,-2)放入其中,就会得到32+(-2)-1=6.现将实数对(-1,3)放入其中,得到实数m ,再将实数对(m ,1)放入其中后,得到实数是 .18. 如图,直线a ∥b ,直线AC 分别交a 、b 于点B 、C ,直线AD 交a 于点D 。

2019年山东省临沂市兰山区中考数学一模试卷(解析版)

2019年山东省临沂市兰山区中考数学一模试卷(解析版)

2019年山东省临沂市兰山区中考数学一模试卷一、选择题(本题共14小题,每小题3分,共42分)在每小题所给的四个选项中,只有一项是符合题目要求的.1.的值是()A.9B.3C.﹣3D.±32.斑叶兰被列为国家二级保护植物,它的一粒种子重约0.0000005克.将0.0000005用科学记数法表示为()A.5×107B.5×10﹣7C.0.5×10﹣6D.5×10﹣63.下列运算正确的是()A.a8÷a4=a2B.(a2)2=a4C.a2•a3=a6D.a2+a2=2a44.不等式组的解集在数轴上表示为()A.B.C.D.5.如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于点E、F,再分别以E、F为圆心,大于EF的同样长为半径作圆弧,两弧交于点P,作射线AP,交CD于点M,若∠ACD=110°,则∠CMA的度数为()A.30°B.35°C.70°D.45°6.一个几何体的三视图如图所示,则该几何体的表面积是()A.24+2πB.16+4πC.16+8πD.16+12π7.有2名男生和2名女生,王老师要随机地、两两一对地为他们排座位,一男一女排在一起的概率是()A.B.C.D.8.某校举行汉字听写大赛,参赛学生的成绩如下表:成绩(分)8990929495人数46857对于这组数据,下列说法错误的是()A.平均数是92B.中位数是92C.众数是92D.极差是69.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.B.C.D.10.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD11.如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是()A.B.C.D.12.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A.B.2C.2D.813.如图,在直角坐标系中,有菱形OABC,A点的坐标是(10,0),双曲线经过点C,且OB•AC=160,则k的值为()A.40B.48C.64D.8014.如图,矩形ABCD中,AB=8cm,BC=6cm,点P从点A出发,以1cm/s的速度沿A→D→C方向匀速运动,同时点Q从点A出发,以2cm/s的速度沿A→B→C方向匀速运动,当一个点到达点C时,另一个点也随之停止.设运动时间为t(s),△APQ的面积为S(cm2),下列能大致反映S与t之间函数关系的图象是()A.B.C.D.二、填空题(本大题共5小题,每小题3分,共15分)把答案填在题中横线上.15.分解因式:4x﹣x3=.16.化简:(1+)÷=.17.如图,平行四边形ABCD中,BE⊥AD于E,BF⊥CD于F,BE=2,BF=3,平行四边形ABCD 的周长为20,则平行四边形ABCD的面积为.18.如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,测得AB =2米,BP=3米,PD=12米,那么该古城墙的高度CD是米.19.根据下列材料,解答问题.等比数列求和:概念:对于一列数a1,a2,a3,a4,…a n(n为正整数),若从第二个数开始,每一个数与前一个数的比为一定值,即(q为常数),那么这一列数a1,a2,a3,a4,…a n…成等比数列,这一常数q叫做该数列的公比.例:求等比数列1,3,32,33,…,3100的和,解:令S=1+3+32+33+…+3100则3S=3+32+33+…+3100+3101因此,3S﹣S=3101﹣1,∴,即1+3+32+33 (3100)仿照例题,等比数列1,5,52,53,…,52019的和为.三、解答题(本大题共7小题,共63分)20.(7分)计算:|﹣1|﹣﹣(1﹣)0+4sin30°.21.(7分)为了解某市初中学生课外阅读情况,调查小组对该市这学期初中学生阅读课外书籍的册数进行了抽样调查,并根据调查结果绘制成如下统计图.根据统计图提供的信息,解答下列问题:(1)本次抽样调查的样本容量是;(2)补全条形统计图;(3)该市共有10万名初中生,估计该市初中学生这学期课外阅读超过2册的人数.22.(7分)如图,两座建筑物的水平距离BC为600m.从C点测得A点的仰角α为53°,从A 点测得D点的俯角β为37°,求两座建筑物的高度.(参考数据sin37°≈)23.(9分)如图,CD是⊙O的切线,点C在直径AB的延长线上.(1)求证:∠CAD=∠BDC;(2)若BD=AD,AC=3,求CD的长.24.(9分)学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示.(1)根据图象信息,当t=分钟时甲乙两人相遇,甲的速度为米/分钟;(2)求出线段AB所表示的函数表达式.25.(11分)【问题解决】一节数学课上,老师提出了这样一个问题:如图1,点P是正方形ABCD内一点,PA=1,PB=2,PC=3.你能求出∠APB的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,求出∠APB的度数;思路二:将△APB绕点B顺时针旋转90°,得到△CP'B,连接PP′,求出∠APB的度数.请参考小明的思路,任选一种写出完整的解答过程.【类比探究】如图2,若点P是正方形ABCD外一点,PA=3,PB=1,PC=,求∠APB的度数.26.(13分)如图,已知二次函数y=ax2+的图象与y轴交于点A(0,4),与x轴交于点B.C,点C坐标为(8,0),连接AB、AC.(1)求二次函数的解析式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请直接写出此时点N的坐标.2019年山东省临沂市兰山区中考数学一模试卷参考答案与试题解析一、选择题(本题共14小题,每小题3分,共42分)在每小题所给的四个选项中,只有一项是符合题目要求的.1.【分析】直接利用二次根式的性质化简求出答案.【解答】解:=3.故选:B.【点评】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.2.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.0000005用科学记数法表示为5×10﹣7.故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【分析】直接利用同底数幂的乘除运算法则以及幂的乘方运算法则和合并同类项法则分别计算得出答案.【解答】解:A、a8÷a6=a4,故此选项错误;B、(a2)2=a4,故原题计算正确;C、a2•a3=a5,故此选项错误;D、a2+a2=2a2,故此选项错误;故选:B.【点评】此题主要考查了同底数幂的乘除运算以及幂的乘方运算和合并同类项,正确掌握相关运算法则是解题关键.4.【分析】根据一元一次不等式组即可求出答案.【解答】解:由①得:x>1由②得:x≥2∴不等式组的解集为:x≥2故选:A.【点评】本题考查一元一次不等式组的解法,解题的关键是熟练运用一元一次不等式组的解法,本题属于基础题型.5.【分析】直接利用平行线的性质结合角平分线的作法得出∠CAM=∠BAM=35°,即可得出答案.【解答】解:∵AB∥CD,∠ACD=110°,∴∠CAB=70°,∵以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于点E、F,再分别以E、F为圆心,大于EF的同样长为半径作圆弧,两弧交于点P,作射线AP,交CD于点M,∴AP平分∠CAB,∴∠CAM=∠BAM=35°,∵AB∥CD,∴∠CMA=∠MAB=35°.故选:B.【点评】此题主要考查了基本作图以及平行线的性质,正确得出∠CAM=∠BAM是解题关键.6.【分析】根据三视图知该几何体是一个半径为2、高为4的圆柱体的纵向一半,据此求解可得.【解答】解:该几何体的表面积为2וπ•22+4×4+×2π•2×4=12π+16,故选:D.【点评】本题主要考查由三视图判断几何体,解题的关键是根据三视图得出几何体的形状及圆柱体的有关计算.7.【分析】列举出所有情况,看一男一女排在一起的情况占总情况的多少即可.【解答】解:排列为男1男2,男1女1,男1女2,男2女1,男2女2,女1女2,一共有6种可能,一男一女排在一起的有4种,所以概率是.故选:D.【点评】本题考查了概率公式,情况较少可用列举法求概率,采用列举法解题的关键是找到所有存在的情况.用到的知识点为:概率=所求情况数与总情况数之比.8.【分析】根据平均数、中位数、众数及极差的定义逐一计算即可判断.【解答】解:A、平均数为=,符合题意;B、中位数是=92,不符合题意;C、众数为92,不符合题意;D、极差为95﹣89=6,不符合题意;故选:A.【点评】本题考查了极差、众数、平均数、中位数的知识,解答本题的关键是掌握各知识点的概念.9.【分析】设实际工作时每天绿化的面积为x万平方米,根据工作时间=工作总量÷工作效率结合提前30 天完成任务,即可得出关于x的分式方程.【解答】解:设实际工作时每天绿化的面积为x万平方米,则原来每天绿化的面积为万平方米,依题意得:﹣=30,即.故选:C.【点评】考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.10.【分析】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.【解答】解:∵AB=AC,∠A为公共角,A、如添加∠B=∠C,利用ASA即可证明△ABE≌△ACD;B、如添AD=AE,利用SAS即可证明△ABE≌△ACD;C、如添BD=CE,等量关系可得AD=AE,利用SAS即可证明△ABE≌△ACD;D、如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件.故选:D.【点评】此题主要考查学生对全等三角形判定定理的理解和掌握,此类添加条件题,要求学生应熟练掌握全等三角形的判定定理.11.【分析】证明△BEF∽△DAF,得出EF=AF,EF=AE,由矩形的对称性得:AE=DE,得出EF=DE,设EF=x,则DE=3x,由勾股定理求出DF==2x,再由三角函数定义即可得出答案.【解答】解:∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∵点E是边BC的中点,∴BE=BC=AD,∴△BEF∽△DAF,∴=,∴EF=AF,∴EF=AE,∵点E是边BC的中点,∴由矩形的对称性得:AE=DE,∴EF=DE,设EF=x,则DE=3x,∴DF==2x,∴tan∠BDE===;故选:A.【点评】本题考查了相似三角形的判定和性质,矩形的性质,三角函数等知识;熟练掌握矩形的性质,证明三角形相似是解决问题的关键.12.【分析】作OH⊥CD于H,连结OC,如图,根据垂径定理由OH⊥CD得到HC=HD,再利用AP=2,BP=6可计算出半径OA=4,则OP=OA﹣AP=2,接着在Rt△OPH中根据含30度的直角三角形的性质计算出OH=OP=1,然后在Rt△OHC中利用勾股定理计算出CH=,所以CD=2CH=2.【解答】解:作OH⊥CD于H,连结OC,如图,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=60°,∴OH=OP=1,在Rt△OHC中,∵OC=4,OH=1,∴CH==,∴CD=2CH=2.故选:C.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理以及含30度的直角三角形的性质.13.【分析】过C作CD垂直于x轴,交x轴于点D,由菱形的面积等于对角线乘积的一半,根据已知OB与AC的乘积求出菱形OABC的面积,而菱形的面积可以由OA乘以CD来求,根据OA 的长求出CD的长,在直角三角形OCD中,利用勾股定理求出OD的长,确定出C的坐标,代入反比例解析式中即可求出k的值.【解答】解:∵四边形OABC是菱形,OB与AC为两条对角线,且OB•AC=160,∴菱形OABC的面积为80,即OA•CD=80,∵OA=OC=10,∴CD=8,在Rt△OCD中,OC=10,CD=8,根据勾股定理得:OD=6,即C(6,8),则k的值为48.故选:B.【点评】此题属于反比例函数综合题,涉及的知识有:菱形的性质,勾股定理,以及坐标与图形性质,求出C的坐标是解本题的关键.14.【分析】先根据动点P和Q的运动时间和速度表示:AP=t,AQ=2t,①当0≤t≤4时,Q在边AB上,P在边AD上,如图1,计算S与t的关系式,发现是开口向上的抛物线,可知:选项C、D不正确;②当4<t≤6时,Q在边BC上,P在边AD上,如图2,计算S与t的关系式,发现是一次函数,是一条直线,可知:选项B不正确,从而得结论.【解答】解:由题意得:AP=t,AQ=2t,①当0≤t≤4时,Q在边AB上,P在边AD上,如图1,S=AP•AQ==t2,△APQ故选项C、D不正确;②当4<t≤6时,Q在边BC上,P在边AD上,如图2,S=AP•AB==4t,△APQ故选项B不正确;故选:A.【点评】本题考查了动点问题的函数图象,根据动点P和Q的位置的不同确定三角形面积的不同,解决本题的关键是利用分类讨论的思想求出S与t的函数关系式.二、填空题(本大题共5小题,每小题3分,共15分)把答案填在题中横线上.15.【分析】原式提取x,再利用平方差公式分解即可.【解答】解:原式=x(4﹣x2)=x(2+x)(2﹣x),故答案为:x(2+x)(2﹣x)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16.【分析】根据分式的加法和除法可以解答本题.【解答】解:(1+)÷===,故答案为:.【点评】本题考查分式的混合运算,解答本题的关键是明确分式的混合运算的计算方法.17.【分析】根据平行四边形的周长求出AD+CD,再利用面积列式求出AD、CD的关系,然后求出AD的长,再利用平行四边形的面积公式列式计算即可得解.【解答】解:∵▱ABCD的周长为20,∴2(AD+CD)=20,∴AD+CD=10①,∵S▱ABCD=AD•BE=CD•BF,∴2AD=3CD②,联立①、②解得AD=6,∴▱ABCD的面积=AD•BE=6×2=12.故答案为:12.【点评】本题考查了平行四边形的性质,根据面积的两种表示求出2AD=3CD是解题的关键,也是本题的难点.18.【分析】首先证明△ABP∽△CDP,可得=,再代入相应数据可得答案.【解答】解:由题意可得:∠APE=∠CPE,∴∠APB=∠CPD,∵AB⊥BD,CD⊥BD,∴∠ABP=∠CDP=90°,∴△ABP∽△CDP,∴=,∵AB=2米,BP=3米,PD=12米,∴=,CD=8米,故答案为:8.【点评】此题主要考查了相似三角形的应用,关键是掌握相似三角形对应边成比例.19.【分析】仿照例子,找到要求的1+5+52+53+…+52019式子中,公比q=5,即在式子两侧乘以5,再做差即可求解.【解答】解:令S=1+5+52+53+ (52019)则5S=5+52+53+…+52019+52020,因此5S﹣S=52020﹣1,∴S=,即1+5+52+53+…+52019=.故答案为.【点评】考查知识点:阅读理解能力;根据已知的例子,通过观察数的特点,找到规律.观察规律,审题要清楚,计算要准确是解决本类问题的关键.三、解答题(本大题共7小题,共63分)20.【分析】直接利用特殊角的三角函数值以及绝对值的性质、零指数幂的性质分别化简得出答案.【解答】解:原式=1﹣2﹣1+4×=1﹣2﹣1+2=0.【点评】此题主要考查了实数运算,正确化简各数是解题关键.21.【分析】(1)根据阅读2册的人数和所占的百分比可以求得本次抽样调查的样本容量;(2)根据(1)中的结果和条形统计图、扇形统计图中的信息可以求得阅读1册和4册的人数,从而可以将条形统计图补充完整;(3)根据统计图中的数据可以求得该市初中学生这学期课外阅读超过2册的人数.【解答】解:(1)40÷40%=100,即本次抽样调查的样本容量是100,故答案为:100;(2)阅读1册的学生有:100×30%=30(人),阅读4册的学生有:100﹣30﹣40﹣20=10(人),补全的条形统计图如右图所示;(3)10×(1﹣30%﹣40%)=3(万人),即该市初中学生这学期课外阅读超过2册的有3万人.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.22.【分析】过点D作DE⊥AB于E,则DE=BC=60m,在Rt△ABC中,求出AB,在Rt△ADE 中求出AE即可解决问题.【解答】解:过点D作DE⊥AB于E,则DE=BC=60m,在Rt△ABC中,tan53°=,∴=,∴AB=800(m),在Rt△ADE中,tan37°=,∴=,∴AE=450(m),∴BE=CD=AB﹣AE=350(m),答:两座建筑物的高度分别为800m和350m.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.23.【分析】(1)连接OD,由OB=OD可得出∠OBD=∠ODB,根据切线的性质及直径所对的圆周角等于180°,利用等角的余角相等,即可证出∠CAD=∠BDC;(2)由∠C=∠C、∠CAD=∠CDB可得出△CDB∽△CAD,根据相似三角形的性质结合BD=AD、AC=3,即可求出CD的长.【解答】(1)证明:连接OD,如图所示.∵OB=OD,∴∠OBD=∠ODB.∵CD是⊙O的切线,OD是⊙O的半径,∴∠ODB+∠BDC=90°.∵AB是⊙O的直径,∴∠ADB=90°,∴∠OBD+∠CAD=90°,∴∠CAD=∠BDC.(2)解:∵∠C=∠C,∠CAD=∠CDB,∴△CDB∽△CAD,∴=.∵BD=AD,∴=,∴=,又∵AC=3,∴CD=2.【点评】本题考查了相似三角形的判定与性质、圆周角定义以及切线的性质,解题的关键是:(1)利用等角的余角相等证出∠CAD=∠BDC;(2)利用相似三角形的性质找出.24.【分析】(1)根据图象信息,当t=24分钟时甲乙两人相遇,甲60分钟行驶2400米,根据速度=路程÷时间可得甲的速度;(2)由t=24分钟时甲乙两人相遇,可得甲、乙两人的速度和为2400÷24=100米/分钟,减去甲的速度得出乙的速度,再求出乙从图书馆回学校的时间即A点的横坐标,用A点的横坐标乘以甲的速度得出A点的纵坐标,再将A、B两点的坐标代入,利用待定系数法即可求出线段AB所表示的函数表达式.【解答】解:(1)根据图象信息,当t=24分钟时甲乙两人相遇,甲的速度为2400÷60=40米/分钟.故答案为24,40;(2)∵甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,t=24分钟时甲乙两人相遇,∴甲、乙两人的速度和为2400÷24=100米/分钟,∴乙的速度为100﹣40=60米/分钟.乙从图书馆回学校的时间为2400÷60=40分钟,40×40=1600,∴A点的坐标为(40,1600).设线段AB所表示的函数表达式为y=kt+b,∵A(40,1600),B(60,2400),∴,解得.∴线段AB所表示的函数表达式为y=40t(40≤t≤60).【点评】本题考查了一次函数的应用,路程、速度、时间的关系,用待定系数法确定函数的解析式,属于中考常考题型.读懂题目信息,从图象中获取有关信息是解题的关键.25.【分析】(1)思路一、先利用旋转求出∠PBP'=90°,BP'=BP=2,AP'=CP=3,利用勾股定理求出PP',进而判断出△APP'是直角三角形,得出∠APP'=90°,即可得出结论;思路二、同思路一的方法即可得出结论;(2)同(1)的思路一的方法即可得出结论.【解答】解:(1)思路一、如图1,将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,∴△ABP'≌△CBP,∴∠PBP'=90°,BP'=BP=2,AP'=CP=3,在Rt△PBP'中,BP=BP'=2,∴∠BPP'=45°,根据勾股定理得,PP'=BP=2,∵AP=1,∴AP2+PP'2=1+8=9,∵AP'2=32=9,∴AP2+PP'2=AP'2,∴△APP'是直角三角形,且∠APP'=90°,∴∠APB=∠APP'+∠BPP'=90°+45°=135°;(2)如图2,将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,∴△ABP'≌△CBP,∴∠PBP'=90°,BP'=BP=1,AP'=CP=,在Rt△PBP'中,BP=BP'=1,∴∠BPP'=45°,根据勾股定理得,PP'=BP=,∵AP=3,∴AP2+PP'2=9+2=11,∵AP'2=()2=11,∴AP2+PP'2=AP'2,∴△APP'是直角三角形,且∠APP'=90°,∴∠APB=∠APP'﹣∠BPP'=90°﹣45°=45°.【点评】此题是四边形综合题,主要考查了正方形的性质,旋转的性质,直角三角形的性质和判定,勾股定理,正确作出辅助线是解本题的关键.26.【分析】(1)根据点A,C的坐标,利用待定系数法可求出二次函数的解析式;(2)利用二次函数图象上点的坐标特征可求出点B的坐标,结合点A,C的坐标可求出BC,AB,AC的长,由BC2=AB2+AC2可得出△ABC是直角三角形;(3)分AN=AC,CN=CA,NA=NC三种情况考虑:①当AN=AC时,由等腰三角形的性质可得出ON的长度,进而可得出点N1的坐标;②当CN=CA时,由等腰三角形的性质可得出CN 的长,再结合点C的坐标可得出点N2,N3的坐标;③当NA=NC时,设ON=m,则NC=8﹣m,利用勾股定理可得出关于m的方程,解之即可得出点N4的坐标.综上,此题得解.【解答】解:(1)将A(0,4),C(8,0)代入y=ax2+x+c,得:,解得:,∴二次函数的解析式为y=﹣x2+x+4.(2)△ABC是直角三角形,理由如下:当y=0时,﹣x2+x+4=0,解得:x1=﹣2,x2=8,∴点B的坐标为(﹣2,0).∵点A的坐标为(0,4),点C的坐标为(8,0),∴BC=10,AB==2,AC==4,∴BC2=100=AB2+AC2,∴△ABC是直角三角形.(3)分三种情况考虑(如图):①当AN=AC时,ON=OC=8,∴点N1的坐标为(﹣8,0);②当CN=CA时,CN=4,∴点N2的坐标为(8﹣4,0),点N3的坐标为(8+4,0);③当NA=NC时,设ON=m,则NC=8﹣m,∴(8﹣m)2=42+m2,∴m=3,∴点N4的坐标为(3,0).综上所述:点N的坐标为(﹣8,0),(8﹣4,0),(3,0)或(8+4,0).【点评】本题考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、勾股定理、勾股定理的逆定理以及等腰三角形的性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用BC2=AB2+AC2,证出△ABC是直角三角形;(3)分AN=AC,CN=CA,NA=NC三种情况,利用等腰三角形的性质求出点N的坐标.。

山东省临沂市2019-2020学年中考数学一模试卷含解析

山东省临沂市2019-2020学年中考数学一模试卷含解析

山东省临沂市2019-2020学年中考数学一模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知x ﹣2y=3,那么代数式3﹣2x+4y 的值是( ) A .﹣3B .0C .6D .92.计算-3-1的结果是( ) A .2 B .-2 C .4 D .-43.如图是婴儿车的平面示意图,其中AB ∥CD,∠1=120°,∠3=40°,那么∠2的度数为( )A .80°B .90°C .100°D .102°4.如图,在矩形AOBC 中,O 为坐标原点,OA 、OB 分别在x 轴、y 轴上,点B 的坐标为(0,33),∠ABO =30°,将△ABC 沿AB 所在直线对折后,点C 落在点D 处,则点D 的坐标为( )A .(32,332) B .(2,332) C .(332,32) D .(32,3﹣332) 5.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与111A B C 相似的是( )A .B .C .D .6.下列计算正确的是() A .2x 2-3x 2=x 2B .x +x =x 2C .-(x -1)=-x +1D .3+x =3x7.若圆锥的轴截面为等边三角形,则称此圆锥为正圆锥,则正圆锥侧面展开图的圆心角是( ) A .90° B .120° C .150° D .180°8.如图1,一个扇形纸片的圆心角为90°,半径为1.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )A .4233π- B .8433π- C .8233π- D .843π- 9.已知a ﹣b=1,则a 3﹣a 2b+b 2﹣2ab 的值为( ) A .﹣2B .﹣1C .1D .210.已知抛物线c :y=x 2+2x ﹣3,将抛物线c 平移得到抛物线c′,如果两条抛物线,关于直线x=1对称,那么下列说法正确的是( ) A .将抛物线c 沿x 轴向右平移52个单位得到抛物线c′ B .将抛物线c 沿x 轴向右平移4个单位得到抛物线c′C .将抛物线c 沿x 轴向右平移72个单位得到抛物线c′ D .将抛物线c 沿x 轴向右平移6个单位得到抛物线c′11.从3、1、-2这三个数中任取两个不同的数作为P 点的坐标,则P 点刚好落在第四象限的概率是( ) A .14B .13C .23D .1212.如图,O e 是ABC V 的外接圆,已知ABO 50o ∠=,则ACB ∠的大小为( )A .40oB .30oC .45oD .50o二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.比较大小:554(填“<“,“=“,“>“)14.如图,6的正方形ABCD 绕点A 逆时针方向旋转30°后得到正方形A′B′C′D′,则图中阴影部分面积为_______平方单位.15.已知a、b满足a2+b2﹣8a﹣4b+20=0,则a2﹣b2=_____.16.图中是两个全等的正五边形,则∠α=______.17.点A(-2,1)在第_______象限.18.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是___.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在围棋盒中有x 颗黑色棋子和y 颗白色棋子,从盒中随机地取出一个棋子,如果它是黑色棋子的概率是38;如果往盒中再放进10 颗黑色棋子,则取得黑色棋子的概率变为12.求x 和y 的值.20.(6分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y (件)与销售单价x(元)之间存在一次函数关系,如图所示.求y与x之间的函数关系式;如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.21.(6分)问题提出(1)如图1,正方形ABCD的对角线交于点O,△CDE是边长为6的等边三角形,则O、E之间的距离为;问题探究(2)如图2,在边长为6的正方形ABCD中,以CD为直径作半圆O,点P为弧CD上一动点,求A、P 之间的最大距离;问题解决(3)窑洞是我省陕北农村的主要建筑,窑洞宾馆更是一道靓丽的风景线,是因为窑洞除了它的坚固性及特有的外在美之外,还具有冬暖夏凉的天然优点家住延安农村的一对即将参加中考的双胞胎小宝和小贝两兄弟,发现自家的窑洞(如图3所示)的门窗是由矩形ABCD及弓形AMD组成,AB=2m,BC=3.2m,弓高MN=1.2m(N为AD的中点,MN⊥AD),小宝说,门角B到门窗弓形弧AD的最大距离是B、M之间的距离.小贝说这不是最大的距离,你认为谁的说法正确?请通过计算求出门角B到门窗弓形弧AD的最大距离.22.(8分)某校学生会准备调查六年级学生参加“武术类”、“书画类”、“棋牌类”、“器乐类”四类校本课程的人数.(1)确定调查方式时,甲同学说:“我到六年级(1)班去调查全体同学”;乙同学说:“放学时我到校门口随机调查部分同学”;丙同学说:“我到六年级每个班随机调查一定数量的同学”.请指出哪位同学的调查方式最合理.类别频数(人数)频率武术类0.25书画类20 0.20棋牌类15 b器乐类合计 a 1.00(2)他们采用了最为合理的调查方法收集数据,并绘制了如图所示的统计表和扇形统计图.请你根据以上图表提供的信息解答下列问题:①a=_____,b=_____;②在扇形统计图中,器乐类所对应扇形的圆心角的度数是_____;③若该校六年级有学生560人,请你估计大约有多少学生参加武术类校本课程.23.(8分)化简:(x-1-2x2x1-+)÷2x xx1-+.24.(10分)如图,在矩形ABCD中,对角线AC,BD相交于点O.(1)画出△AOB平移后的三角形,其平移后的方向为射线AD的方向,平移的距离为AD的长.(2)观察平移后的图形,除了矩形ABCD外,还有一种特殊的平行四边形?请证明你的结论.25.(10分)有这样一个问题:探究函数y=316x﹣2x的图象与性质.小东根据学习函数的经验,对函数y=316x﹣2x的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1)函数y=316x﹣2x的自变量x的取值范围是_______;(2)如表是y与x的几组对应值x …﹣4 ﹣3.5 ﹣3 ﹣2 ﹣1 0 1 2 3 3.5 4 …y …﹣83﹣74832831160 ﹣116﹣83m74883…则m的值为_______;(3)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)观察图象,写出该函数的两条性质________.26.(12分)由于持续高温和连日无雨,某水库的蓄水量随时间的增加而减少,已知原有蓄水量y1(万m³)与干旱持续时间x(天)的关系如图中线段l1所示,针对这种干旱情况,从第20天开始向水库注水,注水量y2(万m³)与时间(天)的关系如图中线段l2所示(不考虑其他因素).(1)求原有蓄水量y1(万m³)与时间(天)的函数关系式,并求当x=20时的水库总蓄水量.(2)求当0≤x≤60时,水库的总蓄水量y万(万m³)与时间x(天)的函数关系式(注明x的范围),若总蓄水量不多于900万m³为严重干旱,直接写出发生严重干旱时x的范围.27.(12分)如图1,在直角梯形ABCD中,AB⊥BC,AD∥BC,点P为DC上一点,且AP=AB,过点C作CE⊥BP交直线BP于E.(1) 若,求证:;(2) 若AB=BC.①如图2,当点P与E重合时,求的值;②如图3,设∠DAP的平分线AF交直线BP于F,当CE=1,时,直接写出线段AF的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【详解】解:∵x﹣2y=3,∴3﹣2x+4y=3﹣2(x﹣2y)=3﹣2×3=﹣3;故选A.2.D【解析】试题解析:-3-1=-3+(-1)=-(3+1)=-1.故选D.3.A【解析】分析:根据平行线性质求出∠A,根据三角形内角和定理得出∠2=180°-∠1−∠A,代入求出即可.详解:∵AB∥CD.∴∠A=∠3=40°,∵∠1=60°,∴∠2=180°-∠1−∠A=80°,故选:A.点睛:本题考查了平行线的性质:两直线平行,内错角相等.三角形内角和定理:三角形内角和为180°. 4.A【解析】解:∵四边形AOBC是矩形,∠ABO=10°,点B的坐标为(0,33),∴AC=OB=33,∠CAB=10°,∴BC=AC•tan10°=33×33=1.∵将△ABC沿AB所在直线对折后,点C落在点D处,∴∠BAD=10°,AD=33.过点D作DM⊥x轴于点M,∵∠CAB=∠BAD=10°,∴∠DAM=10°,∴DM=12AD=332,∴AM=33×cos10°=92,∴MO=92﹣1=32,∴点D的坐标为(32,33).故选A.5.B【解析】 【分析】根据相似三角形的判定方法一一判断即可. 【详解】解:因为111A B C 中有一个角是135°,选项中,有135°角的三角形只有B ,且满足两边成比例夹角相等, 故选:B . 【点睛】本题考查相似三角形的性质,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型. 6.C 【解析】 【分析】根据合并同类项法则和去括号法则逐一判断即可得. 【详解】解:A .2x 2-3x 2=-x 2,故此选项错误; B .x+x=2x ,故此选项错误; C .-(x-1)=-x+1,故此选项正确; D .3与x 不能合并,此选项错误; 故选C . 【点睛】本题考查了整式的加减,熟练掌握运算法则是解题的关键. 7.D 【解析】试题分析:设正圆锥的底面半径是r ,则母线长是2r ,底面周长是2πr ,设正圆锥的侧面展开图的圆心角是n°,则=2πr ,解得:n=180°.故选D .考点:圆锥的计算. 8.C 【解析】 【分析】连接OD ,根据勾股定理求出CD ,根据直角三角形的性质求出∠AOD ,根据扇形面积公式、三角形面积公式计算,得到答案. 【详解】 解:连接OD ,在Rt△OCD中,OC=12OD=2,∴∠ODC=30°,CD=2223OD OC+=∴∠COD=60°,∴阴影部分的面积=260418223=23 36023π⨯-⨯⨯π-,故选:C.【点睛】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.9.C【解析】【分析】先将前两项提公因式,然后把a﹣b=1代入,化简后再与后两项结合进行分解因式,最后再代入计算.【详解】a3﹣a2b+b2﹣2ab=a2(a﹣b)+b2﹣2ab=a2+b2﹣2ab=(a﹣b)2=1.故选C.【点睛】本题考查了因式分解的应用,四项不能整体分解,关键是利用所给式子的值,将前两项先分解化简后,再与后两项结合.10.B【解析】∵抛物线C:y=x2+2x﹣3=(x+1)2﹣4,∴抛物线对称轴为x=﹣1.∴抛物线与y轴的交点为A(0,﹣3).则与A点以对称轴对称的点是B(2,﹣3).若将抛物线C平移到C′,并且C,C′关于直线x=1对称,就是要将B点平移后以对称轴x=1与A点对称.则B点平移后坐标应为(4,﹣3),因此将抛物线C向右平移4个单位.故选B.11.B【解析】解:画树状图得:∵共有6种等可能的结果,其中(1,-2),(3,-2)点落在第四项象限,∴P点刚好落在第四象限的概率=26=13.故选B.点睛:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件,熟记各象限内点的符号特点是解题的关键.12.A【解析】解:△AOB中,OA=OB,∠ABO=30°;∴∠AOB=180°-2∠ABO=120°;∴∠ACB=∠AOB=60°;故选A.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.<【解析】【分析】先比较它们的平方,进而可比较4554.【详解】(52=80,(542=100,∵80<100,∴54故答案为:<.【点睛】本题考查了实数的大小比较,带二次根号的实数,在比较它们的大小时,通常先比较它们的平方的大小.14.6﹣3【解析】【分析】由旋转角∠BAB′=30°,可知∠DAB′=90°﹣30°=60°;设B′C′和CD的交点是O,连接OA,构造全等三角形,用S阴影部分=S正方形﹣S四边形AB′OD,计算面积即可.【详解】解:设B′C′和CD的交点是O,连接OA,∵AD=AB′,AO=AO,∠D=∠B′=90°,∴Rt△ADO≌Rt△AB′O,∴∠OAD=∠OAB′=30°,∴OD=OB′=2,×6=23,S四边形AB′OD=2S△AOD=2×122∴S阴影部分=S正方形﹣S四边形AB′OD=6﹣23.【点睛】此题的重点是能够计算出四边形的面积.注意发现全等三角形.15.1【解析】【分析】利用配方法把原式化为平方和的形式,根据偶次方的非负性求出a、b,计算即可.【详解】a2+b2﹣8a﹣4b+20=0,a2﹣8a+16+b2﹣4b+4=0,(a﹣4)2+(b﹣2)2=0a﹣4=0,b﹣2=0,a=4,b=2,则a2﹣b2=16﹣4=1,故答案为1.【点睛】本题考查了配方法的应用、非负数的性质,掌握完全平方公式、偶次方的非负性是解题的关键.16.108°【解析】【分析】先求出正五边形各个内角的度数,再求出∠BCD和∠BDC的度数,求出∠CBD,即可求出答案.如图:∵图中是两个全等的正五边形,∴BC=BD,∴∠BCD=∠BDC,∵图中是两个全等的正五边形,∴正五边形每个内角的度数是0 (52)1805-⨯=108°,∴∠BCD=∠BDC=180°-108°=72°,∴∠CBD=180°-72°-72°=36°,∴∠α=360°-36°-108°-108°=108°,故答案为108°.【点睛】本题考查了正多边形和多边形的内角和外角,能求出各个角的度数是解此题的关键.17.二【解析】【分析】根据点在第二象限的坐标特点解答即可.【详解】∵点A的横坐标-2<0,纵坐标1>0,∴点A在第二象限内.故答案为:二.【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).18.50°【解析】【分析】先根据三角形外角的性质求出∠BEF的度数,再根据平行线的性质得到∠2的度数.如图所示:∵∠BEF 是△AEF 的外角,∠1=20°,∠F=30°,∴∠BEF=∠1+∠F=50°,∵AB ∥CD ,∴∠2=∠BEF=50°,故答案是:50°.【点睛】考查了平行线的性质,解题的关键是掌握、运用三角形外角的性质(三角形的一个外角等于与它不相邻的两个内角的和).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.x=15,y=1【解析】【分析】根据概率的求法:在围棋盒中有x 颗黑色棋子和y 颗白色棋子,共x+y 颗棋子,如果它是黑色棋子的概率是38,有38x x y +=成立.化简可得y 与x 的函数关系式; (2)若往盒中再放进10颗黑色棋子,在盒中有10+x+y 颗棋子,则取得黑色棋子的概率变为12,结合(1)的条件,可得38101102x x y x x y ⎧⎪+⎪⎨+⎪⎪++⎩==,解可得x=15,y=1. 【详解】依题意得,38101102x x y x x y ⎧=⎪+⎪⎨+⎪=⎪++⎩,化简得,53010x y x y -=⎧⎨-=-⎩, 解得,1525x y =⎧⎨=⎩., 检验当x=15,y=1时,0x y +≠,100x y ++≠,∴x=15,y=1是原方程的解,经检验,符合题意.答:x=15,y=1.【点睛】此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 20.(1)10700y x =-+;(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【解析】【分析】(1)可用待定系数法来确定y 与x 之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w 与x 的函数关系式,进而利用所获利润等于3600元时,对应x 的值,根据增减性,求出x 的取值范围.【详解】(1)由题意得:4030055150k b k b +=⎧⎨+=⎩ 10700k b =-⎧⇒⎨=⎩. 故y 与x 之间的函数关系式为:y=-10x+700,(2)由题意,得-10x+700≥240,解得x≤46,设利润为w=(x-30)•y=(x-30)(-10x+700),w=-10x 2+1000x-21000=-10(x-50)2+4000,∵-10<0,∴x <50时,w 随x 的增大而增大,∴x=46时,w 大=-10(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w-150=-10x 2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=±5,x 1=55,x 2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.【点睛】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.21.(1)333+;(2)353+;(2)小贝的说法正确,理由见解析,110553+. 【解析】【分析】(1)连接AC ,BD ,由OE 垂直平分DC 可得DH 长,易知OH 、HE 长,相加即可;(2)补全⊙O ,连接AO 并延长交⊙O 右半侧于点P ,则此时A 、P 之间的距离最大,在Rt △AOD 中,由勾股定理可得AO 长,易求AP 长;(1)小贝的说法正确,补全弓形弧AD 所在的⊙O ,连接ON ,OA ,OD ,过点O 作OE ⊥AB 于点E ,连接BO 并延长交⊙O 上端于点P ,则此时B 、P 之间的距离即为门角B 到门窗弓形弧AD 的最大距离,在Rt △ANO 中,设AO=r ,由勾股定理可求出r ,在Rt △OEB 中,由勾股定理可得BO 长,易知BP 长.【详解】解:(1)如图1,连接AC ,BD ,对角线交点为O ,连接OE 交CD 于H ,则OD=OC .∵△DCE 为等边三角形,∴ED=EC ,∵OD=OC∴OE 垂直平分DC ,∴DH 12=DC=1. ∵四边形ABCD 为正方形,∴△OHD 为等腰直角三角形,∴OH=DH=1,在Rt △DHE 中, HE 3=DH=13,∴OE=HE+OH=13+1;(2)如图2,补全⊙O ,连接AO 并延长交⊙O 右半侧于点P ,则此时A 、P 之间的距离最大,在Rt △AOD 中,AD=6,DO=1,∴AO 22AD DO =+=15,3OP DO ==Q∴AP=AO+OP=15+1;(1)小贝的说法正确.理由如下,如图1,补全弓形弧AD 所在的⊙O ,连接ON ,OA ,OD ,过点O 作OE ⊥AB 于点E ,连接BO 并延长交⊙O 上端于点P ,则此时B 、P 之间的距离即为门角B 到门窗弓形弧AD 的最大距离,由题意知,点N 为AD 的中点, 3.2,AD BC OA OD ===,∴AN 12=AD=1.6,ON ⊥AD , 在Rt △ANO 中,设AO=r ,则ON=r ﹣1.2.∵AN2+ON2=AO2,∴1.62+(r﹣1.2)2=r2,解得:r5 3 =,∴AE=ON53=-1.2715=,在Rt△OEB中,OE=AN=1.6,BE=AB﹣AE23 15 =,∴BO==∴BP=BO+PO5153 =+,∴门角B到门窗弓形弧AD的最大距离为5 153+.【点睛】本题考查了圆与多边形的综合,涉及了圆的有关概念及性质、等边三角形的性质、正方形和长方形的性质、勾股定理等,灵活的利用两点之间线段最短,添加辅助线将题中所求最大距离转化为圆外一点到圆上的最大距离是解题的关键.22.(1)见解析; (2)① a=100,b=0.15; ②144°;③140人.【解析】【分析】(1)采用随机调查的方式比较合理,随机调查的关键是调查的随机性,这样才合理;(2)①用喜欢书画类的频数除以喜欢书画类的频率即可求得a值,用喜欢棋牌类的人数除以总人数即可求得b值.②求得器乐类的频率乘以360°即可.③用总人数乘以喜欢武术类的频率即可求喜欢武术的总人数.【详解】(1)∵调查的人数较多,范围较大,∴应当采用随机抽样调查,∵到六年级每个班随机调查一定数量的同学相对比较全面,∴丙同学的说法最合理.(2)①∵喜欢书画类的有20人,频率为0.20,∴a=20÷0.20=100,b=15÷100=0.15;②∵喜欢器乐类的频率为:1﹣0.25﹣0.20﹣0.15=0.4,∴喜欢器乐类所对应的扇形的圆心角的度数为:360×0.4=144°;③喜欢武术类的人数为:560×0.25=140人.【点睛】本题考查了用样本估计总体和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.23.x1 x -【解析】【分析】根据分式的混合运算先计算括号里的再进行乘除. 【详解】(x-1-2x2x1-+)÷2x xx1-+=2x12x2x1--++·x1x x1+-()=()2x1x1-+·x1x x1+-()=x1 x -【点睛】此题主要考查分式的计算,解题的关键是先进行通分,再进行加减乘除运算.24.(1)如图所示见解析;(2)四边形OCED是菱形.理由见解析.【解析】【分析】(1)根据图形平移的性质画出平移后的△DEC即可;(2)根据图形平移的性质得出AC∥DE,OA=DE,故四边形OCED是平行四边形,再由矩形的性质可知OA=OB,故DE=CE,由此可得出结论.【详解】(1)如图所示;(2)四边形OCED是菱形.理由:∵△DEC由△AOB平移而成,∴AC∥DE,BD∥CE,OA=DE,OB=CE,∴四边形OCED 是平行四边形.∵四边形ABCD 是矩形,∴OA=OB ,∴DE=CE ,∴四边形OCED 是菱形.【点睛】本题考查了作图与矩形的性质,解题的关键是熟练的掌握矩形的性质与根据题意作图.25.(1)任意实数;(2)32 ;(3)见解析;(4)①当x <﹣2时,y 随x 的增大而增大;②当x >2时,y 随x 的增大而增大.【解析】【分析】(1)没有限定要求,所以x 为任意实数,(2)把x =3代入函数解析式即可,(3)描点,连线即可解题,(4)看图确定极点坐标,即可找到增减区间.【详解】解:(1)函数y =316x ﹣2x 的自变量x 的取值范围是任意实数; 故答案为任意实数; (2)把x =3代入y =316x ﹣2x 得,y =﹣32; 故答案为﹣32; (3)如图所示;(4)根据图象得,①当x <﹣2时,y 随x 的增大而增大;②当x >2时,y 随x 的增大而增大.故答案为①当x <﹣2时,y 随x 的增大而增大;②当x >2时,y 随x 的增大而增大.【点睛】本题考查了函数的图像和性质,属于简单题,熟悉函数的图像和概念是解题关键.26.(1)y 1=-20x+1200, 800;(2)15≤x≤40.【解析】【分析】(1)根据图中的已知点用待定系数法求出一次函数解析式(2)设y 2=kx+b ,把(20,0)和(60,1000)代入求出解析式,在已知范围内求出解即可.【详解】解:(1)设y 1=kx+b ,把(0,1200)和(60,0)代入得1200600b k b =⎧⎨+=⎩解得201200k b =-⎧⎨=⎩,所以y 1=-20x+1200,当x=20时,y 1=-20×20+1200=800, (2)设y 2=kx+b ,把(20,0)和(60,1000)代入得200601000k b k b +=⎧⎨+=⎩则25500k b =⎧⎨=-⎩,所以y 2=25x-500,当0≤x≤20时,y=-20x+1200,当20<x≤60时,y=y 1+y 2=-20x+1200+25x-500=5x+700,由题意2012009005700900x x -+≤⎧⎨+≤⎩解得该不等式组的解集为15≤x≤40所以发生严重干旱时x 的范围为15≤x≤40.【点睛】此题重点考察学生对一次函数和一元一次不等式的实际应用能力,掌握一次函数和一元一次不等式的解法是解题的关键.27.(1)证明见解析;(2)①;②3.【解析】【分析】(1) 过点A 作AF ⊥BP 于F,根据等腰三角形的性质得到BF=BP ,易证Rt △ABF ∽Rt △BCE ,根据相似三角形的性质得到,即可证明BP=CE.(2) ①延长BP 、AD 交于点F ,过点A 作AG ⊥BP 于G ,证明△ABG ≌△BCP ,根据全等三角形的性质得BG =CP ,设BG =1,则PG =PC =1,BC =AB =,在Rt △ABF 中,由射影定理知,AB 2=BG·BF =5,即可求出BF =5,PF =5-1-1=3,即可求出的值;②延长BF、AD交于点G,过点A作AH⊥BE于H,证明△ABH≌△BCE,根据全等三角形的性质得BG=CP,设BH=BP=CE=1,又,得到PG=,BG=,根据射影定理得到AB2=BH·BG ,即可求出AB=,根据勾股定理得到,根据等腰直角三角形的性质得到.【详解】解:(1) 过点A作AF⊥BP于F∵AB=AP∴BF=BP,∵Rt△ABF∽Rt△BCE∴∴BP=CE.(2) ①延长BP、AD交于点F,过点A作AG⊥BP于G∵AB=BC∴△ABG≌△BCP(AAS)∴BG=CP设BG=1,则PG=PC=1∴BC=AB=在Rt△ABF中,由射影定理知,AB2=BG·BF=5∴BF=5,PF=5-1-1=3∴②延长BF、AD交于点G,过点A作AH⊥BE于H∵AB=BC∴△ABH≌△BCE(AAS)设BH=BP=CE=1∵∴PG=,BG=∵AB2=BH·BG∴AB=∴∵AF平分∠PAD,AH平分∠BAP∴∠FAH=∠BAD=45°∴△AFH为等腰直角三角形∴【点睛】考查等腰三角形的性质,勾股定理,射影定理,平行线分线段成比例定理等,解题的关键是作出辅助线.难度较大.。

最新中考数学模拟试题(2019年山东省临沂市

最新中考数学模拟试题(2019年山东省临沂市

2019年山东省临沂市兰山区中考数学一模试卷一、选择题(本题共14小题,每小题3分,共42分)在每小题所给的四个选项中,只有一项是符合题目要求的.1.(3分)的值是()A.9B.3C.﹣3D.±32.(3分)斑叶兰被列为国家二级保护植物,它的一粒种子重约0.0000005克.将0.0000005用科学记数法表示为()A.5×107B.5×10﹣7C.0.5×10﹣6D.5×10﹣63.(3分)下列运算正确的是()A.a8÷a4=a2B.(a2)2=a4C.a2•a3=a6D.a2+a2=2a4 4.(3分)不等式组的解集在数轴上表示为()A.B.C.D.5.(3分)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于点E、F,再分别以E、F为圆心,大于EF的同样长为半径作圆弧,两弧交于点P,作射线AP,交CD于点M,若∠ACD=110°,则∠CMA的度数为()A.30°B.35°C.70°D.45°6.(3分)一个几何体的三视图如图所示,则该几何体的表面积是()A.24+2πB.16+4πC.16+8πD.16+12π7.(3分)有2名男生和2名女生,王老师要随机地、两两一对地为他们排座位,一男一女排在一起的概率是()A.B.C.D.8.(3分)某校举行汉字听写大赛,参赛学生的成绩如下表:对于这组数据,下列说法错误的是()A.平均数是92B.中位数是92C.众数是92D.极差是69.(3分)“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.B.C.D.10.(3分)如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD 11.(3分)如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是()A.B.C.D.12.(3分)如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A.B.2C.2D.813.(3分)如图,在直角坐标系中,有菱形OABC,A点的坐标是(10,0),双曲线经过点C,且OB•AC=160,则k的值为()A.40B.48C.64D.8014.(3分)如图,矩形ABCD中,AB=8cm,BC=6cm,点P从点A出发,以1cm/s的速度沿A→D→C方向匀速运动,同时点Q从点A出发,以2cm/s的速度沿A→B→C方向匀速运动,当一个点到达点C时,另一个点也随之停止.设运动时间为t(s),△APQ 的面积为S(cm2),下列能大致反映S与t之间函数关系的图象是()A.B.C.D.二、填空题(本大题共5小题,每小题3分,共15分)把答案填在题中横线上.15.(3分)分解因式:4x﹣x3=.16.(3分)化简:(1+)÷=.17.(3分)如图,平行四边形ABCD中,BE⊥AD于E,BF⊥CD于F,BE=2,BF=3,平行四边形ABCD的周长为20,则平行四边形ABCD的面积为.18.(3分)如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB ⊥BD,CD⊥BD,测得AB=2米,BP=3米,PD=12米,那么该古城墙的高度CD是米.19.(3分)根据下列材料,解答问题.等比数列求和:概念:对于一列数a1,a2,a3,a4,…a n(n为正整数),若从第二个数开始,每一个数与前一个数的比为一定值,即(q为常数),那么这一列数a1,a2,a3,a4,…a n…成等比数列,这一常数q叫做该数列的公比.例:求等比数列1,3,32,33,…,3100的和,解:令S=1+3+32+33+…+3100则3S=3+32+33+…+3100+3101因此,3S﹣S=3101﹣1,∴,即1+3+32+33 (3100)仿照例题,等比数列1,5,52,53,…,52019的和为.三、解答题(本大题共7小题,共63分)20.(7分)计算:|﹣1|﹣﹣(1﹣)0+4sin30°.21.(7分)为了解某市初中学生课外阅读情况,调查小组对该市这学期初中学生阅读课外书籍的册数进行了抽样调查,并根据调查结果绘制成如下统计图.根据统计图提供的信息,解答下列问题:(1)本次抽样调查的样本容量是;(2)补全条形统计图;(3)该市共有10万名初中生,估计该市初中学生这学期课外阅读超过2册的人数.22.(7分)如图,两座建筑物的水平距离BC为600m.从C点测得A点的仰角α为53°,从A点测得D点的俯角β为37°,求两座建筑物的高度.(参考数据sin37°≈)23.(9分)如图,CD是⊙O的切线,点C在直径AB的延长线上.(1)求证:∠CAD=∠BDC;(2)若BD=AD,AC=3,求CD的长.24.(9分)学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y(米)与时间t (分钟)之间的函数关系如图所示.(1)根据图象信息,当t=分钟时甲乙两人相遇,甲的速度为米/分钟;(2)求出线段AB所表示的函数表达式.25.(11分)【问题解决】一节数学课上,老师提出了这样一个问题:如图1,点P是正方形ABCD内一点,P A=1,PB=2,PC=3.你能求出∠APB的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,求出∠APB的度数;思路二:将△APB绕点B顺时针旋转90°,得到△CP'B,连接PP′,求出∠APB的度数.请参考小明的思路,任选一种写出完整的解答过程.【类比探究】如图2,若点P是正方形ABCD外一点,P A=3,PB=1,PC=,求∠APB的度数.26.(13分)如图,已知二次函数y=ax2+的图象与y轴交于点A(0,4),与x轴交于点B.C,点C坐标为(8,0),连接AB、AC.(1)求二次函数的解析式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请直接写出此时点N的坐标.2019年山东省临沂市兰山区中考数学一模试卷参考答案与试题解析一、选择题(本题共14小题,每小题3分,共42分)在每小题所给的四个选项中,只有一项是符合题目要求的.1.(3分)的值是()A.9B.3C.﹣3D.±3【分析】直接利用二次根式的性质化简求出答案.【解答】解:=3.故选:B.【点评】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.2.(3分)斑叶兰被列为国家二级保护植物,它的一粒种子重约0.0000005克.将0.0000005用科学记数法表示为()A.5×107B.5×10﹣7C.0.5×10﹣6D.5×10﹣6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.0000005用科学记数法表示为5×10﹣7.故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(3分)下列运算正确的是()A.a8÷a4=a2B.(a2)2=a4C.a2•a3=a6D.a2+a2=2a4【分析】直接利用同底数幂的乘除运算法则以及幂的乘方运算法则和合并同类项法则分别计算得出答案.【解答】解:A、a8÷a6=a4,故此选项错误;B、(a2)2=a4,故原题计算正确;C、a2•a3=a5,故此选项错误;D、a2+a2=2a2,故此选项错误;故选:B.【点评】此题主要考查了同底数幂的乘除运算以及幂的乘方运算和合并同类项,正确掌握相关运算法则是解题关键.4.(3分)不等式组的解集在数轴上表示为()A.B.C.D.【分析】根据一元一次不等式组即可求出答案.【解答】解:由①得:x>1由②得:x≥2∴不等式组的解集为:x≥2故选:A.【点评】本题考查一元一次不等式组的解法,解题的关键是熟练运用一元一次不等式组的解法,本题属于基础题型.5.(3分)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于点E、F,再分别以E、F为圆心,大于EF的同样长为半径作圆弧,两弧交于点P,作射线AP,交CD于点M,若∠ACD=110°,则∠CMA的度数为()A.30°B.35°C.70°D.45°【分析】直接利用平行线的性质结合角平分线的作法得出∠CAM=∠BAM=35°,即可得出答案.【解答】解:∵AB∥CD,∠ACD=110°,∴∠CAB=70°,∵以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于点E、F,再分别以E、F为圆心,大于EF的同样长为半径作圆弧,两弧交于点P,作射线AP,交CD于点M,∴AP平分∠CAB,∴∠CAM=∠BAM=35°,∵AB∥CD,∴∠CMA=∠MAB=35°.故选:B.【点评】此题主要考查了基本作图以及平行线的性质,正确得出∠CAM=∠BAM是解题关键.6.(3分)一个几何体的三视图如图所示,则该几何体的表面积是()A.24+2πB.16+4πC.16+8πD.16+12π【分析】根据三视图知该几何体是一个半径为2、高为4的圆柱体的纵向一半,据此求解可得.【解答】解:该几何体的表面积为2וπ•22+4×4+×2π•2×4=12π+16,故选:D.【点评】本题主要考查由三视图判断几何体,解题的关键是根据三视图得出几何体的形状及圆柱体的有关计算.7.(3分)有2名男生和2名女生,王老师要随机地、两两一对地为他们排座位,一男一女排在一起的概率是()A.B.C.D.【分析】列举出所有情况,看一男一女排在一起的情况占总情况的多少即可.【解答】解:排列为男1男2,男1女1,男1女2,男2女1,男2女2,女1女2,一共有6种可能,一男一女排在一起的有4种,所以概率是.故选:D.【点评】本题考查了概率公式,情况较少可用列举法求概率,采用列举法解题的关键是找到所有存在的情况.用到的知识点为:概率=所求情况数与总情况数之比.8.(3分)某校举行汉字听写大赛,参赛学生的成绩如下表:对于这组数据,下列说法错误的是()A.平均数是92B.中位数是92C.众数是92D.极差是6【分析】根据平均数、中位数、众数及极差的定义逐一计算即可判断.【解答】解:A、平均数为=,符合题意;B、中位数是=92,不符合题意;C、众数为92,不符合题意;D、极差为95﹣89=6,不符合题意;故选:A.【点评】本题考查了极差、众数、平均数、中位数的知识,解答本题的关键是掌握各知识点的概念.9.(3分)“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.B.C.D.【分析】设实际工作时每天绿化的面积为x万平方米,根据工作时间=工作总量÷工作效率结合提前30 天完成任务,即可得出关于x的分式方程.【解答】解:设实际工作时每天绿化的面积为x万平方米,则原来每天绿化的面积为万平方米,依题意得:﹣=30,即.故选:C.【点评】考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.10.(3分)如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD【分析】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.【解答】解:∵AB=AC,∠A为公共角,A、如添加∠B=∠C,利用ASA即可证明△ABE≌△ACD;B、如添AD=AE,利用SAS即可证明△ABE≌△ACD;C、如添BD=CE,等量关系可得AD=AE,利用SAS即可证明△ABE≌△ACD;D、如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件.故选:D.【点评】此题主要考查学生对全等三角形判定定理的理解和掌握,此类添加条件题,要求学生应熟练掌握全等三角形的判定定理.11.(3分)如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是()A.B.C.D.【分析】证明△BEF∽△DAF,得出EF=AF,EF=AE,由矩形的对称性得:AE=DE,得出EF=DE,设EF=x,则DE=3x,由勾股定理求出DF==2x,再由三角函数定义即可得出答案.【解答】解:∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∵点E是边BC的中点,∴BE=BC=AD,∴△BEF∽△DAF,∴=,∴EF=AF,∴EF=AE,∵点E是边BC的中点,∴由矩形的对称性得:AE=DE,∴EF=DE,设EF=x,则DE=3x,∴DF==2x,∴tan∠BDE===;故选:A.【点评】本题考查了相似三角形的判定和性质,矩形的性质,三角函数等知识;熟练掌握矩形的性质,证明三角形相似是解决问题的关键.12.(3分)如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A.B.2C.2D.8【分析】作OH⊥CD于H,连结OC,如图,根据垂径定理由OH⊥CD得到HC=HD,再利用AP=2,BP=6可计算出半径OA=4,则OP=OA﹣AP=2,接着在Rt△OPH中根据含30度的直角三角形的性质计算出OH=OP=1,然后在Rt△OHC中利用勾股定理计算出CH=,所以CD=2CH=2.【解答】解:作OH⊥CD于H,连结OC,如图,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=60°,∴OH=OP=1,在Rt△OHC中,∵OC=4,OH=1,∴CH==,∴CD=2CH=2.故选:C.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理以及含30度的直角三角形的性质.13.(3分)如图,在直角坐标系中,有菱形OABC,A点的坐标是(10,0),双曲线经过点C,且OB•AC=160,则k的值为()A.40B.48C.64D.80【分析】过C作CD垂直于x轴,交x轴于点D,由菱形的面积等于对角线乘积的一半,根据已知OB与AC的乘积求出菱形OABC的面积,而菱形的面积可以由OA乘以CD来求,根据OA的长求出CD的长,在直角三角形OCD中,利用勾股定理求出OD的长,确定出C的坐标,代入反比例解析式中即可求出k的值.【解答】解:∵四边形OABC是菱形,OB与AC为两条对角线,且OB•AC=160,∴菱形OABC的面积为80,即OA•CD=80,∵OA=OC=10,∴CD=8,在Rt△OCD中,OC=10,CD=8,根据勾股定理得:OD=6,即C(6,8),则k的值为48.故选:B.【点评】此题属于反比例函数综合题,涉及的知识有:菱形的性质,勾股定理,以及坐标与图形性质,求出C的坐标是解本题的关键.14.(3分)如图,矩形ABCD中,AB=8cm,BC=6cm,点P从点A出发,以1cm/s的速度沿A→D→C方向匀速运动,同时点Q从点A出发,以2cm/s的速度沿A→B→C方向匀速运动,当一个点到达点C时,另一个点也随之停止.设运动时间为t(s),△APQ 的面积为S(cm2),下列能大致反映S与t之间函数关系的图象是()A.B.C.D.【分析】先根据动点P和Q的运动时间和速度表示:AP=t,AQ=2t,①当0≤t≤4时,Q在边AB上,P在边AD上,如图1,计算S与t的关系式,发现是开口向上的抛物线,可知:选项C、D不正确;②当4<t≤6时,Q在边BC上,P在边AD上,如图2,计算S与t的关系式,发现是一次函数,是一条直线,可知:选项B不正确,从而得结论.【解答】解:由题意得:AP=t,AQ=2t,①当0≤t≤4时,Q在边AB上,P在边AD上,如图1,S△APQ=AP•AQ==t2,故选项C、D不正确;②当4<t≤6时,Q在边BC上,P在边AD上,如图2,S△APQ=AP•AB==4t,故选项B不正确;故选:A.【点评】本题考查了动点问题的函数图象,根据动点P和Q的位置的不同确定三角形面积的不同,解决本题的关键是利用分类讨论的思想求出S与t的函数关系式.二、填空题(本大题共5小题,每小题3分,共15分)把答案填在题中横线上.15.(3分)分解因式:4x﹣x3=x(2+x)(2﹣x).【分析】原式提取x,再利用平方差公式分解即可.【解答】解:原式=x(4﹣x2)=x(2+x)(2﹣x),故答案为:x(2+x)(2﹣x)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16.(3分)化简:(1+)÷=.【分析】根据分式的加法和除法可以解答本题.【解答】解:(1+)÷===,故答案为:.【点评】本题考查分式的混合运算,解答本题的关键是明确分式的混合运算的计算方法.17.(3分)如图,平行四边形ABCD中,BE⊥AD于E,BF⊥CD于F,BE=2,BF=3,平行四边形ABCD的周长为20,则平行四边形ABCD的面积为12.【分析】根据平行四边形的周长求出AD+CD,再利用面积列式求出AD、CD的关系,然后求出AD的长,再利用平行四边形的面积公式列式计算即可得解.【解答】解:∵▱ABCD的周长为20,∴2(AD+CD)=20,∴AD+CD=10①,∵S▱ABCD=AD•BE=CD•BF,∴2AD=3CD②,联立①、②解得AD=6,∴▱ABCD的面积=AD•BE=6×2=12.故答案为:12.【点评】本题考查了平行四边形的性质,根据面积的两种表示求出2AD=3CD是解题的关键,也是本题的难点.18.(3分)如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB ⊥BD,CD⊥BD,测得AB=2米,BP=3米,PD=12米,那么该古城墙的高度CD是8米.【分析】首先证明△ABP∽△CDP,可得=,再代入相应数据可得答案.【解答】解:由题意可得:∠APE=∠CPE,∴∠APB=∠CPD,∵AB⊥BD,CD⊥BD,∴∠ABP=∠CDP=90°,∴△ABP∽△CDP,∴=,∵AB=2米,BP=3米,PD=12米,∴=,CD=8米,故答案为:8.【点评】此题主要考查了相似三角形的应用,关键是掌握相似三角形对应边成比例.19.(3分)根据下列材料,解答问题.等比数列求和:概念:对于一列数a1,a2,a3,a4,…a n(n为正整数),若从第二个数开始,每一个数与前一个数的比为一定值,即(q为常数),那么这一列数a1,a2,a3,a4,…a n…成等比数列,这一常数q叫做该数列的公比.例:求等比数列1,3,32,33,…,3100的和,解:令S=1+3+32+33+…+3100则3S=3+32+33+…+3100+3101因此,3S﹣S=3101﹣1,∴,即1+3+32+33 (3100)仿照例题,等比数列1,5,52,53,…,52019的和为.【分析】仿照例子,找到要求的1+5+52+53+…+52019式子中,公比q=5,即在式子两侧乘以5,再做差即可求解.【解答】解:令S=1+5+52+53+ (52019)则5S=5+52+53+…+52019+52020,因此5S﹣S=52020﹣1,∴S=,即1+5+52+53+…+52019=.故答案为.【点评】考查知识点:阅读理解能力;根据已知的例子,通过观察数的特点,找到规律.观察规律,审题要清楚,计算要准确是解决本类问题的关键.三、解答题(本大题共7小题,共63分)20.(7分)计算:|﹣1|﹣﹣(1﹣)0+4sin30°.【分析】直接利用特殊角的三角函数值以及绝对值的性质、零指数幂的性质分别化简得出答案.【解答】解:原式=1﹣2﹣1+4×=1﹣2﹣1+2=0.【点评】此题主要考查了实数运算,正确化简各数是解题关键.21.(7分)为了解某市初中学生课外阅读情况,调查小组对该市这学期初中学生阅读课外书籍的册数进行了抽样调查,并根据调查结果绘制成如下统计图.根据统计图提供的信息,解答下列问题:(1)本次抽样调查的样本容量是100;(2)补全条形统计图;(3)该市共有10万名初中生,估计该市初中学生这学期课外阅读超过2册的人数.【分析】(1)根据阅读2册的人数和所占的百分比可以求得本次抽样调查的样本容量;(2)根据(1)中的结果和条形统计图、扇形统计图中的信息可以求得阅读1册和4册的人数,从而可以将条形统计图补充完整;(3)根据统计图中的数据可以求得该市初中学生这学期课外阅读超过2册的人数.【解答】解:(1)40÷40%=100,即本次抽样调查的样本容量是100,故答案为:100;(2)阅读1册的学生有:100×30%=30(人),阅读4册的学生有:100﹣30﹣40﹣20=10(人),补全的条形统计图如右图所示;(3)10×(1﹣30%﹣40%)=3(万人),即该市初中学生这学期课外阅读超过2册的有3万人.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.22.(7分)如图,两座建筑物的水平距离BC为600m.从C点测得A点的仰角α为53°,从A点测得D点的俯角β为37°,求两座建筑物的高度.(参考数据sin37°≈)【分析】过点D作DE⊥AB于E,则DE=BC=60m,在Rt△ABC中,求出AB,在Rt △ADE中求出AE即可解决问题.【解答】解:过点D作DE⊥AB于E,则DE=BC=60m,在Rt△ABC中,tan53°=,∴=,∴AB=800(m),在Rt△ADE中,tan37°=,∴=,∴AE=450(m),∴BE=CD=AB﹣AE=350(m),答:两座建筑物的高度分别为800m和350m.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.23.(9分)如图,CD是⊙O的切线,点C在直径AB的延长线上.(1)求证:∠CAD=∠BDC;(2)若BD=AD,AC=3,求CD的长.【分析】(1)连接OD,由OB=OD可得出∠OBD=∠ODB,根据切线的性质及直径所对的圆周角等于180°,利用等角的余角相等,即可证出∠CAD=∠BDC;(2)由∠C=∠C、∠CAD=∠CDB可得出△CDB∽△CAD,根据相似三角形的性质结合BD=AD、AC=3,即可求出CD的长.【解答】(1)证明:连接OD,如图所示.∵OB=OD,∴∠OBD=∠ODB.∵CD是⊙O的切线,OD是⊙O的半径,∴∠ODB+∠BDC=90°.∵AB是⊙O的直径,∴∠ADB=90°,∴∠OBD+∠CAD=90°,∴∠CAD=∠BDC.(2)解:∵∠C=∠C,∠CAD=∠CDB,∴△CDB∽△CAD,∴=.∵BD=AD,∴=,∴=,又∵AC=3,∴CD=2.【点评】本题考查了相似三角形的判定与性质、圆周角定义以及切线的性质,解题的关键是:(1)利用等角的余角相等证出∠CAD=∠BDC;(2)利用相似三角形的性质找出.24.(9分)学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y(米)与时间t (分钟)之间的函数关系如图所示.(1)根据图象信息,当t=24分钟时甲乙两人相遇,甲的速度为40米/分钟;(2)求出线段AB所表示的函数表达式.【分析】(1)根据图象信息,当t=24分钟时甲乙两人相遇,甲60分钟行驶2400米,根据速度=路程÷时间可得甲的速度;(2)由t=24分钟时甲乙两人相遇,可得甲、乙两人的速度和为2400÷24=100米/分钟,减去甲的速度得出乙的速度,再求出乙从图书馆回学校的时间即A点的横坐标,用A点的横坐标乘以甲的速度得出A点的纵坐标,再将A、B两点的坐标代入,利用待定系数法即可求出线段AB所表示的函数表达式.【解答】解:(1)根据图象信息,当t=24分钟时甲乙两人相遇,甲的速度为2400÷60=40米/分钟.故答案为24,40;(2)∵甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,t =24分钟时甲乙两人相遇,∴甲、乙两人的速度和为2400÷24=100米/分钟,∴乙的速度为100﹣40=60米/分钟.乙从图书馆回学校的时间为2400÷60=40分钟,40×40=1600,∴A点的坐标为(40,1600).设线段AB所表示的函数表达式为y=kt+b,∵A(40,1600),B(60,2400),∴,解得.∴线段AB所表示的函数表达式为y=40t(40≤t≤60).【点评】本题考查了一次函数的应用,路程、速度、时间的关系,用待定系数法确定函数的解析式,属于中考常考题型.读懂题目信息,从图象中获取有关信息是解题的关键.25.(11分)【问题解决】一节数学课上,老师提出了这样一个问题:如图1,点P是正方形ABCD内一点,P A=1,PB=2,PC=3.你能求出∠APB的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,求出∠APB的度数;思路二:将△APB绕点B顺时针旋转90°,得到△CP'B,连接PP′,求出∠APB的度数.请参考小明的思路,任选一种写出完整的解答过程.【类比探究】如图2,若点P是正方形ABCD外一点,P A=3,PB=1,PC=,求∠APB的度数.【分析】(1)思路一、先利用旋转求出∠PBP'=90°,BP'=BP=2,AP'=CP=3,利用勾股定理求出PP',进而判断出△APP'是直角三角形,得出∠APP'=90°,即可得出结论;思路二、同思路一的方法即可得出结论;(2)同(1)的思路一的方法即可得出结论.【解答】解:(1)思路一、如图1,将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,∴△ABP'≌△CBP,∴∠PBP'=90°,BP'=BP=2,AP'=CP=3,在Rt△PBP'中,BP=BP'=2,∴∠BPP'=45°,根据勾股定理得,PP'=BP=2,∵AP=1,∴AP2+PP'2=1+8=9,∵AP'2=32=9,∴AP2+PP'2=AP'2,∴△APP'是直角三角形,且∠APP'=90°,∴∠APB=∠APP'+∠BPP'=90°+45°=135°;(2)如图2,将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,∴△ABP'≌△CBP,∴∠PBP'=90°,BP'=BP=1,AP'=CP=,在Rt△PBP'中,BP=BP'=1,∴∠BPP'=45°,根据勾股定理得,PP'=BP=,∵AP=3,∴AP2+PP'2=9+2=11,∵AP'2=()2=11,∴AP2+PP'2=AP'2,∴△APP'是直角三角形,且∠APP'=90°,∴∠APB=∠APP'﹣∠BPP'=90°﹣45°=45°.【点评】此题是四边形综合题,主要考查了正方形的性质,旋转的性质,直角三角形的性质和判定,勾股定理,正确作出辅助线是解本题的关键.26.(13分)如图,已知二次函数y=ax2+的图象与y轴交于点A(0,4),与x轴交于点B.C,点C坐标为(8,0),连接AB、AC.(1)求二次函数的解析式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请直接写出此时点N的坐标.【分析】(1)根据点A,C的坐标,利用待定系数法可求出二次函数的解析式;(2)利用二次函数图象上点的坐标特征可求出点B的坐标,结合点A,C的坐标可求出BC,AB,AC的长,由BC2=AB2+AC2可得出△ABC是直角三角形;(3)分AN=AC,CN=CA,NA=NC三种情况考虑:①当AN=AC时,由等腰三角形的性质可得出ON的长度,进而可得出点N1的坐标;②当CN=CA时,由等腰三角形的性质可得出CN的长,再结合点C的坐标可得出点N2,N3的坐标;③当NA=NC时,设ON=m,则NC=8﹣m,利用勾股定理可得出关于m的方程,解之即可得出点N4的坐标.综上,此题得解.【解答】解:(1)将A(0,4),C(8,0)代入y=ax2+x+c,得:,解得:,∴二次函数的解析式为y=﹣x2+x+4.(2)△ABC是直角三角形,理由如下:当y=0时,﹣x2+x+4=0,解得:x1=﹣2,x2=8,∴点B的坐标为(﹣2,0).∵点A的坐标为(0,4),点C的坐标为(8,0),∴BC=10,AB==2,AC==4,∴BC2=100=AB2+AC2,∴△ABC是直角三角形.(3)分三种情况考虑(如图):①当AN=AC时,ON=OC=8,∴点N1的坐标为(﹣8,0);②当CN=CA时,CN=4,∴点N2的坐标为(8﹣4,0),点N3的坐标为(8+4,0);③当NA=NC时,设ON=m,则NC=8﹣m,∴(8﹣m)2=42+m2,∴m=3,∴点N4的坐标为(3,0).综上所述:点N的坐标为(﹣8,0),(8﹣4,0),(3,0)或(8+4,0).【点评】本题考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、勾股定理、勾股定理的逆定理以及等腰三角形的性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用BC2=AB2+AC2,证出△ABC是直角三角形;(3)分AN=AC,CN=CA,NA=NC三种情况,利用等腰三角形的性质求出点N 的坐标.。

山东省临沂市郯城县2019年中考第一次模拟考试 数学试题(含答案)

山东省临沂市郯城县2019年中考第一次模拟考试 数学试题(含答案)

山东省临沂市九年级中考第一次模拟考试试卷数学一、选择题)A. B. -3 C. 3 D.2.如图,用平行四边形纸条沿对边AB、CD上的点E、F所在的直线折成V字形图案,已知图中∠1=56∘,则∠2的度数为()A. 56°B. 66°C. 68°D. 112°3.下列计算正确的是()4. 将一个长方体内部挖去一个圆柱(如图所示),它的主视图是()5.如图,点A(x<0)的图象上的一点,过点A作平行四边形ABCD,使B、C在x 轴上,点D在y轴上,则平行四边形ABCD的面积为()A. 1B. 3C. 6D. 126.如图,在矩形ABCD中,AB=5,BC=4,以BC为直径在矩形内作半圆,自点A作半圆的切线AE,则tan∠CBE=().7.如图,将△ABC绕点B逆时针旋转α,得到△EBD,若点A恰好在ED的延长线上,则∠CAD的度数为()A. 90°﹣αB. αC. 180°﹣αD. 2α8.某中学九年级二班的8名女同学在一次仰卧起坐测试中的成绩如下(单位:个),135138142144140 147145145;则这组数据的中位数、平均数分别是()A. 142,142B. 143,142C. 143,143D. 144,1439.3的取值范围是()B.10.A、B两点,当A、B两点关于原点)A. 0B. -3C. 3D. 411.由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数y=ax2+bx+c的图象过点(1,0)…求证:这个二次函数的图象关于直线x=2对称,根据现有信息,题中的二次函数具有的性质:(1)过点(3,0);(2)顶点是(1,﹣2);(3)在x轴上截得的线段的长度是2;(4)c=3a;正确的个数()A. 4个B. 3个C. 2个D. 1个12.如图,D是等边△ABC边AB上的一点,且AD=1,BD=2,现将△ABC折叠,使点C与D重合,折痕EF,点E、F分别在AC和BC上,若BF=1.25,则CE=()13.尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:①将半径为r的⊙O六等分,依次得到A,B,C,D,E,F六个分点;②分别以点A,D为圆心,AC长为半径画弧,G是两弧的一个交点;③连结OG.问:OG的长是多少?大臣给出的正确答案应是()A. B. (r C. (r D.14.已知:如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB,AC相交于D点,双曲线x>0)经过D点,交BC的延长线于E点,且OB•AC=160,有下列四个结论:①菱形OABC的面积为80;②E点的坐标是(4,8);③双曲线的解析式为x>0);④sin∠其中正确的结论有()个.A. 1B. 2C. 3D. 4二、填空题15.16.如图,正六边形卡片被分成六个全等的正三角形.若向该六边形内投掷飞镖,则飞镖落在阴影区域的概率为.17.18.一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设快车离乙地的距离为y1(km),慢车离乙地的距离为y2(km),慢车行驶时间为x(h),两车之间的距离为s(km).y1,y2与x的函数关系图象如图1所示,s与x的函数关系图象如图2所示.则下列判断:①图1中a=3;②当x时,两车相遇;③当x两车相距60km;④图2中C点坐标为(3,180);⑤当x时,两车相距200km.其中正确的有_____(请写出所有正确判断的序号)19.如图,△ABD是边长为3的等边三角形,E,F分别是边AD,AB上的动点,若∠ADC=∠ABC=90°,则△CEF 周长的最小值为______.三、解答题21.为积极创建全国文明城市,某市对某路口的行人交通违章情况进行了天的调查,将所得数据绘制成如下统计图(图2不完整):请根据所给信息,解答下列问题:(1)第天,这一路口的行人交通违章次数是多少次?这天中,行人交通违章次的有多少天?(2)请把图2中的频数直方图补充完整;(温馨提示:请画在答题卷相对应的图上)(3)通过宣传教育后,行人的交通违章次数明显减少.经对这一路口的再次调查发现,平均每天的行人交通违章次数比第一次调查时减少了次,求通过宣传教育后,这一路口平均每天还出现多少次行人的交通违章?22.如图,一次函数A,B 两点,且与x 轴交于点C,点B 的坐标为(-1,-2).(1)(2)连接OA ,OB ,求△OAB 的面积; (3).23.如图,四边形ABCD 内接于⊙O ,∠BAD=90°,点E 在BC 的延长线上,且∠DEC=∠BAC . (1)求证:DE 是⊙O 的切线;(2)若AC ∥DE ,当AB=8,CE=2时,求AC 的长.24.下图是一个桌面会议话筒示意图,中间BC部分是一段可弯曲的软管,在弯曲时可形成一段圆弧,设圆弧所在圆的圆心为O,线段AB,CD均与圆弧相切,点B,C分别为切点,已知AB的长10cm,CD的长为25.2cm. CD水平时,距离桌面14cm.(1)求弧BC的长度;(2)当∠D=60∘时.求D点距桌面AM的高度(如图)25.己知:在菱形ABCD中,∠ABC=60°,对角线AC,BD相交于点O,点E是线段BD上一动点(不与点B,D重合),连接AE,以AE为边在AE的右侧作等边△AEF.(1)如图①,若点F落在线段BD上,线段AE、FD的数量关系是AE=FD;(2)如图②,若点F不在线段BD上,(1)中的结论是否成立?若成立,请证明:若不成立,请说明理由;(3)BE与BD满足BE= BD时,AE∥FD.26.如图,直线y=2x-4与x轴交于点A,与y轴交于点B,以x轴上点M为圆心,过A、B两点作⊙M与x 轴交于另一点C.(1)求⊙M的半径及圆心M的坐标;(2)①求经过A、B、C三点的抛物线的顶点D的坐标;②求证:DB是⊙M的切线;(3)若半径为1的⊙P与x轴和直线BD都相切,请直接写出点P的坐标.答案解析一、选择题)A. B. -3 C. 3 D.【答案】A【解析】【分析】.故选:A【点睛】考核知识点:绝对值,相反数,倒数.2.如图,用平行四边形纸条沿对边AB、CD上的点E、F所在的直线折成V字形图案,已知图中∠1=56∘,则∠2的度数为()A. 56°B. 66°C. 68°D. 112°【答案】C【解析】【分析】首先延长DF,由折叠的性质可得∠1=∠3,继而求得答案.【详解】如图,延长DF,根据题意得:∠1=∠3=56°,且∠3+∠EFD=180°,∴∠2=180°-∠1-∠3=68°.故选:C.【点睛】此题考查了平行四边形的性质以及折叠的性质.注意准确作出辅助线是解此题的关键.3.下列计算正确的是()A.B.D.【答案】D【解析】【分析】根据0指数幂,负指数幂即单项式除法进行分析即可.【详解】只有a不等于0才成立,故错误;,故错误;C .,故错误;. 故选:D 【点睛】考核知识点:0指数幂,负指数幂即单项式除法. 4. 将一个长方体内部挖去一个圆柱(如图所示),它的主视图是()【答案】A 【解析】试题解析:从正面看易得主视图为长方形,中间有两条垂直地面的虚线.故选A.【此处有视频,请去附件查看】5.如图,点A(x<0)的图象上的一点,过点A作平行四边形ABCD,使B、C在x 轴上,点D在y轴上,则平行四边形ABCD的面积为()A. 1B. 3C. 6D. 12【答案】C【解析】如图,过点A作AE⊥x轴,垂足为点E,则□ABCD的面积=矩形ADOE的面积=AD×AE k=-6,根据k的几何意义可得AD×AE=|-6|=6,∴平行四边形ABCD的面积为6,故答案为C.6.如图,在矩形ABCD中,AB=5,BC=4,以BC为直径在矩形内作半圆,自点A作半圆的切线AE,则tan∠CBE=().A. B. D.【答案】A【解析】【分析】设BC的中点为O,连接AO,交BE于F.根据切线长定理得AB=AE,且∠BAF=∠EAF,得△ABF≌△AEF,在Rt△ABO中,BF⊥AO,则∠FBO=∠BAO,由tan∠BAO=tan∠CBE可得结论.【详解】设BC的中点为O,连接AO,交BE于F.由于AB、AE分别切⊙O于B、E,则AB=AE,且∠BAF=∠EAF.又∵AF=AF,∴△ABF≌△AEF.∴AO垂直平分BE.在Rt△ABO中,BF⊥AO,则∠FBO=∠BAO,易知BO=1,AB=3,∴tan∠BAO=tan∠故选:A【点睛】考核知识点:切线长性质定理,正切.添好辅助线构造直角三角形是关键.7.如图,将△ABC绕点B逆时针旋转α,得到△EBD,若点A恰好在ED的延长线上,则∠CAD的度数为()A. 90°﹣αB. αC. 180°﹣αD. 2α【解析】分析:根据旋转的性质和四边形的内角和是360°,可以求得∠CAD的度数,本题得以解决.详解:由题意可得,∠CBD=α,∠ACB=∠EDB,∵∠EDB+∠ADB=180°,∴∠ADB+∠ACB=180°,∵∠ADB+∠DBC+∠BCA+∠CAD=360°,∠CBD=α,∴∠CAD=180°−α,故选:C.点睛:本题考查旋转的性质,解答本题的关键是明确题意,利用数形结合的思想解答.8.某中学九年级二班的8名女同学在一次仰卧起坐测试中的成绩如下(单位:个),135138142144140 147145145;则这组数据的中位数、平均数分别是()A. 142,142B. 143,142C. 143,143D. 144,143【答案】B【解析】【分析】把数据从小到大排序,第4,5个数的平均数是中位数;根据平均数的公式求值.故选:A【点睛】考核知识点:中位数,算术平均数.理解定义是关键.9.3)A. B. D.【答案】A【分析】先解不等式组得4<x≤2-a,由整数解是5,6,7,得7≤2-a<8,可求a的取值范围.4<x≤2-a,因为不等式组有3个整数解,所以整数解是5,6,7所以,7≤2-a<8故选:A【点睛】考核知识点:求不等式组的整数解.解不等式是关键.10.A、B两点,当A、B两点关于原点)A. 0B. -3C. 3D. 4【答案】C【解析】试题分析:设A(t,﹣),根据关于原点对称的点的坐标特征得B(﹣t,),然后把A(t,﹣),B(﹣t,)分别代入y=﹣x+a﹣3得﹣=﹣t+a﹣3,=t+a﹣3,两式相加消去t得2a﹣6=0,再解关于a的一次方程即可.解:设A(t,﹣),∵A、B两点关于原点对称,∴B(﹣t,),把A(t,﹣),B(﹣t,)分别代入y=﹣x+a﹣3得﹣=﹣t+a﹣3,=t+a﹣3,两式相加得2a﹣6=0,∴a=3.故选C.考点:反比例函数与一次函数交点问题;关于原点对称的点的坐标.11.由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数y=ax2+bx+c的图象过点(1,0)…求证:这个二次函数的图象关于直线x=2对称,根据现有信息,题中的二次函数具有的性质:(1)过点(3,0);(2)顶点是(1,﹣2);(3)在x轴上截得的线段的长度是2;(4)c=3a;正确的个数()A. 4个B. 3个C. 2个D. 1个【答案】B【解析】(1)因为图象过点(1,0),且对称轴是直线x=2,由对称性可知图象还过点(3,0),正确;(2)由对称轴可知顶点的横坐标是2,而给的顶点的横坐标是1,故错误;(3)由抛物线与x轴两交点为(1,0),(3,0),可得在x轴上截得的线段长为2,正确;(4)由对称轴x=-=2,可得b=-4a,又图象过点(1,0),则有a-4c+c=0,所以c=3a,正确;故选B.点睛:本题主要考查了二次函数的性质,解答本题的关键是掌握二次函数图象的对称性.12.如图,D是等边△ABC边AB上的一点,且AD=1,BD=2,现将△ABC折叠,使点C与D重合,折痕EF,点E、F分别在AC和BC上,若BF=1.25,则CE=()A. B. D.【答案】A【解析】【分析】先求得AC=AB=3,由翻折的性质可知:EC=ED,然后证明△AED∽△BDF,利用相似三角形的性质可求得CE的长.【详解】∵△AB C为等边三角形,∴AC=AB=3,∠A=∠B=∠C=60°.由翻折的性质可知:∠EDF=60°.∴∠FDB+∠EDA=120°.∵∠EDA+∠AED=120°,∴∠AED=∠FDB.∴△AED∽△BDF.解得:AE=故选:A.【点睛】本题主要考查的是等边三角形的性质、翻折的性质、相似三角形的性质和判定,利用相似三角形的性质求得AE的长是解题的关键.13.尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:①将半径为r的⊙O六等分,依次得到A,B,C,D,E,F六个分点;②分别以点A,D为圆心,AC长为半径画弧,G是两弧的一个交点;③连结OG.问:OG的长是多少?大臣给出的正确答案应是()A. B. (r C. (r D.【答案】D【解析】分析:如图连接CD,AC,DG,AG.在直角三角形即可解决问题;详解:如图连接CD,AC,DG,AG.∵AD是⊙O直径,∴∠ACD=90°,在Rt△ACD中,AD=2r,∠DAC=30°,∴,∵DG=AG=CA,OD=OA,∴OG⊥AD,∴∠GOA=90°,∴,故选:D.点睛:本题考查作图-复杂作图,正多边形与圆的关系,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.14.已知:如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB,AC相交于D点,双曲线x>0)经过D点,交BC的延长线于E点,且OB•AC=160,有下列四个结论:①菱形OABC的面积为80;②E点的坐标是(4,8);③双曲线的解析式为x>0);④sin∠其中正确的结论有()个.A. 1B. 2C. 3D. 4【答案】C【解析】【分析】 作DH ⊥x 轴于H ,BG ⊥x 轴于G ,根据菱形的面积等于对角线乘积的一半得到菱形OABC 的面积=12OB•AC=12×160=80;则△ODA 的面积为20,根据三角形面积公式可计算出DA=4,再根据菱形的性质易得DH 为△OBG 的中位线,则BG=8,所以E 点的纵坐标为8;接着证明Rt △DOH ∽Rt △ADH ,得到DH2=OH•AH ,由于DH=4,AH=10-OH ,则OH (10-OH )=16,解得OH=8或OH=2(舍去),可确定D 点坐标为(8,4),利用待定系数法得到反比例函数解析式为y=32x ;同时可确定E 点坐标为(4,8);CM ⊥x 轴于M ,则CM=8,根据菱形性质得OC=OA=10,根据勾股定理可计算出OM=6,然后利用正弦的定义即可得到sin ∠COM=CMOC=45,于是有sin ∠COA=45.【详解】作DH ⊥x 轴于H ,BG ⊥x 轴于G ,如图,∵四边形OABC 为菱形,∴菱形OABC 的面积=,所以①正确; ∴DH•OA=菱形OABC80, 而A 点的坐标为(10,0),80, ∴DH=4,∵OB 与AC 互相垂直平分,∴∠ADO=90°,DH 为△OBG 的中位线,∴BG=2DH=8,∴E 点的纵坐标为8,∵∠DOH+∠ODH=∠ODH+∠ADH=90°,∴∠DOH=∠ADH ,∴Rt △DOH ∽Rt △ADH ,∴DH :AH=OH :DH ,即DH 2=OH•AH , ∵DH=4,AH=OA-OH=10-OH ,∴OH(10-OH)=16,解得OH=8或OH=2(舍去),∴D点坐标为(8,4),把D(8,4)代入得k=4×8=32,∴反比例函数解析式为把y=8,解得x=4,∴E点坐标为(4,8),所以②正确;CM⊥x轴于M,如图,∴CM=BG=8,∵四边形OABC为菱形,∴OC=OA=10,在Rt△OCM中,CM=8,OC=10,∴,∴sin∠即sin∠COA=,所以④正确.故选:C.【点睛】本题考查了反比例函数的综合题:反比例函数图象的点的坐标满足其函数解析式;熟练运用菱形的性质、相似三角形的相似比和勾股定理进行计算.二、填空题15.【解析】【分析】先提公因式x,再运用平方差公式.故答案为:【点睛】考核知识点:综合运用提公因式法和公式法因式分解.16.如图,正六边形卡片被分成六个全等的正三角形.若向该六边形内投掷飞镖,则飞镖落在阴影区域的概率为.【答案】.【解析】试题分析:阴影区域面积为总体面积的=,所以飞镖落在阴影区域的概率为.考点:求随机事件的概率.17.【解析】【分析】小括号内先通分,再根据分式除法法则进行计算.【详解】解:原式故答案为:【点睛】考核知识点:分式的加减乘除运算.掌握运算法则是关键.18.一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设快车离乙地的距离为y1(km),慢车离乙地的距离为y2(km),慢车行驶时间为x(h),两车之间的距离为s(km).y1,y2与x的函数关系图象如图1所示,s与x的函数关系图象如图2所示.则下列判断:①图1中a=3;②当x时,两车相遇;③当x两车相距60km;④图2中C点坐标为(3,180);⑤当x时,两车相距200km.其中正确的有_____(请写出所有正确判断的序号)【答案】①②④.【解析】【分析】根据S与x之间的函数关系式可以得到当位于C点时,两人之间的距离增加变缓,此时快车到站,此时a=3,故①正确;根据相遇可知y1=y2,列方程求解可得x后两车相距60km,x是相遇前的时间,故③正确;先确定b的值,根据函数的图象可以得到C的点的坐标,故④正确;分两车相遇前和两车相遇后两种情况讨论,即可求得x的值,当时不合题意,故⑤不正确.【详解】解:∵由S与x之间的函数的图象可知:当位于C点时,两车之间的距离增加变缓,∴由此可以得到a=3,故①正确;设y1=kx+b,将(0,300)、(3,0)代入,∴y1=﹣100x+300,设y2=mx,将点(5,300)代入,得:5m=300,解得:m=60,∴慢车离乙地的距离y2解析式为:y2=60x;∴当y1=y2时,两车相遇,可得:﹣100x+300=60x,解得:x,故②正确;分两种情况考虑,相遇前两车相距60km,﹣100x+300﹣60x=60,解得,h,相遇后两车相距60km,60x﹣(﹣100x+300)=60,解得,h,∴当x时,两车相距60km,故③不正确;快车每小时行驶100千米,慢车每小时行驶60千米,两地之间的距离为300千米,∴b=300÷(100+60由函数的图象可以得到C的点的横坐标为3,即快车到达乙地,此时慢车所走的路程为3×60=180千米,∴C点坐标为(3,180),故④正确;分两种情况考虑,相遇前两车相距200km,﹣100x+300﹣60x=200,解得,h,相遇后两车相距60km,60x﹣(﹣100x+300)=200,解得,h,,∴当不合题意,舍去.∴当x=h时,两车相距200km,故⑤不正确.故答案为:①②④.【点睛】本题考查了一次函数的应用、二元一次方程组的解法、一次函数解析式的求法;主要根据待定系数法求一次函数解析式,根据图象准确获取信息是解题的关键,要注意要分情况讨论.19.如图,△ABD是边长为3的等边三角形,E,F分别是边AD,AB上的动点,若∠ADC=∠ABC=90°,则△CEF 周长的最小值为______.【解析】【分析】分别作点C关于AD、AB的对称点M、N,连接MN,MN与AD交于点E,与AB交于点F,连接CE、CF,则此时△CEF的周长最小.分别证△ADC≌△ABC,△ACD≌△MCP,得MP=AD=3,∠MPC=∠ADC=90°,MN=2MP=6.C关于AD、AB的对称点M、N,连接MN,MN 与AD交于点E,与AB交于点F,连接CE、CF,则此时△CEF的周长最小,连接AC,交MN于点P,由作图可知CE=ME、CF=FN,∴△CEF的周长:CE+CF+EF=MN,∵△ABD是等边三角形,∴AB=AD=3,∠DAB=∠ADB=∠ABD=60°,∵∠ADC=∠ABC=90°,∴∠CDB=∠CBD=30°,∴CD=CB,∵DM=CD,BN=CB,∴CM=2CD=2BC=CN,MN//BD,∴∠M=∠N=∠CDB=30°,又∵AC=AC,∴△ADC≌△ABC,∴CD=CB,∠DAC=∠DAB=30°,∴AC=2CD,∠M=∠DAC,∴AC=CM,又∵∠ACD=∠MCP,∴△ACD≌△MCP,∴MP=AD=3,∠MPC=∠ADC=90°,∴MN=2MP=6,即△CEF周长的最小值是6,故答案为:6.【点睛】本题考查了最短路径问题,涉及到等边三角形的性质,全等三角形的判定与性质,轴对称的性质等,正确根据轴对称的性质作出符合条件的图形是解题的关键.三、解答题【答案】2【解析】【分析】先求锐角三角函数值,绝对值,负指数幂,0指数幂,再算加减.【详解】解:原式【点睛】考核知识点:锐角三角函数值,绝对值,负指数幂,0指数幂.21.为积极创建全国文明城市,某市对某路口的行人交通违章情况进行了天的调查,将所得数据绘制成如下统计图(图2不完整):请根据所给信息,解答下列问题:(1)第天,这一路口的行人交通违章次数是多少次?这天中,行人交通违章次的有多少天?(2)请把图2中的频数直方图补充完整;(温馨提示:请画在答题卷相对应的图上)(3)通过宣传教育后,行人的交通违章次数明显减少.经对这一路口的再次调查发现,平均每天的行人交通违章次数比第一次调查时减少了次,求通过宣传教育后,这一路口平均每天还出现多少次行人的交通违章?【答案】(1)8,5(2)图像见解析(3)3次【解析】试题分析:(1)直接根据折线统计图可读出数据;(2)求出8次的天数,补全图形即可;(3)求出这20天的平均数,然后再算出交通违章次数即可.试题解析:(1)第7天,这一路口的行人交通违章次数是8次.这20天中,行人交通违章6次的有5天.(2)补全的频数直方图如图所示:(3)第一次调查,平均每天行人的交通违章次数为:=7(次)∵7-4=3(次)∴通过宣传教育后,这一路口平均每天还出现3次行人的交通违章. 考点:1、折线统计图,2、频数分布直方图22.如图,一次函数的A,B两点,且与x轴交于点C,点B的坐标为(-1,-2).(1)(2)连接OA,OB,求△OAB的面积;(3).【解析】【分析】(1)把B的坐标分别代入解析式,可求得结果;(2)通过解方程组求出交点坐标,再求面积;(3)根据函数图象比较函数值大小.【详解】(1)由题意可得:点B(-1,-2)在函数y=x+m的图象上,∴-1+m=-2即m=-1;∵B(-1,-2)在反比例函数,∴k=2;(2)∵一次函数y=x+m的图象与反比例函数A,B两点,解得,∴A(2,1),令y=x-1中y=0,得x=1,∴C(1,0)∴S△OAB=S△OAC+S△OCB,∴△OAB的面积=1.5;(3)由图象可知不等式组1<x≤2.【点睛】考核知识点:反比例函数与一次函数的综合.熟记函数的基本性质是关键.23.如图,四边形ABCD内接于⊙O,∠BAD=90°,点E在BC的延长线上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)若AC∥DE,当AB=8,CE=2时,求AC的长.【答案】(1)证明见解析;(2)AC【解析】分析:(1)先判断出BD是圆O的直径,再判断出BD⊥DE,即可得出结论;(2)先判断出AC⊥BD,进而求出BC=AB=8,进而判断出△BCD∽△DCE,求出CD,再用勾股定理求出BD,最后判断出△CFD∽△BCD,即可得出结论.详解:(1)如图,连接BD,∵∠BAD=90°,∴点O必在BD上,即:BD是直径,∴∠BCD=90°,∴∠DEC+∠CDE=90°.∵∠DEC=∠BAC,∴∠BAC+∠CDE=90°.∵∠BAC=∠BDC,∴∠BDC+∠CDE=90°,∴∠BDE=90°,即:BD⊥DE.∵点D在⊙O上,∴DE是⊙O的切线;(2)∵DE∥AC.∵∠BDE=90°,∴∠BFC=90°,∴CB=AB=8,,∵∠CDE+∠BDC=90°,∠BDC+∠CBD=90°,∴∠CDE=∠CBD.∵∠DCE=∠BCD=90°,∴△BCD∽△DCE,,∴CD=4.在Rt△BCD中,同理:△CFD∽△BCD,∴CF=,∴AC=2AF=点睛:此题主要考查了圆周角定理,垂径定理,相似三角形的判定和性质,切线的判定和性质,勾股定理,求出BC=8是解本题的关键.24.下图是一个桌面会议话筒示意图,中间BC部分是一段可弯曲的软管,在弯曲时可形成一段圆弧,设圆弧所在圆的圆心为O,线段AB,CD均与圆弧相切,点B,C分别为切点,已知AB的长10cm,CD的长为25.2cm. CD水平时,距离桌面14cm.(1)求弧BC的长度;(2)当∠D=60∘时.求D点距桌面AM的高度(如图)【答案】(1)2π;(2)27.8【解析】【分析】(1)先求得∠BOC=90°,圆弧的半径OC=4,根据弧长公式求得即可;(2)作CN⊥AM,则CN∥OB,进而求得∠NCD=30°,根据正弦函数求得DN,作CG⊥OB,根据正弦函数求得CG,从而求得话筒顶端D到桌面AM的距离.【详解】解:(1)如图1,∵线段AB,CD均与圆弧相切,∴OB⊥AB,OC⊥CD,∴CD∥OB∥AM,∴∠BOC=∠OCD=90°,∵CD距离桌面14cm,AB的长10cm,∴半径OC为4cm,(2)如图2,作CN⊥AM,则CN∥OB,∴∠OCN=60°,∵∠OCD=90°,∴∠NCD=30°,∴,作CG⊥OB,2π;∴∴OB=OC=6,∴∴DM=DN+CG+AB=12.6+5.2+10=27.8.【点睛】本题考查了解直角三角形的应用以及弧长的计算,主要是三角函数及运算,关键把实际问题转化为数学问题加以计算.25.己知:在菱形ABCD中,∠ABC=60°,对角线AC,BD相交于点O,点E是线段BD上一动点(不与点B,D重合),连接AE,以AE为边在AE的右侧作等边△AEF.(1)如图①,若点F落在线段BD上,线段AE、FD的数量关系是AE=FD;(2)如图②,若点F不在线段BD上,(1)中的结论是否成立?若成立,请证明:若不成立,请说明理由;(3)BE与BD满足BE= BD时,AE∥FD.【答案】(1)AE=FD;(2)成立;(3【解析】【分析】(1)先利用菱形的性质得出∠ABO=∠ADO=30°,AC⊥BD,即可求出∠FAD=30°即可得出结论;(2)先判断出△ACD是等边三角形,再用△AEF是等边三角形,进而得出∠CAE=∠DAF,即可判断出△ACE≌△ADF,即可得出结论;(3)先判断出四边形AEDF是菱形,进而求出∠EAD=30°,即可求出∠BAE=90°,即可得出BE=2DE,即可得出结论.【详解】解:(1)∵四边形ABCD是菱形,∴AC⊥BD,∠ABO=1212∠ABC=30°,∠ADO=30°,∴∠OAD=60°,∵△AEF是等边三角形,边EF在BD上,∴AE=AF,∠OAE=∠OAF=30°,∴∠DAF=30°=∠ADO,∴AF=FD,∵AE=AF,∴AE=FD;故答案为AE=FD;(2)成立,如图1,连接CE,∵四边形ABCD是菱形,∴AD=CD,BD垂直平分AC,∠ABC=∠ADC=60°,∴∠ADC=60°,∴△ACD是等边三角形,∴AC=AD,∠CAD=60°,∵△AEF是等边三角形,∴AE=AF=EF,∠EAF=60°=∠CAD∴∠CAE=∠DAF,在△ACE和△ADF中,△ACE≌△ADF,∴EC=DF,∵BD垂直平分AC,∴EC=AE,∴DF=AE,(3)如图2,由(2)知,AE=FD,∵AE∥FD,∴四边形AEDF是平行四边形,∵△AEF是等边三角形,∴AE=AF,∴四边形AEDF是菱形,∴AE=ED,∴∠EAD=∠ADE=30°,∵∠BAD=180°-∠ABC=120°,∴∠BAE=∠BAD-∠EAD=90°,在Rt△ABE中,∠ABE=30°,∴BE=2AE,∴BE=2DE,∴BD=BE+DE=3DE,∴,【点睛】此题是四边形综合题,主要考查了菱形的性质,等边三角形的性质,等腰三角形的判定和性质,解(1)的关键是判断出AF=FD,解(2)的关键是判断出△ACE≌△ADF,解(3)的关键是判断出BE=2AE,是一道中等难度的中考常考题.26.如图,直线y=2x-4与x轴交于点A,与y轴交于点B,以x轴上点M为圆心,过A、B两点作⊙M与x 轴交于另一点C.(1)求⊙M的半径及圆心M的坐标;(2)①求经过A、B、C三点的抛物线的顶点D的坐标;②求证:DB是⊙M的切线;(3)若半径为1的⊙P与x轴和直线BD都相切,请直接写出点P的坐标.【答案】(1)(-3,0);(2)①(-3,;②详见解析;(3)P11)、P2-1)、P3-1)、P4(5,1)【解析】【分析】(1)根据题意,连接BC 可得AC 是⊙O 直径,进而可得OB 2=OA•OC ,进而可得圆心的坐标与半径的大小;(2)设出其解析式,并用三点式求抛物线解析可得答案;(3)根据题意,半径为1的⊙P 与x 轴相切,故P 的纵坐标的绝对值为1,即为±1,将其值代入抛物线解析式,即可得到其横坐标,综合可以写出P 的坐标.【详解】解:(1)y=2x-4与x 轴交于点A (2,0),与y 轴交于点B (0,-4).连接BC ,∵AC 是⊙O 直径,∴∠ABC=90°,OB ⊥AC .∴OB 2=OA•OC .即42=2OC .∴OC=8.∴直径AC=8+2=10.∴半径R=5,圆心M 坐标(-3,0).(2)①设过A (2,0),B (0,-4),C (-8,0)的解析式为y=a (x-2)(x+8),∴-4=a (0-2)(0+8).∴. ∴x-2)(x+8)2(x+3)2∴顶点D 的坐标为(-3,. ②连MD 、MB,∴MD 2=MB 2+BD 2 ∴∠MBD=90°.∴BD 是⊙M 的切线.(3)因为半径为1的⊙P 与x 轴相切,故P 的纵坐标的绝对值为1,即为±1,将其值代入抛物线解析式,即可得到其横坐标,即:当y=1时(x+3)2解得x=5; 当y=-1时(x+3)2解得或所以:P11)、P2-1)、P3-1)、P4(5,1)【点睛】本题考查学生将二次函数的图象与解析式相结合处理问题、解决问题的能力.。

2019年临沂市中考数学第一次模拟试卷(及答案)

2019年临沂市中考数学第一次模拟试卷(及答案)
2019 年临沂市中考数学第一次模拟试卷(及答案)
一、选择题
1.在庆祝新中国成立 70 周年的校园歌唱比赛中,11 名参赛同学的成绩各不相同,按照成
绩取前 5 名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要
知道这 11 名同学成绩的( )
A.平均数
B.中位数
C.众数
D.方差
2.已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是:林茂从家跑
A.25°
B.75°
C.65°
D.55°
5.如图,在直角坐标系中,直线
y1
2x
2
与坐标轴交于
A、B
两点,与双曲线
y2
k x
( x 0 )交于点 C,过点 C 作 CD⊥x 轴,垂足为 D,且 OA=AD,则以下结论:
① SΔADB SΔADC ; ②当 0<x<3 时, y1 y2 ;
③如图,当 x=3 时,EF= 8 ; 3
10%;乙超市连续两次降价 15%;丙超市一次性降价 30%.则顾客到哪家超市购买这种商品更
合算( )
A.甲
B.乙
C.丙
D.一样
8.甲种蔬菜保鲜适宜的温度是 1℃~5℃,乙种蔬菜保鲜适宜的温度是 3℃~8℃,将这两种
蔬菜放在一起同时保鲜,适宜的温度是( )
A.1℃~3℃
B.3℃~5℃
C.5℃~8℃
D.1℃~8℃
故选 C. 【点睛】
本题考查的是平行线的性质,运用两直线平行,同位角相等是解答此题的关键.
5.C
解析:C 【解析】
试题分析:对于直线 y1 2x 2 ,令 x=0,得到 y=2;令 y=0,得到 x=1,∴A(1,0),B

2019年临沂九年级模拟考试数学试题(一)

2019年初中学生学业模拟考试试题(一)数 学第Ⅰ卷(选择题 共42分)一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中, 只有一项是符合题目要求的. 1.4的算术平方根是 A .2B .2-C .2±D2.如图,AF 是BAC ∠的平分线,//DF AC ,若135∠=︒,则BAF ∠的度数为 A .17.5︒B .35︒C .55︒D .70︒3.下列运算正确的是 A .2323a a a +=B .325(2)4a a -=C .2(2)(1)2a a a a +-=+-D .222()a b a b +=+4.若某个正多边形的一个外角是60︒,则该正多边形的内角和为 A .360︒B .540︒C .720︒D .900︒5.一元一次不等式组2(3)40113x x x +-⎧⎪+⎨>-⎪⎩…的最大整数解是A .1-B .0C .1D .26.如图,该几何体的左视图是A.B.C.D.7.某车间20名工人每天加工零件数如下表所示:这些工人每天加工零件数的众数、中位数分别是A.5,5 B.5,6 C.6,6 D.6,5 8.有甲、乙两辆车,小明和小兰两人可任意选坐一辆车,则两人同坐甲车的概率为A.12B.13C.14D.349.如图,小李在地面上放了一个平面镜,选择合适的位置,刚好在平面镜中看到旗杆的顶部,此时小李与平面镜的水平距离为2米,旗杆底部与平面镜的水平距离为12米,若小李的眼睛与地面的距离为1.5米,则旗杆的高度为A.9B.12C.14D.1810.学校为创建“书香校园”,购买了一批图书.已知购买科普类图书花费10000元,购买文学类图书花费9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普书的数量比购买文学书的数量少100本.求科普类图书平均每本的价格是多少元?若设科普类图书平均每本的价格是x元,则可列方程为A.1000090001005x x-=-B.9000100001005x x-=-C.1000090001005x x-=-D.9000100001005x x-=-11.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是 A .110B .158C .168D .17812.如图,AB CD ⊥,且A B C D=.E 、F 是AD 上两点,CE AD ⊥,BF AD ⊥.若C E a =,BF b =,EF c =,则AD 的长为A .a c +B .b c +C .a b c -+D .a b c +-13.如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,2BD AD =,E 、F 、 G 分别是OC 、OD 、AB 的中点,下列结论:①BE AC ⊥; ②四边形BEFG 是平行四边形; ③EFG GBE ∆≅∆; ④EG EF = 其中正确的个数是 A .1B .2C .3D .414.如图,直角三角形的直角顶点在坐标原点,30OAB ∠=︒,若点A 在反比例函数6(0)y x x =>的图象上,则经过点B 的反比例函数解析式为A .6y x =-B .4y x =-C .2y x=-D .2y x=第12题第13题第14题第Ⅱ卷(非选择题 共78分)二、填空题(本题共5小题,每小题3分,共15分)15= .16.已知2()25x y +=,2215x y +=,则xy = . 17. 如图,在ABC ∆中,AD 是BC边上的高,tan C =,105BAC ∠=︒,2AC =,那么BC 的长度为 .18. 如图,在ABC ∆中,延长BC 至D ,使得12CD BC =,过AC 的中点E 作//EF CD (点F 位于点E 右侧),且2EF CD =,连接DF .若8AB =,则DF 的长为__________. 19. 如图,把一个面积为1的正方形等分成两个面积为12的长方形,接着把面积为12的 长方形等分成两个面积为14的长方形,再把面积为14的长方形等分成两个面积为18的长方形,如此下去,利用图中示的规律计算:111111248163264+++++= .第17题第18题第19题三、解答题(本大题共7小题,共63分)20. (满分7分) 计算:2121(1)22x x x x x x --++-÷++21. (满分7分) 某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目标完 成的情况对营业员进行适当的奖励.为了确定一个适当的月销售目标,商场服装部统计 了每位营业员在某月的销售额(单位:万元),数据如下:对这30个数据按组距3进行分组,并整理、描述和分析如下: 频数分布表数据分析表请根据以上信息解答下列问题: (1)填空:a = ,b = ;(2)若将月销售额不低于25万元确定为销售目标,则有 位营业员获得奖励; (3)若想让一半左右的营业员都能达到销售目标,你认为月销售额定为多少合适?说明理由.17 18 16 13 24 15 28 26 18 19 22 17 16 19 32 30 16 14 15 26 1532231715152828161922. (满分7分) 如图,沿AC 方向开山修路.为了加快施工进度,要在小山的另一边同时 施工,从AC 上的一点B 取120ABD ∠=︒,30D ∠=︒,520=BD m ,.那么另一边开挖点E 离D 多远正好使A ,C ,E 三点在一直线上? 1.732,结果取整数)23. (满分9分) 如图,在Rt ABC ∆中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,点E 在AB 上,以AE 为直径的⊙O 经过点D .(1)求证:直线BC 是⊙O 的切线;(2)若30B ∠=︒,3AC =,求图中阴影部分的面积.24. (满分9分) 甲骑电动车、乙骑摩托车都从M 地出发,沿一条笔直的公路匀速前往N 地,甲先出发一段时间后乙再出发,甲、乙两人到达N 地后均停止骑行.已知M 、N 两 地相距3175km ,设甲行驶的时间为x (h),甲、乙两人之间的距离为y (km),表示y 与x 函 数关系的图象如图所示. 请你解决以下问题:(1)求线段BC 所在直线的函数表达式; (2)分别求甲,乙的速度;(3)填空:点A 的坐标是______________.25. (满分11分) 如图,正方形ABCD 中,AB =O 是BC 边的中点,点E 是正方形 内一动点,2OE =,连接DE ,将线段DE 绕点D 逆时针旋转90︒得DF ,连接AE ,CF . (1)如图1,求证:AE CF =;(2)如图2,若A ,E ,O 三点共线,求点F 到直线BC 的距离.26. (满分13分) 如图1,已知抛物线23(0)y ax bx a =++≠与x 轴交于点(1,0)A 和点(3,0)B -,与y 轴交于点C .(1)求抛物线的解析式;(2)设抛物线的对称轴与x 轴交于点M ,请问在对称轴上是否存在点P ,使CMP ∆为等腰三角形?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由. (3)在抛物线的对称轴上是否存在点Q ,使得QAC ∆的周长最小?若存在,求出Q 点的坐标;若不存在,请说明理由.M图 1M备用图。

2019年山东省临沂市中考数学试题(word版)

2019年临沂市初中学业水平考试试题数学第Ⅰ卷(共42分)一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.12007-的相反数是( )A .12007 B .12007- C .2019 D .2017-2.如图,将直尺与含30︒角的三角尺摆放在一起,若120∠=︒,则2∠的度数是()A .50︒B .60︒C .70︒D .80︒3.下列计算正确的是( )A .()a b a b --=--B .224a a a +=C .224a a a ⋅=D .()2224ab a b =4.不等式组21,512x x ->⎧⎪⎨+≥⎪⎩①②中,不等式①和②的解集在数轴上表示正确的是( )A .B .C .D .5.如图所示的几何体是由五个小正方体组成的,它的左视图是( )A .B .C .D .6.小明和小华玩“石头、剪子、布”的游戏.若随机出手一次,则小华获胜的概率是( )A .23B .12C .13D .297.一个多边形的内角和是外角和的2倍,这个多边形是( )A .四边形B .五边形C .六边形D .八边形8.甲、乙二人做某种机械零件.已知甲每小时比乙多做6个,甲做90个所用时间与乙做60个所用时间相等,求甲、乙每小时各做零件多少个.如果设乙每小时做x 个,那么所列方程是( )A .90606x x =+B .90606x x =+C .90606x x =-D .90606x x =- 9.某公司有15名员工,他们所在部门及相应每人所创年利润如下表所示:这15名员工每人所创年利润的众数、中位数分别是( )A .10,5B .7,8C .5,6.5D .5,510.如图,AB 是O e 的直径,BT 是O e 的切线,若45ATB ∠=︒,2AB =,则阴影部分的面积是( )A .2B .3124π-C .1D .1124π+ 11.将一些相同的“d ”按如图所示摆放,观察每个图形中的“d ”的个数,若第n 个图形中“d ”的个数是78,则n 的值是( )A .11B .12C .13D .1412.在ABC V 中,点D 是边BC 上的点(与B 、C 两点不重合),过点D 作DE AC ∥,DF AB ∥,分别交AB ,AC 于E 、F 两点,下列说法正确的是( )A .若AD BC ⊥,则四边形AEDF 是矩形B .若AD 垂直平分BC ,则四边形AEDF 是矩形C .若BD CD =,则四边形AEDF 是菱形D .若AD 平分BAC ∠,则四边形AEDF 是菱形13.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h (单位:m )与足球被踢出后经过的时间t (单位:s )之间的关系如下表:下列结论:①足球距离地面的最大高度为20m ;②足球飞行路线的对称轴是直线2t =;③足球被踢出9s 时落地;④足球被踢出1.5s 时,距离地面的高度是11m .其中正确结论的个数是( )A .1B .2C .3D .414.如图,在平面直角坐标系中,发比例函数k y x=(0x >)的图象与边长是6的正方形OABC 的两边AB ,BC 分别相交于M ,N 两点,OMN V 的面积为10.若动点P 在x 轴上,则PM PN +的最小值是( )A .B .10C ..第Ⅱ卷(共78分)二、填空题(每题3分,满分15分,将答案填在答题纸上)15.分解因式:29m m -= .16.已知AB CD ∥,AD 与BC 相交于点O .若23BO OC =,10AD =,则AO = .17.计算:22x y xy y x x x ⎛⎫--+-= ⎪⎝⎭ . 18.在A B C D Y 中,对角线AC ,BD 相交于点O .若4AB =,10BD =,3sin 5BDC ∠=,则A B C D Y 的面积是 .19.在平面直角坐标系中,如果点P 坐标为(),m n ,向量OP uu u r 可以用点P 的坐标表示为(),OP m n =uu u r .已知:()11,OA x y =uu r ,()22,OB x y =uu u r ,如果12120x x y y ⋅+⋅=,那么OA uu r 与OB uu u r 互相垂直.下列四组向量:①()2,1OC =uu u r ,()1,2OD =-uuu r ;②()cos30,tan 45OE =︒︒uu u r ,()1,sin 60OF =︒uu u r ;③)2OG =-uuu r,12OH ⎫=⎪⎭uuu r ; ④()0,2OM π=uuu r ,()2,1ON =-uuu r .其中互相垂直的是 (填上所有正确答案的序号).三、解答题 (本大题共7小题,共63分.解答应写出文字说明、证明过程或演算步骤.)20.计算:1112cos 452-⎛⎫+︒ ⎪⎝⎭. 21.为了解某校学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x 名学生进行调查统计(要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如下统计图表:根据以上提供的信息,解答下列问题:(1)x =______,a =______,b =______;(2)补全上面的条形统计图;(3)若该校共有学生1000名.根据抽样调查结果,估计该校最喜爱《中国诗词大会》节目的学生有多少名.22.如图,两座建筑物的水平距离30m BC =,从A 点测得D 点的俯角α为30︒,测得C 点的俯角β为60︒,求这两座建筑物的高度.23.如图,BAC ∠的平分线交ABC V 的外接圆于点D ,ABC ∠的平分线交AD 于点E .(1)求证:DE DB =;(2)若90BAC ∠=︒,4BD =,求ABC V 外接圆的半径.24.某市为节约水资源,制定了新的居民用水收费标准.按照新标准,用户每月缴纳的水费y (元)与每月用水量x (3m )之间的关系如图所示.(1)求y 关于x 的函数解析式;(2)若某用户二、三月份共用水340m (二月份用水量不超过325m ),缴纳水费79.8元,则该用户二、三月份的用水量各是多少3m ?25.数学课上,张老师出示了问题:如图1,AC 、BD 是四边形ABCD 的对角线,若ACB ACD ∠=∠=60ABD ADB ∠=∠=︒,则线段BC ,CD ,AC 三者之间有何等量关系? 经过思考,小明展示了一种正确的思路:如图2,延长CB 到E ,使BE CD =,连接AE ,证得ABE ADC ≌V V ,从而容易证明ACE V 是等边三角形,故AC CE =,所以AC BC CD =+.小亮展示了另一种正确的思路:如图3,将ABC V 绕着点A 逆时针旋转60︒,使AB 与AD 重合,从而容易证明ACF V 是等比三角形,故AC CF =,所以AC BC CD =+.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图4,如果把“ACB ACD ∠=∠=60ABD ADB ∠=∠=︒”改为“ACB ACD ∠=∠=45ABD ADB ∠=∠=︒”,其它条件不变,那么线段BC ,CD ,AC 三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.(2)小华提出:如图5,如果把“ACB ACD ∠=∠=60ABD ADB ∠=∠=︒”改为“ACB ACD ∠=∠=ABD ADB α∠=∠=”,其它条件不变,那么线段BC ,CD ,AC 三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.26.如图,抛物线23y ax bx =+-经过点()2,3A -,与x 轴负半轴交于点B ,与y 轴交于点C ,且3OC OB =.(1)求抛物线的解析式;∠=∠,求点D的坐标;(2)点D在y轴上,且BDO BAC(3)点M在抛物线上,点N在抛物线的对称轴上,是否存在以点A,B,M,N为顶点的四边形是平行四边形?若存在。

2019年山东省临沂市沂南县中考数学一模试卷


s(km)与时间 t(h)的关系,请结合图象解答下列问题:
(1)表示乙离 A 地的距离与时间关系的图象是
(填 l1 或 l2);甲的速度是
km/h,乙的速度是
km/h;
(2)甲出发多少小时两人恰好相距 5km?
25.(11 分)已知,在△ABC 中,∠BAC=90°,∠ABC=45°,点 D 为直线 BC 上一动点(点 D 不与点 B,C 重 合).以 AD 为边作正方形 ADEF,连接 CF (1)如图 1,当点 D 在线段 BC 上时.求证:CF+CD=BC; (2)如图 2,当点 D 在线段 BC 的延长线上时,其他条件不变,请直接写出 CF,BC,CD 三条线段之间的关系; (3)如图 3,当点 D 在线段 BC 的反向延长线上时,且点 A,F 分别在直线 BC 的两侧,其他条件不变; ①请直接写出 CF,BC,CD 三条线段之间的关系; ②若正方形 ADEF 的边长为 2 ,对角线 AE,DF 相交于点 O,连接 OC.求 OC 的长度.
当﹣1﹣a<0 时,有 a>﹣1,
∴C 选项不符合题意;
D、∵y=ax2﹣2ax﹣1=a(x﹣1)2﹣1﹣a,
∴二次函数图象的对称轴为 x=1.
若 a>0,则当 x≥1 时,y 随 x 的增大而增大,
∴D 选项符合题意.
故选:D.
12.【解答】解:3 =
,3 得被开方数是 的被开方数的 30 倍,
3 在第六行的第 5 个,即(6,5)

17.(3 分)化简:(



18.(3 分)如图,矩形 ABOC 的顶点 A 的坐标为(﹣4,5),D 是 OB 的中点,E 是 OC 上的一点,当△ADE 的周
长最小时,点 E 的坐标是

《最新6套汇总》山东省临沂市2019-2020学年中考数学第一次模试卷

2019-2020学年数学中考模拟试卷一、选择题1.下列运算正确的是( )A.236a a a ⋅=B.336a a a +=C.22a a -=-D.326()a a -= 2.下列计算正确的是( ) A .b 2•b 3=b 6B .(﹣a 2)3=a 6C .(ab )2=ab 2D .(﹣a )6÷(﹣a )3=﹣a 33.寒假期间,小刚组织同学一起去看科幻电影《流浪地球》,票价每张45元,20张以上(不含20张)打八折,他们一共花了900元,则他们买到的电影票的张数是( )A .20B .22C .25D .20或254.下列四个图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .5.如果a :b =3:2,且b 是a 、c 的比例中项,那么b :c 等于( )A .4:3B .3:4C .2:3D .3:2 6.下列运算正确的是( ) A .236a a a ⋅=B .22423a a a +=C .236(2)2a a -=-D .422()a a a ÷-= 7.菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AD 边中点,菱形ABCD 的周长为28,则OH 的长等于( )A .3.5B .4C .7D .14 8.如图,抛物线21y x 3x 42=++与x 轴交于A 、B 两点,与y 轴交于点C ,连接BC ,AC ,则ABC 的面积为( )A .1B .2C .4D .89.如图,在热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,热气球C 的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点的距离是( )A .200米B .米C .D .1001)米 10.下列计算正确的是( ) A .a+2a =3a 2B .3a ﹣2a =aC.a2•a3=a6D.6a2÷2a2=3a211.如图,若等边△ABC的内切圆⊙0的半径是2,则△ABC的面积是()A.B.C.D.12.如图是空心圆柱,则空心圆柱在正面的视图,正确的是()A.B.C.D.二、填空题13.如图,在▱ABCD中,AD>CD,按下列步骤作图:①分别以点A,C为圆心,大于12AC的长为半径画弧,两弧交点分别为点F,G;②过点F,G作直线FG,交AD于点E.如果△CDE的周长为8,那么▱ABCD 的周长是_____.14.如图,AD是△ABC的角平分线,AB:AC=3:2,△ABD的面积为15,则△ACD的面积为.15.如图,已知A(0,-4)、B(3,-4),C为第四象限内一点且∠AOC=70°,若∠CAB=20°,则∠OCA=______.16.若对x恒成立,则n=______.17.已知反比例函数y=的图象经过点(2,﹣1),则k=_____.18.为了解某校九年级男生1000米跑步的水平情况,从中随机抽取部分男生进行测试,并把测试成绩分为D、C、B、A四个等次绘制成如图所示的不完整的统计图,那么扇形统计图中表示C等次的扇形所对的圆心角的度数为________度三、解答题19.如图,在△ABC中,AB=AC,点M在BA的延长线上.(1)按下列要求作图,并在图中标明相应的字母.(保留作图痕迹)①作∠MAC的平分线AN;②作AC的中点O,连结BO,并延长BO交AN于点D,连结CD;(2)在(1)的条件下,判断四边形ABCD的形状,并证明你的结论.20.如图,在菱形ABCD中,对角线AC,BD相交于点O,BD=8,tan∠ABD=34,求线段AB的长.21.如图,已知二次函数y=﹣x2+2x+3的图象与x轴相交于点A,B,与y轴相交于点C,连接AC,BC.该函数在第一象限内的图象上是否存在一点D,使得CB平分∠ACD?若存在,求点D的坐标,若不存在,说明理由.22.为丰富学生的课余生活,陶冶学生的情趣和爱好,某小学开展了学生社团活动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

临沂市2019年中考数学模拟试卷(一)
一、选择题(下列各题的备选答案中,只有一个是正确的.每小题3分,共42
分)
1.﹣|﹣2|的值为()
A.﹣2 B.2 C.D.﹣
2. 2019年8月31日,我国第12届全民运动会开幕,据某市财政统计,用于
体育场馆建设的资金约为14000000元,14000000用科学记数法表示为()A.1.4×105B.1.4×106C.1.4×107D.1.4×108
3.下列调查中适合采用全面调查的是()
A.调查市场上某种白酒的塑化剂的含量
B.调查鞋厂生产的鞋底能承受弯折次数
C.了解某火车的一节车厢内感染禽流感病毒的人数
D.了解某城市居民收看山东卫视的时间
4.如右图几何体的左视图是()
A.B.C.D.
5.下列计算正确的是()
A.3mn﹣3n=m B.(2m)3=6m3C.m8÷m4=m2D.3m2•m=3m3
6.某校举行健美操比赛,甲、乙两班个班选20名学生参加比赛,两个班参赛学生的
平均身高都是1.65米,其方差分别是=1.9,=2.4,则参赛学生身高比较整
齐的班级是()
A.甲班B.乙班C.同样整齐D.无法确定
7.某班为了解学生“多读书、读好书”活动的开展情况,对该班50名学生一周
阅读课外书的时间进行了统计,统计结果如下:
阅读时间(小时)1 2 3 4 5
人数(人)7 19 13 7 4
由上表知,这50名学生周一阅读课外书时间的众数和中位数分别为()A.19,13 B.19,19 C.2,3 D.2,2
8.(如图,将一副三角板和一张对边平行的纸条按下列方式
摆放,两个三角板的一直角边重合,含30°角的直角三角板
的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸
条的另一边上,则∠1的度数是()
A.30°B.20°C.15°D.14°
9.已知一次函数y=x﹣2,当函数值y>0时,自变量x的取值范围在数轴上表
示正确的是()
A.B.C.D.
10.如图,△ABC
中,AB=6,AC=8,BC=10,D、E分别是AC、AB的
中点,则以DE为直径的圆与BC的位置关系是()
A.相交B.相切C.相离D.无法确定
11.方程的解是()
A.3 B. 2 C.1 D.0
12.如图,⊙O直径AB=8,∠CBD=30°,则CD= .
A.4 B.6 C.3 D.2
13.如图,在▱ABCD中,E是AD边上的中点,连接BE,并延
长BE交CD延长线于点F,则△EDF与△BCF的周长之比是
()
A.1:2 B.1:3 C.1:4 D.1:5
14.如图,将边长为4的正方形ABCD的一边BC与直角边分
别是2和4的Rt△GEF的一边GF重合.正方形ABCD以每秒1个单位长度的速度沿GE向右匀速运动,当点A和点E重合时正方形停止运动.设正方形的运动时间为t秒,正方形ABCD与Rt△GEF重叠部分面积为s,则s关于t的函数图象为()
A.B.C.D.
二、填空题(每小题3分,共15分)
15.因式分解:xy2﹣4x= .
16.在一个不透明的袋子里装有6个白球和若干个黄球,它们除了颜色不同外,其它方面均相同,从中随机摸出一个球为白球的概率为,则黄球的个数为.
17.如图,等腰梯形ABCD,AD∥BC,BD平分∠ABC,∠A=120°.若梯
形的周长为10,则AD的长为.
18.如图,矩形ABCD的边AB上有一点P,且AD=,BP=,以点P为直
角顶点的直角三角形两条直角边分别交线段DC,线段BC于点E,F,
连接EF,则tan∠PEF=.
19.小明在做数学题时,发现下面有趣的结果:
3﹣2=1
8+7﹣6﹣5=4
15+14+13﹣12﹣11﹣10=9
24+23+22+21﹣20﹣19﹣18﹣17=16

根据以上规律可知第100行左起第一个数是.
三、解答题
20.(7分)先化简,再求值:,其中.
21.(7分)为培养学生良好学习习惯,某学校计划举行一次“整理错题集”的展示活动,对该校部分学生“整理错题集”的情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统计图表.请根据图表中提供的信息,解答下列问题:
整理情况频数频率
非常好0.21
较好70
一般
不好36
(1)本次抽样共调查了多少学生?
(2)补全统计表中所缺的数据.
(3)该校有1500名学生,估计该校学生整理错题集情况“非常好”和“较好”的学生一共约多少名?
(4)某学习小组4名学生的错题集中,有2本“非常好”(记为
A 1、A
2
),1本“较好”(记为B),1本“一般”(记为C),这些错
题集封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本错题集中再抽取一本,请用“列表法”或“画树形图”的方法求出两次抽到的错题集都是“非常好”的概率.
22.(7分)端午节期间,某校“慈善小组”筹集到1240元善款,全部用于购买水果和粽子,然后到福利院送给老人,决定购买大枣粽子和普通粽子共20盒,剩下的钱用于购买水果,要求购买水果的钱数不少于180元但不超过240元.已知大枣粽子比普通粽子每盒贵15元,若用300元恰好可以买到2盒大枣粽子和4盒普通粽子.
(1)请求出两种口味的粽子每盒的价格;
(2)设买大枣粽子x盒,买水果共用了w元.
①请求出w关于x的函数关系式;
②求出购买两种粽子的可能方案,并说明哪一种方案使购买水果的钱数最多.
23(9分).如图,AB,CD是⊙O的直径,点E在AB延长线上,
FE⊥AB,BE=EF=2,FE的延长线交CD延长线于点G,DG=GE=3,
连接FD.
(1)求⊙O的半径;
(2)求证:DF是⊙O的切线.
24.(9分)为增强公民的节约意识,合理利用天然气资源,某市自1月1日起对市区民用管道天然气价格进行调整,实行阶梯式气价,调整后的收费价格如表所示:
每月用气量单价(元/m3)
不超出75m3的部分 2.5
超出75m3不超出125m3的部分a
超出125m3的部分a+0.25
(1)若甲用户3月份的用气量为60m3,则应缴费元;
(2)若调价后每月支出的燃气费为y(元),每月的用气量为x(m3),
y与x之间的关系如图所示,求a的值及y与x之间的函数关系式;
(3)在(2)的条件下,若乙用户2、3月份共用1气175m3(3月
份用气量低于2月份用气量),共缴费455元,乙用户2、3月份的
用气量各是多少?
25(11分).如图,正方形ABCD的边长是3,点P是直线BC上一点,连接PA,将线段PA绕点P逆时针旋转90°得到线段PE,在直线BA上取点F,使BF=BP,且点F与点E在BC同侧,连接EF,CF.
(1)如图 ,当点P在CB延长线上时,求证:四边形PCFE是平行四边形;(2)如图 ,当点P在线段BC上时,四边形PCFE是否还是平行四边形,说明理由;
(3)在(2)的条件下,四边形PCFE的面积是否有最大值?若有,请求出面积的最大值及此时BP长;若没有,请说明理由.
26.(13分)如图,抛物线y=ax2+bx+3与x轴相交于点A(﹣1,0)、B(3,0),与y轴相交于点C,点P为线段OB上的动点(不与O、B重合),过点P垂直于x 轴的直线与抛物线及线段BC分别交于点E、F,点D在y轴正半轴上,OD=2,连接DE、OF.
(1)求抛物线的解析式;
(2)当四边形ODEF是平行四边形时,求点P的坐标;
(3)过点A的直线将(2)中的平行四边形ODEF分成面积相等的两部分,求这条直线的解析式.(不必说明平分平行四边形面积的理由)。

相关文档
最新文档