新疆兵团第五师八十八团学校九年级数学下册《二次三项式的因式分解(用公式法)》教案(二) 新人教版

合集下载

二次三项式的因式分解(用公式法)及一元二次方程的应用 人教版

二次三项式的因式分解(用公式法)及一元二次方程的应用 人教版

二次三项式的因式分解(用公式法)及一元二次方程的应用一. 本周教学内容:二次三项式的因式分解(用公式法)及一元二次方程的应用[学习目标]1. 熟练掌握二次三项式的意义;了解二次三项式的因式分解与解一元二次方程的关系;运用一元二次方程的求根公式在实数范围内将二次三项式分解因式。

2. 学会用列一元二次方程的方法解实际应用题。

3. 通过二次三项式的因式分解的学习,提高分析问题,解决问题的能力;进一步了解认识问题和解决问题的一般规律,即由一般到特殊,再由特殊到一般。

4. 通过一元二次方程的应用的学习,提高化实际问题为数学问题的能力和分析问题,解决问题的能力,培养用数学的意识;深刻体会转化,方程,数形结合等初等数学的思想方法。

二. 重点、难点:1. 教学重点:①应用公式法将二次三项式因式分解;会用列一元二次方程的方法解决实际应用的问题。

②在列一元二次方程的方法解应用题时,分析题意找出表示全部含义的相等关系,是能否列出方程的前提和保证。

2. 教学难点:①一元二次方程的根与二次三项式因式分解的关系;一个二次三项式在实数范围内因式分解的条件。

②在列一元二次方程的方法解应用题时,分析题意找等量关系是难点;注意求解后,检验根是否符合实际意义。

【典型例题】例1. 分解因式①x x 264-+②32312x x -+ ③24322x xy y +-④-+-x x 2525 ⑤()x x 221+-分析:前四个均为二次三项式ax bx c a 20++()≠或二元二次三项式Ax Bxy Cy 22++的因式分解,直接用公式进行分解。

ax bx c a x x x x 212++=--()()其中x x 12,为方程ax bx c a 200++=()≠的两根。

Ax Bxy Cy A x x x x 2212++=--()(),其中x x 12,为关于x 的方程Ax Bxy Cy A 2200++=()≠的两根。

第五个用平方差公式,再用公式法分解二次三项式。

初三数学 二次三项式的因式分解(用公式法) 知识全析 人教义务版

初三数学 二次三项式的因式分解(用公式法) 知识全析 人教义务版

数学 二次三项式的因式分解(用公式法)【学习目标】1.了解二次三项式的因式分解与解方程的关系.2.会利用一元二次方程的求根公式在实数范围内将二次三项式分解因式.【主体知识归纳】分解二次三项式ax 2+bx +c 时,先用公式法求出方程ax 2+bx +c =0(a ≠0)的两个实数根x 1、x 2,然后写成ax 2+bx +c =a (x -x 1)(x -x 2).【基础知识讲解】1.在利用一元二次方程的求根公式将一般的二次三项式分解因式时,有两点要特别注意:(1)要注意一元二次方程与二次三项式的区别与联系,例如方程3x 2-6x -12=0,可变形为x 2-2x -4=0,但在分解因式时,就绝不能写为3x 2-6x -12=x 2-2x -4.(2)当二次项系数不等于1时,不要漏写系数,例如分解因式2x 2-6x +4,先求出方程2x 2-6x +4=0的两根x 1=1,x 2=2,所以2x 2-6x +4=2(x -1)(x -2),若漏写系数写为2x 2-6x +4=(x -1)(x -2)就错了.2.二次三项式的因式分解均可采用公式法,但比较麻烦.因此,在进行二次三项式的因式分解时,应尽量采用“十字相乘法”,若行不通再用公式法.另外,还应注意因式分解的范围.如5x 2-5x +1在有理数范围内不可分解,而在实数范围内能分解.3.二次三项式ax 2+bx +c (a ≠0),当Δ=b 2-4ac ≥0时,在实数范围内能分解因式;当Δ<0时,在实数范围内不能分解因式.特别地,当a >0,Δ=0时,ax 2+bx +c 是一个完全平方式.【例题精讲】例1:把6x 2-11x -7分解因式.解法一:∵方程6x 2-11x -7=0的根是x =121711122891162)7(64)11()11(2±=±=⨯-⨯⨯-±-- 即x 1=37,x 2=-21. ∴6x 2-11x -7=6(x -37(x +21)=(3x -7)(2x +1). 解法二:6x 2-11x -7=(3x -7)(2x +1).例2:把6x 2+12xy +5y 2分解因式.剖析:本题可看作是关于x (或y )的二次三项式.先求出关于x (或y )的方程6x 2+12xy +5y 2=0的根,再借助于二次三项式的分解法进行分解.解:∵关于x 的方程6x 2+12xy +5y 2=0的根是x =y y y y y y 66612621262564)12(122±-=±-=⨯⨯⨯-±-2, ∴6x 2+12xy +5y 2=6(x -666+-y )(x -666--y )=6(x +666-y )(x +666+y ) 例3:在实数范围内分解因式(2x 2+3x )2-3(2x 2+3x )+2.剖析:此多项式若去括号化成一般形式,一是运算量大,二是增加了分解因式的难度(因为出现了四次式),通过观察分析,所给的多项式可看作是关于(2x 2+3x )的二次三项式,故考查用公式法或十字相乘法分解.解:(2x 2+3x )2-3(2x 2+3x )+2=(2x 2+3x -2)(2x 2+3x -1)=(2x -1)(x +2)·2(x -4173+-)(x -4173--) =2(2x -1)(x +2)(x +4173-)(x +4173+) 说明:在进行二次三项式分解因式时,要注意两种方法的灵活选择,一般来说,十字相乘法比较快捷,但适用的范围较窄,而公式法适用于一般的二次三项式,是通法.例4:关于x 的二次三项式3x 2-5x +2m -1, 问m 取何值时:(1)在实数范围内能分解因式;(2)在实数范围内不能分解因式.剖析:用公式法给出了一种分解二次三项式的一般方法,即通过解所对应的一元二次方程,得出根后才能分解.但方程有没有实数根需经过根的判别式判定.解:令3x 2-5x +2m -1=0,∴Δ=(-5)2-4×3×(2m -1)=37-24m . (1)当37-24m ≥0时,即m ≤2437时,二次三项式3x 2-5x +2m -1能在实数范围内分解因式. (2)当37-24m <0时,即m >2437时,二次三项式3x 2-5x +2m -1不能在实数范围内分解因式. 说明:一个二次三项式在实数范围内能不能因式分解,关键是其所对应的一元二次方程有没有实数解.【思路拓展题】及时复习 深化巩固孔子说过:“温故而知新”,讲述的就是要及时复习这样一个道理。

二次三项式的因式分解用公式法

二次三项式的因式分解用公式法

二次三项式的因式分解用公式法二次三项式的因式分解是一个常见的数学问题。

在解答这类问题时,有时可以使用“公式法”来分解二次三项式。

这个方法利用了二次三项式的特定公式,即二次三项式的通项公式和二次三项式的因式分解公式。

本文将详细讨论二次三项式的因式分解,并说明如何使用公式法来进行因式分解。

首先,让我们回顾一下二次三项式的通项公式。

二次三项式的通项公式为:$y=ax^2+bx+c$,其中$a, b, c$为实数,且$a\neq 0$。

要注意的是,这个公式只适用于二次三项式,不适用于其他类型的多项式。

接下来,我们来说明二次三项式的因式分解公式。

对于任意二次三项式$y=ax^2+bx+c$,其中$a, b, c$为实数,且$a\neq 0$,它的因式分解形式为:$y=a(x-r_1)(x-r_2)$,其中$r_1$和$r_2$是二次三项式的两个实根。

根据这个因式分解公式,我们可以使用公式法来分解二次三项式。

下面,我们将具体介绍如何进行这个过程。

步骤一:将二次三项式的系数代入通项公式中,得到二次三项式的一般形式$y=ax^2+bx+c$。

步骤二:计算二次三项式的判别式$\Delta=b^2-4ac$。

根据判别式的值,我们可以判断二次三项式的根的情况。

- 如果判别式$\Delta>0$,则二次三项式有两个不同的实根。

这意味着二次三项式可以进行因式分解。

- 如果判别式$\Delta=0$,则二次三项式有两个相同的实根。

这意味着二次三项式可以进行因式分解,且其中一个因式是二次三项式的平方。

- 如果判别式$\Delta<0$,则二次三项式没有实根。

这意味着二次三项式不能进行因式分解。

步骤三:根据判别式的值,进行不同的因式分解。

- 如果判别式$\Delta>0$,则根据二次三项式根的公式,可以计算出两个实根$r_1$和$r_2$。

- 如果判别式$\Delta=0$,则根据二次三项式根的公式,可以计算出一个实根$r$。

二次三项式的因式分解(用公式法)

二次三项式的因式分解(用公式法)

二次三项式的因式分解(用公式法)引言在代数学中,因式分解是一个重要的概念和技巧。

它可以将一个多项式表达式分解为较简单的乘积形式。

在本文中,我们将重点讨论二次三项式的因式分解,并介绍一种常用的方法——公式法。

二次三项式的定义二次三项式是指具有以下形式的多项式表达式:f(x) = ax^2 + bx + c其中,a、b和c是实数且a ≠ 0。

公式法的基本原理公式法是一种通过使用特定的公式来分解二次三项式的方法。

具体来说,我们可以使用下面的公式来完成因式分解:f(x) = a(x - x1)(x - x2)其中,x1和x2为f(x)的根(也就是函数图像与x轴的交点)。

公式法的步骤下面是使用公式法进行二次三项式因式分解的一般步骤:1.计算二次三项式的判别式Δ。

判别式Δ的计算公式为Δ = b^2 - 4ac。

根据Δ的值可以判断二次三项式的根的情况。

–当Δ > 0时,二次三项式有两个不相等的实根。

–当Δ = 0时,二次三项式有两个相等的实根。

–当Δ < 0时,二次三项式没有实根,但可以分解为两个共轭复根。

2.根据根的情况计算x1和x2。

–当Δ > 0时,根据求根公式:x1 = (-b + √Δ) / 2ax2 = (-b - √Δ) / 2a–当Δ = 0时,二次三项式只有一个实根,即 x = -b / 2a。

–当Δ < 0时,二次三项式的根可以表示为复数形式:x1 = (-b + i√(-Δ)) / 2a和 x2 = (-b - i√(-Δ)) / 2a。

3.代入公式进行因式分解。

将计算得到的x1和x2代入公式f(x) = a(x -x1)(x - x2),即可得到该二次三项式的因式分解形式。

示例为了更好地理解公式法的使用,我们来看一个例子:假设我们有一个二次三项式:f(x) = x^2 + 5x + 6。

首先,计算判别式Δ:Δ = b^2 - 4ac = 5^2 - 4 * 1 * 6 = 25 - 24 = 1由于Δ > 0,说明该二次三项式有两个不相等的实根。

二次三项式的因式分解(用公式法)及一元二次方程的应用 人教版

二次三项式的因式分解(用公式法)及一元二次方程的应用 人教版

二次三项式的因式分解(用公式法)及一元二次方程的应用一. 本周教学内容:二次三项式的因式分解(用公式法)及一元二次方程的应用[学习目标]1. 熟练掌握二次三项式的意义;了解二次三项式的因式分解与解一元二次方程的关系;运用一元二次方程的求根公式在实数范围内将二次三项式分解因式。

2. 学会用列一元二次方程的方法解实际应用题。

3. 通过二次三项式的因式分解的学习,提高分析问题,解决问题的能力;进一步了解认识问题和解决问题的一般规律,即由一般到特殊,再由特殊到一般。

4. 通过一元二次方程的应用的学习,提高化实际问题为数学问题的能力和分析问题,解决问题的能力,培养用数学的意识;深刻体会转化,方程,数形结合等初等数学的思想方法。

二. 重点、难点:1. 教学重点:①应用公式法将二次三项式因式分解;会用列一元二次方程的方法解决实际应用的问题。

②在列一元二次方程的方法解应用题时,分析题意找出表示全部含义的相等关系,是能否列出方程的前提和保证。

2. 教学难点:①一元二次方程的根与二次三项式因式分解的关系;一个二次三项式在实数范围内因式分解的条件。

②在列一元二次方程的方法解应用题时,分析题意找等量关系是难点;注意求解后,检验根是否符合实际意义。

【典型例题】例1. 分解因式①x x 264-+②32312x x -+ ③24322x xy y +-④-+-x x 2525 ⑤()x x 221+-分析:前四个均为二次三项式ax bx c a 20++()≠或二元二次三项式Ax Bxy Cy 22++的因式分解,直接用公式进行分解。

ax bx c a x x x x 212++=--()()其中x x 12,为方程ax bx c a 200++=()≠的两根。

Ax Bxy Cy A x x x x 2212++=--()(),其中x x 12,为关于x 的方程Ax Bxy Cy A 2200++=()≠的两根。

第五个用平方差公式,再用公式法分解二次三项式。

二次三项式的因式分解(用公式法)_九年级数学教案_模板

二次三项式的因式分解(用公式法)_九年级数学教案_模板

二次三项式的因式分解(用公式法)_九年级数学教案_模板一、教学目标1.使学生理解二次三项式的意义;知道二次三项式的因式分解与一元二次方程的关系;2.使学生会利用一元二次方程的求根公式在实数范围内将二次三项式分解因式;3.通过二次三项式因式分解方法的推导,进一步启发学生学习的兴趣,提高他们研究问题的能力;4.通过二次三项式因式分解方法的推导,进一步向学生渗透认识问题和解决问题的一般规律,即由一般到特殊,再由特殊到一般;5.通过利用一元二次方程根的知识来分解因式,渗透知识间是普遍联系的数学美。

二、重点·难点·疑点及解决办法1.教学重点:用公式法将二次三项式因式分解。

2.教学难点:一元二次方程的根与二次三项式因式分解的关系。

3.教学疑点:一个二次三项式在实数范围内因式分解的条件。

4.解决办法:二次三项式能分解因式二次三项式不能分解二次三项式分解成完全平方式三、教学步骤(一)教学过程1.复习提问(1)写出关于x的二次三项式?(2)将下列二次三项式在实数范围因式分解。

①;②;③。

由③感觉比较困难,引出本节课所要解决的问题。

2.新知讲解(1)引入:观察上式①,②,③方程的两个根与方程左边的二次三项式的因式分解之关系。

①;解:原式变形为。

∴,②;解原方程可变为观察以上各例,可以看出1,2是方程的两个根,而,……所以我们可以利用一元二次方程的两个根来分解相应左边的二次三项式。

(2)推导出公式设方程的两个根为,那么,∴这就是说,在分解二次三项式的因式时,可先用公式求出方程的两个根,然后写成教师引导学生从具体的数字系数的例子,观察、探索结论,再从一般的字母系数的例子得出一般性的推导,由此可知认识事物的一般规律是由特殊到一般,再由一般到特殊。

(3)公式的应用例1 把分解因式解:∵方程的根是教师板书,学生回答。

由①到②是把4分解成2×2分别与两个因式相乘所得到的,目的是化简①。

练习:将下列各式在实数范围因式分解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、素质教育目标
(一)知识教学点:
熟练地运用公式法在实数范围内将二次三项式因式分解.
(二)能力训练点:
通过本节课的教学,提高学生研究问题、解决问题的能力.
(三)德育渗透点:
进一步对学生进行辩证唯物主义思想教育.
二、教学重点、难点
1.教学重点:用公式法将二次三项式因式分解.
2.教学难点:一元二次方程的根和二次三项因式分解的关系.
三、教学步骤
(一)明确目标
对于含有一个字母在实数范围内可分解的二次三项式,学生利用十字相乘法或用公式法可以解决.对于含有两个字母的二次三项式如何用公式法进行因式分解是我们本节课研究的目标.
(二)整体感知
本节课是上节课的继续和深化,上节课主要练习了利用公式法将含有一个字母的二次三项式因式分解,这节课研究含有两个字母的二次三项式的因式分解,实际上可设二次三项式为零,把一个字母看成是未知数,其它看成已知数,求出方程的两个根,然后利用公式法将问题解决.本节课较上节课有一定的难度.
通过本节课,进一步提高学生分析问题、解决问题的能力.上节课是本节课的基础,本节课是上节课的加深和巩固.
(三)重点、难点的学习和目标完成的过程
1.复习提问:
(1)如果x1,x2是方程ax2+bx+c=0的两个根,则ax2+bx+c如何因式分解?(2)将下列各式因式分解?
①4x2+8x-1;②6x2-9x-21.
2.例1 把2x2-8xy+5y2分解因式.
解:∵关于x的方程2x2-8xy+5y2=0的根是
教师引导、板书,学生回答.
注意以下两个问题:
(1)把x看成未知数,其它看成已知数.
(2)结果不能漏掉字母y.
练习:在实数范围内分解下列各式.
(1)6x2-11xy-7y;(2)3x2+4xy-y2.
学生板书、笔答,评价.
注意(1)可有两种方法,学生体会应选用较简单的方法.
例2 把(m2-m)x2-(2m2-1)x+m(m+1)分解因式.
分析:此题有两种方法,
方法(一)∵关于x的方程
(m2-m)x2-(2m2-1)x+m(m+1)=0
∴(m2-m)x2-(2m2-1)x+m(m+1)
=[(m-1)x-m][mx-(m+1)]
=(mx-x-m)(mx-m-1).
方法(二)用十字相乘法.
(m2-m)x2-(2m2-1)x+m(m+1)
=m(m-1)x2-(2m2-1)x+m(m+1)
=[(m-1)x-m][mx-(m+1)]
=(mx-x-m)(mx-m-1).
方法(二)比方法(一)简单.
由此可以得出:遇见二次三项式的因式分解:(1)首先考虑能否提取公因式.
(2)能否运用十字相乘法.
(3)最后考虑用公式法.
以上教师引导,学生板书、笔答,学生总结结论.练习:把下列各式因式分解:
(1)(m2-m)x2-(2m2-1)x+m(m+1);
(2)(x2+x)2-2x(x+1)-3.
解:(1)(m2-m)x2-(2m2-1)x+m(m+1)
=m(m-1)x2-(2m2-1)x+m(m+1)
=[mx-(m+1)][(m-1)x-m]
=(mx-m-1)[(m-1)x-m)].(因式分解法)
(2)(x2+x)2-2x(x+1)-3…第一步
=(x2+x-3)(x2+x+1)…第二步
(1)题用十字相乘法较简单.
(2)题第一步到第二步用十字相乘法,由第二步到第三步用公式法.注意以下几点:(1)因式分解一定进行到底.
(2)当b2-4ac≥0时,ax2+bx+c在实数范围内可以分解.当b2-4ac<0时,ax2+bx+c 在实数范围内不可分解.
(四)总结与扩展
启发引导、小结本节课内容.
1.遇见二次三项式因式分解.
(1)首先考虑能否提取公因式.
(2)其次考虑能否选用十字相乘法.
(3)最后考虑公式法.
四、布置作业
1.教材P.38中B 1 . 2(8).
2.把下列各式分解因式:
(1)(m2-m)x2-(2m2-1)x+m(m+1);
(2)(x2+x)2-3x(x+1)-4.
五、课后记
通过本节课的学习,提高学生分析问题、解决问题的能力.3.注意以下几点;
(1)在进行2x2-8xy+5y2分解因式时,千万不要漏掉字母y.
(2)因式分解一定进行到不能再分解为止.
(3)对二次三项式ax2+bx+c的因式分解,当b2-4ac≥0时,它在实数范围内可以分解;当b2-4ac<0时,ax2+bx+c在实数范围内不可以分解.。

相关文档
最新文档