二次三项式的因式分解

合集下载

初三数学教案-初三数学二次三项式的因式分解

初三数学教案-初三数学二次三项式的因式分解

初三数学二次三项式的因式分解教学优化设计【概念与规律】1.若方程ax2+bx+c=0(aM0)的两实根为xl,x2,则二次三项式ax2+bx+c在实数范围内可因式分解成ax2+bx+c=a(x—x1)(x—x2).2.用公式法分解二次三项式时要注意:(1)右边不能遗漏二次项系数a.(2)若xl,x2的分母的积恰好是a的约数时,则将a分解成两个适当的数的积,分别乘入两个括号中,约去分母;若xl,x2的分母的积不是a的约数时,则a仍保留在括号外.(3)当4V0时,则二次三项式在实数范围内不能分解因式.【讲解设计】•重点与难点例1在实数范围内分解因式:分析直接运用公式可进行因式分解.例2在实数范围内分解因式:(1)2x2-8xy+5y2;(2)3x2y2-5xy-1.分析(1)将它看成关于x的二次三项式,运用公式法分解因式;(2)将它看成关于(xy)的二次三项式,运用公式法分解因式.例3在实数范围内分解因式:(1)4x2+8xy-y2;(2)x4-2x2-3.分析(1)将它看成关于x的二次三项式运用公式法分解因式;(2)先用十字相乘法,再在实数范围内运用平方差公式进行因式分解.例4在实数范围内分解因式:(2)(x2+1)(x2+2)-73.分析(1)将它看成关于x的二次三项式,但要注意根式运算的准确性;(2)展开后转化为双二次型的因式分解.(2)(x2+1)(x2+2)-73=x4+3x2-70=(x2+10)(x2-7)=(x2+【讲解设计】•思路与方法例5若2x2—3x+m+1可以在实数范围内分解因式,求m的取值范围.提示二次三项式在实数范围内能分解因式的条件是对应的二次方程根的判别式△三0.例6分别在有理数范围内和实数范围内分解因式:(x2—5x+4)(x2+9x+18)+180.提示原式=(x—1)(x—4)(x+3)(x+6)+180=(x2+2x—3)(x2+2x—24)+180,转化为(x2+2x)的二次三项式.但要注意两种不同的分解范围.【练习设计】•识记与理解1.填空题:(1)若x1,x2是ax2+bx+c=0(aM0)的两个根,则二次三项式ax2+bx+c分解因式的结果为.(2)分解因式x2—2xy—3y2=.(3)在实数范围内分解因式x2—x—1=.(4)若2x2—3x+m—1是一个完全平方式,则m=;若它能在实数范围内分解因式,则m的取值范围是.2.选择题:(1)在实数范围内分解x4—16为[]A.(x2+4)(x2-4)B.(x2+4)(x+2)(x—2)(2)二次三项式2x2—5x+1在实数范围内分解因式,其结果为[]3.在有理数范围内分解因式:(1)x+2—x2;(2)—12z2—xyz+x2y2;(3)(x2+xy+y2)(x2+xy+2y2)—12y4;(4)(x2+x)2—2(7x2—12+7x).4.在实数范围内分解因式:(1)4x—4x2+1;(3)(x+1)(x+3)(x+5)(x+7)+15;(4)(x2—7x+6)(x2—x—6)+56.【练习设计】•巩固与掌握在实数范围内因式分解的结果是什么?6.设x2—2kx+k=0有相等的两正根,试将二次三项式x2—(k+3)x+k在实数范围内分解因式.7.将x4—4在实数范围内分解因式,其结果共有几个含有x的代数式的因式(因式1除外)?这几个因式中,对任何实数x,哪个的值最小?8.若二次三项式x2+mx+n(nM0)可因式分解成(x—m)(x—n),求m与n的值.9.已知:a,b分别是等腰三角形的一腰和底边的长.求证:关于x的二次三项式x2—4ax+b2一定能在实数范围内分解因式.10.在实数范围内分解因式:x2—px+q=(x—2)(x—3),请写11.若多项式xmyn+x2y2+xy—1是一个五次四项式(m,n都是大于1的正整数),试将二次三项式x2+(m+n)x+(—mn)分解因式.12.求证:对任何有理数a,x2+2ax+a2—2在有理数范围内总不能因式分解,而在实数范围内总能因式分解.13.已知a2+b2—2a—2b+2=0,m,n是方程y2—3y+2=0的两个根(m>n),试将xa+b+mx+n 在实数范围内分解因式.【练习设计】•拓展与迁移14.已知在RtAABC中,ZC=90°,ZB=60°,a、b、c分别是ZA、ZB、ZC的对边.试判断二次三项式ax2+bx+c能否在实数范围内分解因式,如果能,请写出分解的结果;如果不能,请说明理由.15.设m为正整数,x2—4x+m能在有理数范围内分解因式,(1)求出m的值;(2)对于所有可能的m值,写出这些多项式;(3)将写出的所有多项式相加,试问:相加后得到的多项式还能在有理数范围内分解吗?答案2.(1)B(2)D3.(1)—(x—2)(x+1)(2)(xy+3z)(xy—4z)(3)(x2+xy+5y2)(x—y)(x+2y)(4)(x-1)(x+2)(x-3)(x+4)6.提示:先求k值,kl=l,k2=0(舍去),再分解,x2—(k+8.m=l,n=—29.△=4(2a+b)(2a—b),而2a+b,2a—b均大于011.(x+6)(x—1)12.(1)A=8不是完全平方数(2)A=8>013.a=b=1,m=2,n=1,xa+b+mx+n=(x+1)215.(1)m=3,m=4(2)x2—4x+3,x2—4x+4(3)2x2—8x+7,不能。

17.4二次三项式的因式分解--求根公式法

17.4二次三项式的因式分解--求根公式法

5
5
当m为何值时,二次三项式2x2 + 6x – m (默8)
(1)在实数范围内能分解;(2)不能分解; (3)能分解成两个相同的因式
B组
(1)在实数范围内分解因式 3x2 4xy y2为
( 3 x 2 7 y)( x 2 7 y)
3
3
破题思路
由△= [(2k 1)]2 41 (k 2 5) 4k 19 0
该方程的实数根是
x1

3 4
17
3 17 x2 4
=
2 (x 3
4
17 )(x 3 4
17 )
例题1 分解因式:
(2)
小试牛刀
(1)解: 对于方程 4x2 8x 1 0 b2 4ac 82 4 41 80 0
该方程的实数根是
x1
2. 选择题
k 19 4
K的值为 ( B )
A、 19 4
B、19
C、2
4
D、 2
小结
1. 对于不易用以前学过的方法:x2 (a b)x ab (x a)( x b)
分解二次三项式 ax2 bx c 宜用一元二次方程的
(2)第二步:求出方程①的两个根x1, x2;
(3)因式分解 ax2 bx c a(x x1)( x x2 )
课堂练习
A组
1. 填空题
(1)若方程ax2 bx c 0的两根为 x1, x2,则ax2 bx c分解为
a(x x1)( x x2 )
(2)分解因式: x2 20x 96 = (x 8)(x 12)


2

二次三项式的因式分解(5种题型)-2023年新八年级数学核心知识点与常见题型(沪教版)(解析版)

二次三项式的因式分解(5种题型)-2023年新八年级数学核心知识点与常见题型(沪教版)(解析版)

二次三项式的因式分解【知识梳理】二次三项式的因式分解(1)形如()2ax bx c a b c ++,,都不为零的多项式称为二次三项式;(2)如果一元二次方程20ax bx c ++=(0)a ≠的两个根是1x 和2x , 那么二次三项式的分解公式为:2ax bx c ++()()12a x x x x =−−.,【考点剖析】 题型一:两根与二次三项式因式分解关系 例1.若方程24210y y −−=的两个根是1y =,2y =,则在实数范围内分解因式2421y y −−=____________.【答案】⎪⎪⎭⎫ ⎝⎛−−⎪⎪⎭⎫ ⎝⎛+−4514514y y . 【解析】如果一元二次方程20ax c ++=(0)a ≠的两个根是1x 和2x,那么二次三项式2ax bx c ++可分解为:2ax bx c ++()()12a x x x x =−−.【总结】本题主要考查利用一元二次方程进行二次三项式的因式分解. 【变式1】若二次三项式)0(2≠++a c bx ax 在实数范围内可分解因式为)221)(221(3−++−−x x ,则一元二次方程)0(02≠=++a c bx ax 的两个实数根为________________.【答案】2211+=x ,2122−=x .【解析】如果一元二次方程20ax bx c ++=(0)a ≠的两个根是1x 和2x,那么二次三项式的分 解公式为:2ax bx c ++()()12a x x x x =−−.【总结】本题主要考查二次三项式的因式分解与相对应的一元二次方程的根的关系.题型二:不能在实数范围内因式分解的二次三项式例2.下列二次三项式在实数范围内不能因式分解的是(,,,,,,) A.2615x x +−;,,,,,,,,,,,,,,,,,,,,,B.,2373y y ++;,,,,,,,,, C.2224x x −−;,,,,,,,,,,,,,,,,,,,,,D.2245y y −+. 【答案】D ;【解析】解:A 、因为24146153610b ac −=+⨯⨯=>,故此二次三项式在实数范围内可以因式分解;B 、因为2449433130b ac −=−⨯⨯=>,故此二次三项式在实数范围内可以因式分解;C 、因为244424360b ac −=+⨯⨯=>,故此二次三项式在实数范围内可以因式分解;D 、因为2416425240b ac −=−⨯⨯=−< 故此二次三项式在实数范围内不能因式分解.故答案选D.【变式1】下列二次三项式在实数范围内不能因式分解的是(,,,,,)A.1562−+x x ,,,,,B.3732++y y ,,,,,C.422−−x x ,,,,,D.22542y xy x +−【答案】D ;【解析】,解:A 、因为24146153610b ac −=+⨯⨯=>,故此二次三项式在实数范围内可以因式分解;B 、因为2449433130b ac −=−⨯⨯=,故此二次三项式在实数范围内可以因式分解;C 、因为24444200b ac −=+⨯=>,故此二次三项式在实数范围内可以因式分解;D 、因为222241642524b ac y y y −=−⨯⨯=− 又因为二次三项式,故20,240y y ≠∴−<,故此二次三项式在实数范围内不能因式分解. 故答案选D.【变式2】下列二次三项式在实数范围内不能因式分解的是(,,,,,,)A.2411x x +−;,,B.,2373y y ++;,,,,C.,224x x −−;,,,D.,22245x xy y −+.【答案】D ;【解析】解:A 、因为24144111770b ac −=+⨯⨯=>,故此二次三项式在实数范围内可以因式分解;B 、因为2449433130b ac −=−⨯⨯=>,故此二次三项式在实数范围内可以因式分解;C 、因为24444200b ac −=+⨯=>,故此二次三项式在实数范围内可以因式分解;D 、因为222241642524b ac y y y −=−⨯⨯=− 又因为二次三项式,故20,240y y ≠∴−<,故此二次三项式在实数范围内不以因式分解. 故答案选D.【变式3】如果关于x 的二次三项式24x x m −+在实数范围内不能因式分解,那么m 的值可以是_________.(填出符合条件的一个值) 【答案】5;【解析】解:当241640b ac m −=−<即4m >时,关于x 的二次三项式24x x m −+在实数范围内不能因式分解,如m 取5等等.题型三:二次项系数为1的实数范围内二次三项式因式分解 例3.在实数范围内分解因式:241x x −−=______________【答案】(22x x −+−;【解析】解:原式=2445x x −+−=()222x −−=(22x x −−−.【变式1】在实数范围内分解因式:232x x −−=,,,,,,,,,,,,,,,,,,,,.【答案】x x ⎛−− ⎝⎭⎝⎭; 【解析】解:因为方程2320x x −−=的两根为x =,故232x x −−=x x ⎛ ⎝⎭⎝⎭. 【变式2】在实数范围内分解因式:243x x −−=,____________________.【答案】(22x x −−;【解析】解:解方程x2-x-3=0,得x=2±则:x2-4x-3=(22x x −−+.【变式3】在实数范围内分解因式: (1)224x x −−;(2)223x xy y −−.【答案】(1)(11x x −−,,,,(2)3322x y x y ⎛⎫⎛⎫−−− ⎪⎪ ⎪⎪⎝⎭⎝⎭【分析】(1)前两项先配成完全平方公式,然后根据平方差公式,可得答案;(2)先解方程2230x xy y −−=,然后分解因式即可. 【详解】(1)原式=(x2﹣2x+1)﹣5=(x ﹣1)22=(x ﹣1(x ﹣1;(2)∵2230x xy y −−=的解是x y =,∴原式=x y x y ⎛⎫⎛⎫− ⎪⎪ ⎪⎪⎝⎭⎝⎭.【点睛】本题考查了因式分解,利用乘法公式和求根公式是解答本题的关键. 题型四:二次项系数不为1的实数范围内二次三项式因式分解 例4.二次三项式2x 2-8x+5在实数范围内因式分解为(,,,,)A.,B.,C.,2(x+)(x-)22D.,2(x-)(x-)22【答案】D ;【解析】解:令2x2-8x+5=0,解得:x1=,x2=,则2x2-8x+5=2(x x .故选D .【变式1】在实数范围内因式分解:222x x −−=__________________.【答案】2(x x ;【解析】解:2220x x −−=的解是1x =,214x =,所以222x x −−=2(x x【变式2】在实数范围内因式分解:2221x x −−=______.【答案】2⎛ ⎝⎭⎝⎭x x ;【解析】解:22122122x x x x ⎛⎫−−=−− ⎪⎝⎭=21111222442x x ⎛⎫−⋅+−− ⎪⎝⎭=213224x ⎡⎤⎛⎫−−⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=221222x ⎡⎤⎫⎛⎫⎢⎥−−⎪ ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦=11222x x ⎛−− ⎝⎭⎝⎭=2x x ⎛⎝⎭⎝⎭.【变式3】在实数范围内分解因式:2225x x −−=____.【答案】112()2222x x −−−+;【解析】解:2225x x −−=21112()42x x −+−=21112()22x −−=21112()24x ⎡⎤−−⎢⎥⎣⎦11=2(22x x −−,故答案为:112()()2222x x −−−+.【变式4】分解因式:2235a ab b −−.【答案】3a a ⎛⎫⎛⎫− ⎪⎪ ⎪⎪⎝⎭⎝⎭; 【解析】解:因为222=2543()370b b b ∆−⨯⨯−=≥,故方程22350a ab b −−=的两根为a ==,故22353a ab b a a ⎛⎫⎛⎫−−= ⎪⎪ ⎪⎪⎝⎭⎝⎭. 题型五:实数范围内二次三项式因式分解的应用例5.如果二次三项式px 2+2x ﹣1在实数范围内可以因式分解,求p 的取值范围. 【答案】p≥﹣1且p≠0;【解析】解:∵二次三项式px2+2x ﹣1在实数范围内可以因式分解, ∴px2+2x ﹣1=0有实数解, ∴△=4+4p≥0,且p≠0, 解得:p≥﹣1且p≠0.【变式1】二次三项式2342x x k −+,当k 取何值时,(1)在实数范围内能分解; (2)不能分解;(3)能分解成一个完全平方式,这个完全平方式是什么?【答案】(1)32≤k ;(2)32>k ;(3)32=k ,完全平方式为2323⎪⎭⎫ ⎝⎛−x . 【解析】(1)要使二次三项式2342x x k −+在实数范围内能分解,则方程23420x x k −+=要有实数根,则需要满足()021242≥⋅−−=∆k ,解得:32≤k ;(2)要使二次三项式2342x x k −+在实数范围内不能分解,则方程23420x x k −+=没有实数根,则需要满足()021242<⋅−−=∆k ,解得:32>k ;(3)要使二次三项式2342x x k −+在实数范围内能分解成一个完全平方式,则方程23420x x k −+=有两个相等实数根,则需要满足()021242=⋅−−=∆k ,解得:32=k .此时,完全平方式为2323⎪⎭⎫ ⎝⎛−x . 【总结】当一个二次三项不能在实数范围内分解因式时,则说明该二次三项式所对应的一元二次方程在实数范围内无解,反之,则说明该二次三项式所对应的一元二次方程有实数解. 【变式2】阅读题:分解因式:223x x −−. 解:原式22113x x =++−−,,,,,,,,()2214x x =++−,,,,,,,,()214x =+− ,,,,,,,,()()1212x x =+++− ,,,,,,,,()()31x x =+−.此方法是抓住二次项和一次项的特点,然后加一项,使这三项为完全平方式,我们称这种方法为配方法.此题为用配方法分解因式.请体会配方法的特点,然后用配方法解决下列问题:在实数范围内分解因式:2441a a +−.【答案】(2121a a ++.【分析】先配方,再根据平方差公式分解即可. 【详解】()(224412122121a a a a a +−=+−=+++【点睛】本题考查了配方法的应用,熟练掌握配方的方法是解答本题的关键.,此方法是抓住二次项和一次项的特点,然后加一项,使这三项为完全平方式,,再减去一次项系数一半的平方,使整个式子的值不变,这种变形的方法称为“配方法”.,【过关检测】一、单选题1.(2022秋·上海浦东新·八年级统考期中)下列关于x 的二次三项式在实数范围内不能够因式分解的是( )【答案】C【分析】利用完全平方公式把A 分解,利用十字乘法把B 分解,再分别令229=0,y y −+21=0,y −再计算根的判别式,从而可判断C ,D ,从而可得答案. 【详解】解:()22442,x x x −+=−故A 不符合题意;()()22352=32,x xy y x y x y −−+−故B 不符合题意;令229=0,y y −+则4419320,=−⨯⨯=−<,所以229y y −+在实数范围内不能分解,故C 符合题意;令21=0,y −则()2=4241160,b ac −=−⨯⨯−=>,y ∴=,12y y ∴==,21=,y y y ⎛∴− ⎝⎭⎝⎭故D 不符合题意; 故选:C【点睛】本题考查的是因式分解,一元二次方程的解法,根的判别式,掌握利用公式法解一元二次方程,进而分解因式是解题的关键.2.(2023·上海·八年级假期作业)下列关于x 的二次三项式中,一定能在实数范围内因式分解的是( ) A .21x x −+ B .21x mx −+ C .21x mx −− D .22x xy y −+【答案】C【分析】根据一定能在实数范围内因式分解可知必须满足240b ac ∆=−≥,分别进行判断即可;【详解】21x x −+的241430b ac −=−=−<,故A 错误;21x mx −+的2244b ac m −=−,可能大于0,也可能小于0,故B 错误; 21x mx −−的22440b ac m −=+>,故C 正确;22x xy y −+的22224430b ac y y y −=−=−≤,故D 错误;故选C .【点睛】本题主要考查了能在实数范围内分解因式的条件,根据题意判断出判别式的符号,认真计算,熟练掌握任何数的平方都是非负数是解题的关键.3.(2021秋·上海宝山·八年级校考期中)下列关于x 的二次三项式在实数范围内不能够因式分解的是( ) A .x 2﹣3x +2 B .2x 2﹣2x +1C .2x 2﹣xy ﹣y 2D .x 2+3xy +y 2【答案】B【分析】利用十字乘法把选项A ,C 分解因式,可判断A ,C ,利用一元二次方程根的判别式计算的值,从而可判断B ,D ,从而可得答案. 【详解】解:()()23212,x x x x -+=--Q ,故A 不符合题意;令22210,x x -+=,()2=242140,\--´´=-<V ,所以2221x x −+在实数范围内不能够因式分解,故B 符合题意;()()2222,x xy y x y x y --=+-Q ,故C 不符合题意;令2230,x xy y ++=,()22234150,y y y \=-´´=³V ,所以223x xy y ++在实数范围内能够因式分解,故D 不符合题意;故选B【点睛】本题考查的是利用十字乘法分解因式,一元二次方程的根的判别式的应用,掌握“利用一元二次方程根的判别式判断二次三项式在实数范围内能否分解因式”是解本题的关键.【答案】C【分析】从题中可以看出多项式非一般方法可以解出,可以将式子变成关于x 的一元二次方程进行求解,之后再代入因式分解的形式中即可.【详解】解:令22230x xy y −−=,解得1x y =,2x y =,所以22232()()x xy y x y x y −−=,故选:C .【点睛】本题主要考查的是利用特殊方法进行因式分解,掌握一元二次方程的求解方法是解题的关键. 5.(2022秋·上海嘉定·八年级统考期中)在实数范围内不能分解因式的是( )【答案】C【分析】二次三项式可分解因式的前提是方程有实数根,根据方程根的判别式24b ac ∆=−与0的大小关系判断方程是否有实数根,即是否可分解因式. 【详解】A 、()()24421240∆=−−⨯⨯−=>,B 、(()2416360∆=−−⨯⨯−=>,C 、()2245112160∆=−−⨯⨯=−<,D 、()()22442360∆=−−⨯⨯−=>,只有C 选项∆小于0,,即C 选项不能分解因式,故选:C .【点睛】本题考查了二次三项式是否可因式分解,熟练运用根的判别式是解题的关键.【答案】B【分析】二次三项式能不能在实数范围内分解因式,关键是看判别式的范围.0∆≥,能分解因式;Δ0<,不能分解因式.【详解】解:A :24b ac ∆=−,()21413=−−⨯⨯,112=−,,110=−<.23x x −+不能在实数范围内分解因式.故A 错.B :24b ac ∆=−()21412m ⎛⎫=−−⨯⨯− ⎪⎝⎭220m =+>. 212x mx −−能在实数范围内分解因式.故B 正确.C :24b ac ∆=−,()2243−−=,,40−,223x −+不能在实数范围内分解因式.故C 错.D :24b ac ∆=−,()()21412m =−−⨯⨯−,18m =+,m 的值不定,18m +的符号不确定,故不能判断22x x m −−能否在实数范围内分解因式.故D 不一定.故答案为:B .【点睛】本题考查是在实数范围内分解因式,解题的关键是判别式的应用.二、填空题7.(2022秋·上海·八年级上海市民办立达中学校考阶段练习)在实数范围内因式分解:2331x x +−=__________.【答案】3x x ⎛ ⎭⎝⎝⎭ 【分析】求得方程23310x x +−=的两个根,即可求解.【详解】解:23310x x +−=3a =,3b =,1c =−,()249431210b ac ∆=−=−⨯⨯−=>,x =,136x −=,236x −=23333666633133x x x x x x ⎛⎛+−=−=+ −+− ⎝⎭⎝−+⎝⎭⎭⎝⎭,故答案为:3x x ⎛ ⎭⎝⎝⎭ 【点睛】此题考查了因式分解,涉及了公式法求解一元二次方程,解题的关键是正确求得一元二次方程的两个根.8.(2022秋·上海松江·八年级校考期中)在实数范围内因式分解:223105x xy y ++=________.【答案】)【分析】先把原式变形为()222522x xy y x +−+,可得到()2225x y x +−,再利用平方差公式进行因式分解,即可求解. 【详解】解:223105x xy y ++22251205x xy y x +−=+()222252x xy y x +−=+()2252x y x +−=))22x y ⎤⎦−+=)=.故答案为:)【点睛】本题考查了实数范围内分解因式:一些式子在有理数的范围内无法分解因式,可是在实数范围内就可以继续分解因式.通过补项配成完全平方公式是解决问题的关键.9.(2022秋·上海浦东新·八年级统考期中)在实数范围内分解因式:233x x−−=_____.【答案】322x x⎛−−⎝⎭⎝⎭【分析】令2330x x−−=,解得1x=,2x,把233x x−−写成因式分解的形式即可.【详解】解:令2330x x−−=,则1,3,3a b c==−=−,∵()()224341321b ac−=−−⨯⨯−=,∴x=,即1x=,2x=,则233xx x x⎛−−⎛⎝⎝=⎭⎭.故答案为:322x x⎛−−⎝⎭⎝⎭.【点睛】此题考考查了实数范围内的因式分解,正确求解一元二次方程是解题的关键.10.(2022秋·上海黄浦·八年级上海市黄浦大同初级中学校考期中)在实数范围内分解因式:231−−=xx_________________.【答案】3x x⎛⎝⎭⎝⎭【分析】先解方程2310x x−−=,求得方程的两个根,即可求解.【详解】解:2310x x−−=,∵3,,1,1a b c ==−=−,∴2411213b ac ∆=−=+=,∴x ,∴12x x =, ∴231−−=xx 3x x ⎛ ⎝⎭⎝⎭.故答案为:3x x ⎛ ⎝⎭⎝⎭. 【点睛】本题考查了解一元二次方程,因式分解,正确的求得方程的两根是解题的关键.11.(2022秋·上海杨浦·八年级校考期中)在实数范围内分解因式237x x −−=_______.【答案】x x ⎛ ⎝⎭⎝⎭ 【分析】将237x x −−化成一个完全平方式与另一个数的差,再运用平方差公式分解因式.【详解】解:237x x −−22337324x x ⎛⎫=−+− ⎪⎝⎭ 233724x ⎛⎫=−− ⎪⎝⎭3322x x ⎛=−− ⎝⎭⎝⎭x x ⎛= ⎝⎭⎝⎭.故答案为:x x ⎛ ⎝⎭⎝⎭. 【点睛】本题主要考查实数范围内分解因式,其中涉及完全平方公式和平方差公式的运用. 12.(2022秋·上海·八年级上海市进才实验中学校考期中)若二次三项式234ax x ++在实数范围内能因式分解,则a 的最大整数解为______.【答案】1−【分析】由二次三项式234ax x ++在实数范围内可以因式分解,可得2340ax x ++=是一元二次方程且在实数范围内有解,再根据一元二次方程根的判别式列不等式即可得到答案.【详解】解:∵,二次三项式234ax x ++在实数范围内可以因式分解,∴2340ax x ++=是一元二次方程且在实数范围内有解,∴0a ≠,23440a ∆=−⨯⨯≥,解得,916a ≤且0a ≠,所以a 的最大整数解为1−.故答案为:1−.【点睛】本题主要考查了二次三项式在实数范围内分解因式,一元二次方程根的判别式,掌握“二次三项式在实数范围内可以因式分解的含义”是解本题的关键. 13.(2022秋·上海黄浦·八年级上海外国语大学附属大境初级中学校考期中)在实数范围内因式分解:223105x y xy ++=______.【答案】3xy xy ⎛ ⎝⎭⎝⎭ 【分析】令t xy =,则式子可化为3105t t ++,令231050t t ++=,求解即可.【详解】解:令t xy =,则式子可化为23105t t ++,令231050t t ++=,3a =,10b =,5c =t ==即1t=,2t=∴22310533x y xy xy xy xy xy ⎛⎛++== ⎝⎭⎝⎭⎝⎭⎝⎭故答案为:3xy xy ⎛ ⎝⎭⎝⎭【点睛】此题考查了因式分解,涉及了一元二次方程的求解,解题的关键是正确求得一元二次方程的两个根. 14.(2022秋·上海宝山·八年级上海市泗塘中学校考期中)在实数范围内因式分解:22231xy xy −−=__________【答案】2xy xy ⎛ ⎝⎭⎝⎭ 【分析】令t xy =,则式子可化为2231t t −−,令22310t t −=−,求解即可.【详解】解:令t xy =,则式子可化为2231t t −−,令22310t t −=−则2a =,3b =−,1c =−t===则1t =,2t =222312x y xy xy xy ⎛−−=⎝⎭⎝⎭故答案为:xy xy ⎛ ⎝⎭⎝⎭ 【点睛】此题考查了因式分解,涉及了换元法和一元二次方程的求解,解题的关键是正确求得方程的根.15.(2022秋·上海长宁·八年级上海市第三女子初级中学校考期中)在实数范围内因式分解:2231x x +−=_____.【答案】2x x ⎛ ⎝⎭⎝⎭【分析】结合题意,当231022x x +−=时,通过求解一元二次方程,得 231022x x x x ⎛+−==⎝⎭⎝⎭,结合22312x x x x ⎛+−= ⎝⎭⎝⎭,即可得到 答案.【详解】解:2231231222x x x x ⎛⎫+−=+− ⎪⎝⎭, 当231022x x +−=时,得x ==,∴231022x x x x ⎛+−== ⎝⎭⎝⎭,∴23122x x x x ⎛+−= ⎝⎭⎝⎭,∴22312x x x x ⎛+−= ⎝⎭⎝⎭.故答案为:2x x ⎛ ⎝⎭⎝⎭. 【点睛】本题考查了因式分解和一元二次方程的知识,解题的关键是熟练掌握一元二次方程的性质,从而完成求解.16.(2022秋·上海金山·八年级校联考期末)在实数范围内分解因式:224x x −−=__.【答案】(11x x −−【详解】解:原式,()2215x x =−+−22(1)x =−−(11x x =−−故答案为:(11x x −+−【点睛】本题考查了因式分解,利用完全平方公式得出平方差公式是解题关键.17.(2022秋·上海·八年级校考期中)在实数范围内分解因式:2243x x −−___________.【答案】2x x ⎛ ⎝⎭⎝⎭ 【分析】根据公式法解22430x x −−=,得出22x =,再根据因式分解即可得出答案.【详解】解:由22430x x −−=,得:22x =,原式232222x x x x ⎛⎛⎫=−−= ⎪ ⎝⎭⎝⎭⎝⎭,故答案为:2x x ⎛ ⎝⎭⎝⎭. 【点睛】本题考查了实数范围内分解因式,准确熟练地进行计算是解题的关键.18.(2022秋·上海普陀·八年级校考期中)在实数范围内分解因式:2226x xy y −−=_____________.【答案】2x y x y ⎛⎫⎛⎫ ⎪⎪ ⎪⎪⎝⎭⎝⎭ 【分析】先提取2,再将括号里面的式子配方,最后用平方差公式因式分解即可.【详解】解:2226x xy y −−221232x xy y ⎛⎫ ⎪⎝=−⎭− 222291923424x xy y y y ⎛⎫− ⎪⎝=−−⎭+ 22311224x y y ⎡⎤⎛⎫−⎢=⎥ ⎪⎝⎭⎢−⎥⎣⎦22322x y y ⎫=−⎪⎪⎝⎭⎡⎤⎛⎫⎢⎥− ⎪⎢⎥⎝⎭⎣⎦33222x y y x y y ⎛⎫⎛⎫=−− ⎪⎪ ⎪⎪⎝⎭⎝⎭2x y x y ⎛⎫⎛⎫= ⎪⎪ ⎪⎪⎝⎭⎝⎭.故答案为:2x y x y ⎛⎫⎛⎫ ⎪⎪ ⎪⎪⎝⎭⎝⎭ 【点睛】本题考查了利用公式法因式分解以及实数的概念,主要涉及完全平方公式以及平方差公式,熟记完全平方公式以及平方差公式是解题关键.三、解答题19.(2022秋·上海·八年级专题练习)在实数范围内分解因式:(1)422772x x +−;(2)4241036y y −−+.【答案】(1)())2833x +−+ (2)()(2229y y y −+【分析】(1)先利用十字相乘法分解,然后利用平方差公式法分解因式求解即可;(2)先提公因式,然后利用十字相乘法分解,然后利用平方差公式法分解因式求解即可.(1)原式()()22829x x =+−())2833x =+−+(2)原式为()4222518y y =−+−()()222292y y =−+−()(2=22+9y y y −−【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.20.(2021秋·上海·八年级校考阶段练习)在实数范围内因式分解:22327x xy y −−【答案】3x y x y ⎛⎫⎛⎫ ⎪⎪ ⎪⎪⎝⎭⎝⎭【分析】先提公因式,再进行配方,运用平方差公式进行因式分解.【详解】解:22327x xy y −−22273()33x xy y =−− 222221173()3993x xy y y y =−+−−221223[()]33x y y =−−113()()33x y y x y y =−−3()()x y x y =. 【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解决本题的关键.21.(2022秋·八年级统考期中)在实数范围内因式分解:22236x xy y −−+【答案】2x y x y ⎛⎫⎛⎫− ⎪⎪ ⎪⎪⎝⎭⎝⎭【分析】求出关于x 的一元二次方程222360x xy y −−+=的解即可得出答案.【详解】解:解关于x 的一元二次方程222360x xy y −−+=, 得:x ==, ∴1x y=,2x y=,∴222362x xy y x y x y ⎛⎫⎛⎫−−+=− ⎪⎪ ⎪⎪⎝⎭⎝⎭.【点睛】本题考查实数范围内分解因式,掌握“()200ax bx c a ++=≠的两个根分别为1x 、2x ,则()()212++=−−ax bx c a x x x x ”是正确解答的关键.22.(2022秋·上海青浦·八年级校考期中)在实数范围内因式分解:22323x xy y−−.【答案】3x y x y ⎛⎫⎛⎫ ⎪⎪ ⎪⎪⎝⎭⎝⎭【详解】解:22323x xy y −−=2223()3x xy y −−=22221103()399x xy y y −+−221103()39x y y ⎡⎤=−−⎢⎥⎣⎦11333x y y x y ⎛⎫⎛⎫=−− ⎪⎪ ⎪⎪⎝⎭⎝⎭3x y x y ⎛⎫⎛⎫= ⎪⎪ ⎪⎪⎝⎭⎝⎭.【点睛】本题主要考查因式分解,熟练掌握用配方法进行因式分解是解决本题的关键.23.(2022秋·上海普陀·八年级校考期中)在实数范围内因式分解:223105x y xy ++.【答案】xy xy ⎡⎡⎣⎣.【分析】把223x y 化为222252x y x y −,则利用完全平方公式得到原式()222512xy x y =+−,然后利用平方差公式分解因式.【详解】解:原式222251052x y xy x y =++− ()22225212x y xy x y =++−()222512xy x y =+−))11xy xy ⎤⎤=++⎦⎦xy xy ⎡⎡=⎣⎣故答案为:xy xy ⎡⎡⎣⎣ 【点睛】本题考查了实数范围内分解因式:一些式子在有理数的范围内无法分解因式,可是在实数范围内就可以继续分解因式.通过补项配成完全平方公式是解决问题的关键. 24.(2022秋·上海·八年级上海市黄浦大同初级中学校考阶段练习)在实数范围内因式分解:2222x xy y −++【答案】24x y x y ⎛⎫⎛⎫− ⎪⎪ ⎪⎪⎝⎭⎝⎭【分析】列出关于x 的一元二次方程,求得方程的根,再根据方程的根写出因式分解的结果即可【详解】解:∵关于x 的一元二次方程为:22022x xy y ++=−,∵()22224422170b ac y y y ∆=−=−⨯−⨯=≥,∴x y ==, ∴1x y =,2x y=,∴22222x xy y x y x y ⎛⎫⎛⎫=− ⎪⎪ ⎪⎪⎝⎭⎝+⎭−+【点睛】本题考查了实数范围内因式分解,掌握“若一元二次方程()200ax bx c a ++=≠的两个实数根为1x ,2x ,则()()212++=−−ax bx c a x x x x ”是解决问题的关键. 25.(2022秋·上海·八年级专题练习)在实数范围内因式分解(1)2442y y +−;(2)2235x xy y −−.【答案】(1)(2121y y ++;(2)3x x y ⎛⎫⎛⎫ ⎪⎪ ⎪⎪⎝⎭⎝⎭【分析】(1)先拆项,再根据完全平方公式变形,最后根据平方差公式分解即可;(2)首先解方程得出方程的根进而分解因式.【详解】解:(1)2442y y +−=24413y y ++−=()2213y +−=(2121y y ++;(2)令2235x xy y −−=0, ()()22254337y y y =−−⨯⨯−=△,∴x =,∴x 或x =,∴2235x xy y −−=3x y x ⎛⎫⎛⎫ ⎪⎪ ⎪⎪⎝⎭⎝⎭.。

二次三项式的因式分解

二次三项式的因式分解

已知关于x的方程mx2 – 2(m + 2)x + (m + 5) 在实数范围内不能分解因式,判定关于x的方程 (m – 5)x2 – 2(m + 2)x + m =0的实数根的情况
其他类式子的因式分解:
() 1 x x y 72 y
4 2 2 2 2
4
2 2
( x 2 2 y)( x 2 2 y)( x 9 y )
2
2 2 11 2 2 11 5 x 4 x 8 5( x )( x ) 5 5
2
注意符号的变化
把2x 8xy 5 y 分解因式
2 2
将本题看作是关于x的二次三项式,所以应把y看作常数
解:关于x的方程2x2 – 8xy + 5y2 = 0的根是
x= 8y ?
2 7 2 7 ( 3 x y )( x y) 3 3
在实数范围内分解因式 - m2 - 2 2m + 3
- (m + 2+ 5)(m + 25)
在实数范围内分解因式
(2 x + 3a)( x - 3a) + 12ax
9 + 3 17 9 - 3 17 2(x + a)( x + a) 4 4
x 6 x 7 ( x 3) 2 ( x 3 2)( x 3 2)
2 (2 x 2) 3 4 x 8x 1 (2x 2 3)(2x 2 3)
2
2.
求根公式法
2
在分解二次三项式 ax bx c(abc 0)
可先用求根公式求出方程 ax bx c 0
1.二次三项式常见的分解方法

第10讲二次三项式的因式分解(原卷版)

第10讲二次三项式的因式分解(原卷版)

第10讲 二次三项式的因式分解【知识梳理】二次三项式的因式分解(1)形如()2ax bx c a b c ++,,都不为零的多项式称为二次三项式;(2)如果一元二次方程20ax bx c ++=(0)a ≠的两个根是1x 和2x , 那么二次三项式的分解公式为:2ax bx c ++()()12a x x x x =--.,【考点剖析】题型一:两根与二次三项式因式分解关系例1.若方程24210y y --=的两个根是1y =2y =2421y y --=____________.【变式1】若二次三项式)0(2≠++a c bx ax 在实数范围内可分解因式为)221)(221(3-++--x x ,则一元二次方程)0(02≠=++a c bx ax 的两个实数根为________________.题型二:不能在实数范围内因式分解的二次三项式例2.下列二次三项式在实数范围内不能因式分解的是(,,,,,,)A.2615x x +-;,,,,,,,,,,,,,,,,,,,,,B.,2373y y ++;,,,,,,,,,C.2224x x --;,,,,,,,,,,,,,,,,,,,,,D.2245y y -+.【变式1】下列二次三项式在实数范围内不能因式分解的是(,,,,,)A.1562-+x x ,,,,,B.3732++y y ,,,,,C.422--x x ,,,,,D.22542y xy x +-【变式2】下列二次三项式在实数范围内不能因式分解的是(,,,,,,)A.2411x x +-;,,B.,2373y y ++;,,,,C.,224x x --;,,,D.,22245x xy y -+.【变式3】如果关于x 的二次三项式24x x m -+在实数范围内不能因式分解,那么m 的值可以是_________.(填出符合条件的一个值)题型三:二次项系数为1的实数范围内二次三项式因式分解例3.在实数范围内分解因式:241x x --=______________【变式1】在实数范围内分解因式:232x x --=,,,,,,,,,,,,,,,,,,,,.【变式2】在实数范围内分解因式:243x x --=,____________________.【变式3】在实数范围内分解因式:(1)224x x --;(2)223x xy y --.题型四:二次项系数不为1的实数范围内二次三项式因式分解例4.二次三项式2x 28x+5在实数范围内因式分解为(,,,,)A.,(x+22B.,(x-)(x-)22C.,D., 【变式1】在实数范围内因式分解:222x x --=__________________.【变式2】在实数范围内因式分解:2221x x --=______.【变式3】在实数范围内分解因式:2225x x --=____.【变式4】分解因式:2235a ab b --.题型五:实数范围内二次三项式因式分解的应用例5.如果二次三项式px 2+2x ﹣1在实数范围内可以因式分解,求p 的取值范围.【变式1】二次三项式2342x x k -+,当k 取何值时,(1)在实数范围内能分解;(2)不能分解;(3)能分解成一个完全平方式,这个完全平方式是什么?【变式2】阅读题:分解因式:223x x --.解:原式22113x x =++--,,,,,,,,()2214x x =++-,,,,,,,,()214x =+-,,,,,,,,()()1212x x =+++-,,,,,,,,()()31x x =+-.此方法是抓住二次项和一次项的特点,然后加一项,使这三项为完全平方式,我们称这种方法为配方法.此题为用配方法分解因式.请体会配方法的特点,然后用配方法解决下列问题:在实数范围内分解因式:2441a a +-.,【过关检测】一、单选题1.(2022秋·上海浦东新·八年级统考期中)下列关于x 的二次三项式在实数范围内不能够因式分解的是( )2.(2023·上海·八年级假期作业)下列关于x 的二次三项式中,一定能在实数范围内因式分解的是( ) A .21x x -+ B .21x mx -+ C .21x mx -- D .22x xy y -+3.(2021秋·上海宝山·八年级校考期中)下列关于x 的二次三项式在实数范围内不能够因式分解的是( )A .x 2﹣3x +2B .2x 2﹣2x +1C .2x 2﹣xy ﹣y 2D .x 2+3xy +y 24.(2020秋·上海浦东新·八年级上海市实验学校校考期中)在实数范围内因式分解2223x xy y --,下列四5.(2022秋·上海嘉定·八年级统考期中)在实数范围内不能分解因式的是( )二、填空题7.(2022秋·上海·八年级上海市民办立达中学校考阶段练习)在实数范围内因式分解:2331x x +-=__________.8.(2022秋·上海松江·八年级校考期中)在实数范围内因式分解:223105x xy y ++=________. 9.(2022秋·上海浦东新·八年级统考期中)在实数范围内分解因式:233x x --=_____.10.(2022秋·上海黄浦·八年级上海市黄浦大同初级中学校考期中)在实数范围内分解因式:231--=x x _________________.11.(2022秋·上海杨浦·八年级校考期中)在实数范围内分解因式237x x --=_______.12.(2022秋·上海·八年级上海市进才实验中学校考期中)若二次三项式234ax x ++在实数范围内能因式分解,则a 的最大整数解为______.13.(2022秋·上海黄浦·八年级上海外国语大学附属大境初级中学校考期中)在实数范围内因式分解:223105x y xy ++=______.14.(2022秋·上海宝山·八年级上海市泗塘中学校考期中)在实数范围内因式分解:22231x y xy --=__________15.(2022秋·上海长宁·八年级上海市第三女子初级中学校考期中)在实数范围内因式分解:2231x x +-=_____.16.(2022秋·上海金山·八年级校联考期末)在实数范围内分解因式:224x x --=__.17.(2022秋·上海·八年级校考期中)在实数范围内分解因式:2243x x --___________. 18.(2022秋·上海普陀·八年级校考期中)在实数范围内分解因式:2226x xy y --=_____________.三、解答题19.(2022秋·上海·八年级专题练习)在实数范围内分解因式:(1)422772x x +-;(2)4241036y y --+.20.(2021秋·上海·八年级校考阶段练习)在实数范围内因式分解:22327x xy y --21.(2022秋·八年级统考期中)在实数范围内因式分解:22236x xy y --+22.(2022秋·上海青浦·八年级校考期中)在实数范围内因式分解:22323x xy y --.23.(2022秋·上海普陀·八年级校考期中)在实数范围内因式分解:223105x y xy ++.24.(2022秋·上海·八年级上海市黄浦大同初级中学校考阶段练习)在实数范围内因式分解:2222x xy y -++25.(2022秋·上海·八年级专题练习)在实数范围内因式分解(1)2442y y +-;(2)2235x xy y --.。

二次三项式的因式分解(公式法)

二次三项式的因式分解(公式法)

二次三项式的因式分解(用公式法)(一)一、教学目标(一)知识教学点:1.使学生理解二次三项式的意义;了解二次三项式的因式分解与解一元二次方程的关系.2.使学生会利用一元二次方程的求根公式在实数范围内将二次三项式分解因式.(二)能力训练点:通过本节课的教学,提高学生研究问题的能力.(三)德育渗透点:结合教材对学生进行辩证唯物主义观点的教育,进一步渗透认识问题和解决问题的一般规律,即由一般到特殊,再由特殊到一般.二、教学重点、难点、疑点及解决办法1.教学重点:用公式法将二次三项式因式分解.2.教学难点:一元二次方程的根与二次三项式因式分解的关系.3.教学疑点:一个二次三项式在实数范围内因式分解的条件.三、教学步骤(一)明确目标二次三项式的因式分解常用的方法是公式法、十字相乘法等.但对有些二次三项式,用这两种方法比较困难,如将二次三项式4x2+8x-1因式分解.在学习了一元二次方程的解法后,我们知道,任何一个有实根的一元二次方程,用求根公式都可以求出.那么一元二次方程ax2+bx+c=0(a≠0)的两个根与二次三项式ax2+bx+c的因式分解有无关系呢?这就是我们本节课研究的问题,也就是研究和探索二次三项式因式分解的又一种方法——用公式法.(二)整体感知一元二次方程的一般形式是ax2+bx+c=0(a≠0),观察方程的特点:左边是一个二次三项式,曾经借助于将左边二次三项式因式分解来解一元二次方程.反之,我们还可以利用方程的根,来将二次三项式因式分解.即在分解二次三项式ax2+bx+c的因式时,可先用公式求出方程ax2+bx+c=0的两个根x1,x2,然后写成ax2+bx+c=a (x-x1)(x-x2).通过知识之间的相互联系、相互作用和相互促进,对学生进行辩证唯物主义思想教育.公式ax2+bx+c=a(x-x1)(x-x2)的得出的依据是根与系数的关系.一元二次方程根与系数的关系为公式ax2+bx+c=a(x-x1)(x-x2)的得出奠定了基础.通过因式分解新方法的导出,不仅使学生学习了一个新方法,还能进一步启发学生学习的兴趣,提高他们研究问题的能力.(三)重点、难点的学习与目标完成过程1.复习提问(1)写出关于x的二次三项式?(2)将下列二次三项式在实数范围因式分解.①x2-2x+1;②x2-5x+6;③6x2+x-2;④4x2+8x-1.由④感觉比较困难,引出本节课所要解决的问题.2.①引入:观察上式①,②,③方程的两个根与方程左边的二次三项式的因式分解之关系.①x2-2x+1=0;解:原式变形为(x-1)(x-1)=0.∴ x1=x2=1,②x2-5x+6=0;解原方程可变为(x-2)(x-3)=0∴ x1=2,x2=3.③6x2+x-2=0解:原方程可变为(2x-1)(3x+2)=0.观察以上各例,可以看出,1,2是方程x2-3x+2=0的两个根,而x2-3x+2=(x-1)(x-2),……所以我们可以利用一元二次方程的两个根来分解相应左边的二次三项式.②推导出公式=a(x-x1)(x-x2).这就是说,在分解二次三项式ax2+bx+c的因式时,可先用公式求出方程ax2+bx+c=0的两个根x1,x2,然后写成ax2+bx+c=a(x-x1)(x-x2).教师引导学生从具体的数字系数的例子,观察、探索结论,再从一般的字母系数的例子得出一般性的推导,由此可知认识事物的一般规律是由特殊到一般,再由一般到特殊.③公式的应用例1 把4x2+8x-1分解因式解:∵方程4x2+8x-1=0的根是教师板书,学生回答.由①到②是把4分解成2×2分别与两个因式相乘所得到的.目的是化简①.练习:将下列各式在实数范围因式分解.(1)x2+20x+96;(2)x2-5x+3学生板书、笔答,评价.解2 用两种方程把4x2-5分解因式.方法二,解:∵ 4x2-5=0,方法一比方法二简单,要求学生灵活选择,择其简单的方法.练习:将下列各式因式分解.(1)4x2-8x+1;(2)27x2-4x-8;(3)25x2+20x+1;(4)2x2-6x+4;(5)2x2-5x-3.学生练习,板书,选择恰当的方法,教师引导,注意以下两点:(1)要注意一元二次方程与二次三项式的区别与联系,例如方程2x2-6x-4=0,可变形为x2-3x-2=0;但将二次三项式分解因式时,就不能将3x2-6x-12变形为x2-2x-4.(2)还要注意符号方面的错误,比如上面的例子如果写成2x2-5x-(3)一元二次方程ax2+bx+c=0(a≠0)当△≥0时,方程有两个实根.当△<0时,方程无实根.这就决定了:当b2-4ac≥0时,二次三项式ax1+bx+c在实数范围内可以分解;当b2-4ac<0时,二次三项式ax2+bx+c在实数范围内不可以分解.(四)总结与扩展(1)用公式法将二次三项式ax2+bx+c因式分解的步骤是先求出方程ax2+bx+c=0(a≠0)的两个根,再将ax2+bx+c写成a(x-x1)(x-x2)形式.(2)二次三项式ax2+bx+c因式分解的条件是:当b2-4ac≥0,二次三项式ax2+bx+c在实数范围内可以分解;b2-4ac<0时,二次三项式ax2+bx+c在实数范围内不可以分解.(3)通过本节课结论的探索、发现、推导、产生的过程,培养学生的探索精神,激发学生的求知欲望,对学生进行辩证唯物主义思想教育,渗透认识事物的一般规律.四、布置作业五、板书设计12.5 二次三项式的因式分解(一)结论:在分解二次三项式例1.把4x2+8x-1分解因式ax2+bx+c的因式时解:………可先用公式求出方程:……ax2+bx+c=0的两个根x1,x2,然后写成练习:………ax2+bx+c=a(x-x1)(x-x2)。

二次三项式的因式分解(2003.9)

二次三项式的因式分解(2003.9)

二次三项式的因式分解教学目的1.使学生理解二次三项式的意义,了解二次三项式的因式分解与解方程的关系.2.使学生会利用一元二次方程的求根公式在实数范围内将二次三项式分解因式.3.结合教学对学生进行辨证唯物主义观点的教育.教学重点用求根公式法将二次三项式因式分解.教学难点方程的同解变形与多项式的恒等变形的区别.教学过程一、复习1.形如ax2+bx+c(a≠0)的多项式叫做x的二次三项式,形如ax2+bx+c=0(a≠0)的方程叫做x的一元二次方程,回忆二次三项式因式分解的方法,回忆一元二次方程的解法.2.将下列各式分解因式:(1)x2-3x+2; (2)6x2-x-15;(3)4x2+8x-1.3.解下列方程:(1)2x2-6x+4=0; (2)4x2+8x-1=0.老师指出:有些多项式在有理数范围内可以分解因式,有些多项式在实数范围内才能分解因式,因此只会初一学过的十字相乘法分解二次三项式是不够的.二次三项式的因式分解结果与一元二次方程的根有密切联系.如分解因式:同学们可以发现,两个一次因式中x减去的分别是相应一元二次方程的二个根,我们能不能利用一元二次方程的根去分解相应的二次三项式呢?二、新课1.利用根与系数关系证明:ax2+bx+c=a(x-x1)(x-x2)(a≠0)我们可以利用一元二次方程的两根分解相应的二次三项式.如果我们用求根公式求得一元二次方程:ax2+bx+c=0(a≠0)的两根x1和x2,那么由根与系数关系可知:=a[x2-(x1+x2)x+x1·x2]=a(x-x1)(x-x2).这就是说,在分解二次三项式ax2+bx+c的因式时可先用公式求出方程ax2+bx+c=0的两根x1,x2,然后写成ax2+bx+c=a(x-x1)(x-x2).这种方法叫求根法.2.例题例1 把4x2-5分解因式.解:∵方程4x2-5=0的两根是:提醒学生此题用平方差公式分解更好.例2 把4x2+8x-1分解因式解:∵方程4x2+8x-1=0的根是注意:(1)因为分解因式是恒等变形,所以结果不要丢掉二次项系数a.(2)分解结果是否把二次项系数乘进括号内,取决于能否把括号内的分母化去.例3 把2x2-8xy+5y2分解因式,解:∵关于x的方程2x2-8xy+5y2=0的根是注意:结果不要丢掉两个一次因式里的y.三、练习1.分解因式:(1)x2+20x+96; (2)6x2-11xy-7y2.2.在实数范围内分解因式:(1)x2-5x+3; (2)-2x2-3x+6;(3)3x2+4xy-y2; (4)3x2-5xy-y2.四、小结1.二次三项式ax2+bx+c(a≠0)分解因式的方法有:(1)利用公式法;(2)十字相乘法;(3)求根公式法.在实际操作时要灵活选择使用.2.二次三项式ax2+bx+c能否在实数范围内分解因式,取决于一元二次方程ax2+bx+c=0是否有实根.当b2-4ac≥0时,ax2+bx+c在实数范围内可以分解;当b2-4ac<0时,ax2+bx+c在实数范围内不能分解.五、作业1.把下列各式分解因式:(1)5x2+11x+6; (2)6y2-13y+6;(3)-4x2-4x+15; (4)10p2-p-3;(5)3x2y2-10xy+7; (6)15x2+16xy-15y2.2.在实数范围内分解因式:(1)x2-x-1; (2)x2-2x-4;(3)3x2+2x-3; (4)-3m2-2m+4;*3.把下列各式分解因式:(3)(m2-m)x2-(2m2-1)x+m(m+1);(4)(x2+x)2-2x(x+1)-3.。

二次三项式的因式分解

二次三项式的因式分解

二次三项式的因式分解因式分解和整式乘法的关系密切,因式分解就是把一个整式写成乘积形式,反之就是整式的乘法。

我们可以把它们的关系看做乘法和整除的关系。

学习除法的前提一定是熟练掌握乘法,同样地想做好因式分解就要先把整式的乘法练熟。

关于整式乘法的计算可以看一下我之前的文章,传送门:用竖式做多项式的运算关于因式分解课本中主要介绍了提取公因式法和公式法。

在课后练习中提到了二次三项式因式分解的十字相乘法。

十字相乘法对应的就是两个一次式相乘。

我们先来用竖式来计算一下两个一次式相乘的一般情况。

注意红框标出的部分,右边相乘得结果中的常数项,左边相乘得结果中的二次项,交叉相乘再相加得结果中的一次项,这恰好是十字相乘法的口诀。

动手试一试:X2+3X+2 这里很容易看出1=1╳1,2=1╳2,3=1╳1+1╳2,所以X2+3X+2 =(X+1)(X+2)复杂一点的:X2+9X+20 这里也不难看出1=1╳1,20=4╳5,9=1╳4+1╳5,所以X2+9X+20 =(X+4)(X+5)类似的:X2+12X+20 =(X+10)(X+2),这里20=2╳10,1=1╳1,12=1╳2+1╳10。

上面这些例子都是中学生常见的类型,二次项系数都是1,分解后出现的数字都是整数,比较简单。

即使这样也能从后两个例子中可以看出一些问题。

同样是20,既可以是4╳5又可以是2╳10,甚至还可以是1╳20,那么在具体题目中如何选择呢?没别的办法,只能多试几次。

比如X2-29X-210 怎么分解呢?-210要写成哪两个数的乘积呢?容易想到21╳10、3╳70、7╳30,但是这些结果都不能相加后得到29,。

我们要想办法找到210所有可能的乘积的形式,这里可以用小学学过的因数分解来处理。

221031055357通过短除法可以看出210=2╳3╳5╳7,所以就有210=2╳105,210=3╳70,210=5╳42,210=7╳30,210=6╳35,210=10╳21,210=14╳15以及210=1╳210八种结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x2+(p+q)x+pq=(x+p)(x+q)型式子的因式分解
一、知识链接
利用整式乘法填空:
(1)(x+3)(x+5)=_______(2)(x+4)(x-3)=_______(3)(m+2)(m-4)=_______(4)(y-3)(y-2)=_______ (5) (x+p)(x+q)=________
观察结果,归纳多项式x2+ax+b的特点:
1)二次项系数是1;2)常数项是两个数之积;3)一次项的系数是常数项的两个因数
之和。

反过来,能否对形如x2+(p+q)x+pq的二次三项式的式子进行因式分解呢?
由整式乘法(x+p)(x+q)=x2+(p+q)x+pq,可知x2+(p+q)x+pq=(x+p)(x+q)。

这就是说,对于二次三项式x2+ax+b,如果常数项b可以分解为p、q的积,并且有p+q=a,那么x2+ax+b= x2+(p+q)x+pq=(x+p)(x+q)。

二、自学课本P121
完成课本练习(1)x2+7x+10 (2)x2-2x-8
(3)y2-7y+12 (4)x2+7x-18
下面举例具体说明怎样进行分解因式。

例1、因式分解
分析:因为
7x + (-8x) =-x
解:原式=(x+7)(x-8)
例2、因式分解
解:原式=(x-2)(x-8)
这就是分解因式的十字相乘法。

分解策略:二次项、常数项分别竖直写,符号决定常数项,交叉相乘验中项,横向写出两因式。

练习(1)x2+5x+6 (2)x2-5x+6 (3)x2+5x-6 (4)x2-5x-6
1)、如果常数项b是正数,那么把它分解成两个同号因数p,q,它们的符号与一次项
系数a的符号相同
2) 、如果常数项b是负数,那么把它分解成两个异号因数p,q,其中绝对值较大的因
数与一次项系数a的符号相同。

完成卷子随堂测评1-5题
三、点拨构建
例题3 因式分解
分析:该题可以先将()看作一个整体进行十字相乘法分解,接着再套用一次
十字相乘。

因为
-2+[-12]=-14 a + (-2a)=-a 3a +(-4a)=-a
解:原式=[-2][ -12]
=(a+1)(a-2)(a+3)(a-4)
练习:把下列各式因式分解(变式训练)
(1)(a+b)2-4(a+b)-21 (2)x2y2-4xy+3 (3)x4+6x2+8 (4)x4-10x2+9
(5)x2-2xy-24y2 (6)x3y-5x2y2+6xy3
四、拓展深华
例4、因式分解。

分析:该题虽然二次项系数不为1,但也可以用十字相乘法进行因式分解。

因为
9y + 10y=19y
解:原式=(2y+3)(3y+5)
练习试卷14题、已知x+y=0.5,x+3y=1.2,求3x2+12xy+9y2的值。

五、小结:
1、十字相乘法对于二次三项式的分解因式十分方便,大家一定要熟练掌握。

但要注意,并不是所有的二次三项式都能进行因式分解,如在实数范围内就不能再进一步
因式分解了
2、基本式子:x2+(p+q)x+pq=(x+p)(x+q)十字相乘法口诀:
分解二次三项式,尝试十字相乘法。

分解二次常数项,交叉相乘做加法;叉乘和是一次
项,十字相乘分解它。

相关文档
最新文档